
Horizontal Aggregations in SQL by Using Clustering as a Mixture Gaussians

R. Rakesh Kumar A. Bhanu Prasad

M.Tech Software Engineering, Associate Professor, Department of IT,

Vardhaman College of Engineering, Vardhaman College of Engineering,

Hyderabad, India. Hyderabad, India.

Abstract

To analyze data efficiently, Data mining systems are

widely using datasets with columns in horizontal

tabular layout. Preparing a data set is more complex

task in a data mining project, requires many SQL

quires, joining tables and aggregating columns.

Conventional RDBMS usually manage tables with

vertical form. Aggregated columns in a horizontal

tabular layout returns set of numbers, instead of one

number per row. The system uses one parent table

and different child tables, operations are then

performed on the data loaded from multiple tables.

PIVOT operator, offered by RDBMS is used to

calculate aggregate operations. PIVOT method is

much faster method and offers much scalability.

Partitioning large set of data, obtained from the

result of horizontal aggregation, in to homogeneous

cluster is important task in this system. Gaussians

algorithm using SQL is best suited for implementing

this operation.

Keywords: Aggregation, Structure Query Language

(SQL), PIVOT and Gaussians Algorithm.

1. Introduction

Horizontal aggregation is new class of function to

return aggregated columns in a horizontal layout.

Most algorithms require datasets with horizontal

layout as input with several records and one variable

or dimensions per columns. Managing large data sets

without DBMS support can be a difficult task. Trying

different subsets of data points and dimensions is

more flexible, faster and easier to do inside a

relational database with SQL queries than outside

with alternative tool. Horizontal aggregations can be

performing by using operator, it can easily be

implemented inside a query processor, much like a

select, project and join. PIVOT operator on tabular

data that exchange rows, enable data analysis, and

data presentation. There are many existing functions

and operators for aggregation in SQL. The most

commonly used aggregations is the sum of a column

And other aggregation operators return the average,

maximum, minimum or row count over groups of

rows. All operations for aggregation have many

limitations to build large data sets for data mining

purposes. Database schemas are also highly

normalized for On-Line Transaction Processing

(OLTP) systems where data sets that are stored in a

relational database or data warehouse. But data

mining, statistical or machine learning algorithms

generally require aggregated data in summarized

form. Data mining algorithm requires suitable input

in the form of cross tabular (horizontal) form,

significant effort is required to compute aggregations

for this purpose. Such effort is due to the amount and

complexity of SQL code which needs to be written,

optimized and tested. Data aggregation is a process in

which information is gathered and expressed in a

summary form, and which is used for purposes such

as statistical analysis. A common aggregation

purpose is to get more information about particular

groups based on specific variables such as age, name,

phone number, address, profession, or income. Most

algorithms require input as a data set with a

horizontal layout, with several records and one

variable or dimension per column. That technique is

used with models like clustering, classification,

regression and PCA. Dimension used in data mining

technique are point dimension. There are several

advantages for horizontal aggregation. First one is

horizontal aggregation represent a template to

generate SQL code reduces manual work in the data

preparation phase in data mining tool. This SQL code

reduces manual work in the data preparation phase in

data mining related project. Second is automatically

generated code, which is more efficient than end user

written SQL code. Thus datasets for the data mining

projects can be created in less time. Third advantage

is the datasets can be created entirely inside the

International Journal of Engineering Research & Technology (IJERT)

Vol. 2 Issue 2, February- 2013
ISSN: 2278-0181

1www.ijert.org

IJ
E
R
T

IJ
E
R
T

DBMS Gaussians clustering algorithms are used to

cluster the attribute, that attribute is the result of

horizontal aggregation. The rest of the paper is

organized as follows. Next part presents clustering of

aggregated dataset and different methods existing for

aggregation and Conclusion.

2. Related Work

SQL extensions to define aggregate functions for

association rule mining. Their optimizations have the

purpose of avoiding joins to express cell formulas,

but are not optimized to perform partial transposition

for each group of result rows. Conor Cunnigalam [1]

proposed an optimization and execution strategies in

an RDBMS which uses two operators i.e., PIVOT

operator on tabular data that exchange rows and

columns, enable data transformations useful in data

modeling, data analysis, and data presentation. They

can quite easily be implemented inside a query

processor system, much like select, project, and join

operator. Such a design provides opportunities for

better performance, both during query optimization

and query execution. PIVOT is an extension of

Group By with unique restrictions and optimization

opportunities, and this makes it very easy to

introduce incrementally on top of existing grouping

implementations. H Wang. C.Zaniolo [2] proposed a

small but complete SQL Extension for Data Mining

and Data Streams. This technique is a powerful

database language and system the enables users to

develop complete data intensive applications in SQL

by writing new aggregates and table functions in

SQL, rather than in procedural languages as in

current Object-Relational systems. The ATLaS

system consist of applications including various data

mining functions, that have been coded in ATLaS

SQL, and execute with a modest (20-40%)

performance overhead with respect to the same

applications written in C/C++. This system can

handle continuous queries using the schema and

queries in Query Repository. Sarawagi, S. Thomas,

and R. Agrawal [3] proposed integrating association

rule mining with relational database systems.

