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 Abstract— This paper presents a saliency-based human object 

extraction (HOE) framework. The proposed framework aims 

to automatically extract foreground human object without any 

user interaction or the use of any training data. In the 

proposed method, The coarse foreground extraction is 

obtained by using the motion and the edge information of an 

object. Then, the human object is extracted by using the 

horizontal/ vertical filling scheme based on the coarse 

foreground extraction. The proposed method integrate these 

feature models into a unified framework via a Conditional 

Random Field (CRF), and this CRF can be applied to video 

object segmentation and further video editing and retrieval 

applications.Experimental results shows that the proposed 

human object extraction has good performance in sensitivity, 

specificity, spatial accuracy and execution time.  
Index Terms — Conditional Random Field (CRF), Human 

Object Extraction (HOE), Visual Saliency,Foreground 

Extraction. 

 

 

I. INTRODUCTION 

 

         Extraction of Objects (human) in video sequences is 

very important in many aspects of multimedia applications. 

Video object extraction is an important key technology for 

content based video coding, representation, indexing, and 

retrieval. Video object extraction can be described as a 

method of extracting the foreground object from each frame 

of a video sequence.Video object extraction requires 

consistent object labeling throughout the video sequence, 

where the consistent object labeling would be color, texture, 

motion, spatial-temporal structure etc.Video object 

extraction can also be applied to some interesting and 

potential applications, such as video surveillance, digital 

watermarking, behavior analysis of sport video and 

advanced story retrieval.        

       Human can easily determine the subject of interest in a 

video, even though that subject is presented in an unknown 

or cluttered background or even has never been seen before. 

With the complex cognitive capabilities exhibited by human 

brains, this process can be interpreted as simultaneous 

extraction of both foreground and background information 

from a video. Many researchers have been working toward 

closing the gap between human and computer vision.  

Many methods have been proposed for video object 

extraction. Generally, these methods can be roughly 

classified into two types: Background construction-based 

video object extraction and foreground extraction –based 

video object extraction. In background construction – based 

video object extraction, the background information is first 

constructed. Then, an initial video object is obtained based 

on the difference between the background and the current 

frame.Finally, a video object