Integrating Association rule mining include several

methods. Loose-coupling through a SQL cursor

interface is an encapsulation of a mining algorithm in

a stored procedure. Second method is catching the

data to a file system on-the-fly and mining tight-

coupling using primarily user-defined functions and

SQL implementations for processing in the DBMS.

Loose-coupling and Stored-procedure architectures:

For the loose-coupling and Stored-procedure

architectures, can use the implementation of the

Apriori algorithm for finding association rules.

C.Ordonez [4] proposes an integration of K-means

clustering with a relational DBMS using SQL. This

techniques consist of three SQL implementations.

First step is a straightforward translation of K-means

computations into SQL, and an optimized, efficient

indexing, sufficient statistics, and rewritten queries,

and an incremental version that uses the optimized

version as a building block with fast convergence and

automated reseeding. The first implementation is a

straightforward translation of Gaussians

computations into SQL, which serves as a framework

to build a second optimized version with superior

performance. The optimized version is then used as a

building block to introduce an incremental Gaussians

implementation with fast convergence and automated

reseeding. G Graefe, U. Fayyad, and S. Chaudhari [5]

introduced efficient gathering of sufficient statistics

for classification from large SQL Databases. This

technique use a SQL operator (UNPIVOT) that

enables efficient gathering of statistics with minimal

charges to the SQL backend. Need a set of counts for

the number of co-occurrences of each attribute value

with each class variable. In classification the number

of attribute values is not large (in the hundreds) the

size of the counts table is fairly small. Continuous

valued attributes are discretized into a set of intervals.

The most familiar selection measures used in

classification do not require the entire data set, but

only sufficient statistics of the data. A

straightforward implementation for deriving the

sufficient statistics on a SQL database results in

unacceptably poor performance. The problem of

optimizing queries with outer joins is not new.

Optimizing joins by reordering operations and using

transformation rules is studied. This work does not

consider optimizing a complex query that contains

several outer joins on primary keys only, which is

fundamental to prepare data sets for data mining.

Traditional query optimizer’s use of hyper-graphs to

provide a more comprehensive set of potential plans.

J. Gray, A. Bosworth, A. Layman, and H. Pirahesh

[6] proposed a relational aggregation operator that

generalizing Group-By, Cross-Tab, and Sub-Totals.

The cube operator generalizes the histogram, cross

International Journal of Engineering Research & Technology (IJERT)

Vol. 2 Issue 2, February- 2013
ISSN: 2278-0181

2www.ijert.org

IJ
E
R
T

IJ
E
R
T

tabulation, roll-up, drill-down, and sub-total

constructs. The cube operator can be imbedded in

more complex non-procedural data analysis programs

and data mining. The cube operator treats each of the

N aggregation attributes as a dimension of N-space.

The aggregate of a particular set of attribute values is

a point in this space and set of points forms an N-

dimensional cube. Super aggregates are computed by

aggregating the N-cube to lower dimensional spaces.

Creating a data cube requires generating the power

set (set of all subsets) of the aggregation columns.

Since the CUBE is an aggregation operation, it makes

sense to externalize it by overloading the SQL

GROUP BY operator. G. Luo, J.F. Naughton, C.J.

Ellmann, and M. Watzke [7] proposed immediate

materialized view introduces many lock conflicts or

deadlocks. System results in low level of concurrency

and high level of deadlocks. To solve the

materialized view update problem V-locks (view

locks) augment with a “value-based” latch pool.

Direct Propagate Updates propagate updates on base

relations directly to the materialized view without

computing and join operator. Granularity and the No-

Lock Locking Protocol locks have some interesting

properties with respect to granularity and

concurrency. Finer granularity locking results in

higher concurrency. In the no-lock locking protocol,

like the V locking protocol, updaters of the

materialized view must get X locks on the tuples in

the base relations they update and S locks on the

tuples in the other base relations mentioned in the

view. Xiang Lian and Lei Chen [9] analyzed cost

models for evaluating dimensionality reduction in

high-dimensional spaces. This model is general cost

models for evaluating the query performance over the

reduced data sets by GDR, LDR, and ADR, in light

of which we introduce a novel (A) LDR method,

partitioning based on Randomized search

(RANS).Formal cost models to evaluate the

effectiveness and efficiency of GDR, LDR. and ADR

fir range queries. Furthermore, we present a novel

partitioning based (A) LDR approach, PRANS,

which is based on our cost model and can achieve

good query performance in terms of the pruning

power. Extensive experiments have verified the

correctness of our cost models and indicated that

compared to the existing LDR method, can result in

partitions with a lower query cost. C.Ordonez [10]

introduced techniques to efficiently compute

fundamental statistical models inside a DBMS

exploiting User- Defined Functions (UDFS). Two

summary matrices on the data set are mathematically

shown to be essential for all models: the linear sum

of points and the quadratic sum of cross product of

points. Introduce efficient SQL queries to compute

summary matrices and score the data set. Based on

the SQL framework. Introduce UDFs that work in a

single table scan. Aggregate UDFs to compute

summary matrices for all models and a set of

primitive scalar UDFs are used to score data sets.

C.Ordonez [11] proposed two SQL aggregate

functions to compute percentages addressing many

limitations. The first function returns one row for

each percentage in vertical form and the second

function returns each set of percentages adding 100%

on the same row in horizontal form. These novel

aggregate functions are used as to introduce the

concept of percentage queries and to generate

efficient SQL code in data mining related works.

Queries using percentage aggregations are called

percentage queries. Two practical issues were

identified when computing vertical percentage

queries. First issue is missing rows and second issue

is division by Zero.

3. Integrating of Gaussians Algorithm with

Horizontal Aggregations

Clustering methods partition a set objects into

clusters such that objects in the same cluster are more

similar to each other than objects in different clusters

according to some defined criteria. Data mining

applications frequently involve categorical data. The

biggest advantage of these clustering algorithms is

that it is scalable to very large data sets. Even though

the existing system presented the computation of the

values for different attributes, it has some drawbacks.

In the research of the horizontal aggregation, the

existing systems are not well defined for the different

fact tables that need better indexing and extraction.

Multiple fact tables: Constructing new data sets

within the range of a discrete set of known data

points we need different attributes from different

facts tables. In many applications one often has a

number of data values, obtained by experimentation,

which stored on limited number of databases. It is

often required to extract the particular useful

attributes from the different fact tables and perform

International Journal of Engineering Research & Technology (IJERT)

Vol. 2 Issue 2, February- 2013
ISSN: 2278-0181

3www.ijert.org

IJ
E
R
T

IJ
E
R
T

aggregation. Gaussians: Gaussians is initialized from

some random or approximate solution. Each step

assigns each point to its nearest cluster and then

points belonging to the same cluster are averaged to

get new cluster centroids. Each step successively

improves cluster centroids until they are stable. This

is the standard version of K-Means technique used.

Optimized K-means computes all Euclidean distances

for one point in one I/O, exploits sufficient statistics,

and stores the clustering model in a single table.

Experiments evaluate performance with large data

sets focusing on elapsed time per iteration. The main

issue here addressed is how to make efficient

indexing of horizontal aggregation. Initially an

aggregation operation is performed horizontal layout

are creating by using pivot operator. In this Gaussians

algorithm are implementing to create datasets with

horizontal layout as input.

4. REFERNCES:

[1] C.Cunningham, G.Graefe, and C.A.GalindoLegaria.

PIVOT and UNPIVOT: Optimization and execution

strategies in an RDBMS. In Proc. VLDB Conference.

Pages 998-1009, 2004.

[2] H.Wang, C. Zaniolo, and C.R. Luo. ATLaS: A small

but complete SQL extension for data mining and data

streams. In Proc. VLDB Conference. Pages 1113-1116,

2003.

[3] S. Sarawagi, S. Thomas, and R. Agarwal. Integrating

association rule mining with relational database systems:

alternatives and implications. In Proc. ACM SIGMOD

Conference, pages 343-354, 1998.

[4] C. Ordonez. Integrating K-means clustering with a

relational DBMS using SQL. IEEE Transactions on

Knowledge and Data Engineering (TKDE), 18(2):188-201,

2006.

[5] G. Graefe, U. Fayyad, and S. Chaudhuri. On the

efficient gathering of sufficient statistics for classification

from large SQL databases. In Proc. ACM KDD

Conference, pages 204-208, 1998.

[6] J. Gray, A. Bosworth, A. Layman, and H. Pirahesh.

Data cube: A relational aggregation operator generalizing

group-by, cross-tab and subtotal. In ICDE Conference,

pages 152-159, 1996.

[7] G. Luo, J.F. Naughton, C.J. Ellmann, and M. Watzke.

Locking protocols for materialized aggregate join views.

IEEE Transaction on knowledge and Data Engineering

(TKDE), 17(6):796-807, 2005.

[8] C. Ordonez and S. Pitchaimalai. Bayesian classifiers

programmed in SQL. IEEE Transactions on Knowledge

and Data Engineering (TKDE), 22(1):139-144, 2010.

[9] Xiang Lian, Student Member, IEEE, and Lei Chen,

General Cost Models for Evaluating Dimensionality

Reduction in High-Dimensional Spaces. IEEE Transactions

on Knowledge and Data Engineering (TKDE), 22(1):139-

144, 2010.

[10] C. Ordonez. Statistical model computation with UDFs.

IEEE Transactions on Knowledge and Data Engineering

(TKDE), 22, 2010.

[11] C. Ordonez. Vertical and horizontal percentage

aggregations. In Proc. ACM SIGMOD Conference, pages

866-871, 2004.

[12] C. C. Ordonez and Zhibo Chen. Horizontal

Aggregation in SQL to prepare Data Sets for Data Mining

Analysis. IEEE Transactions on Knowledge and Data

Engineering (TKDE), 1041-4347/11/$26.00, 2011.

International Journal of Engineering Research & Technology (IJERT)

Vol. 2 Issue 2, February- 2013
ISSN: 2278-0181

4www.ijert.org

IJ
E
R
T

IJ
E
R
T

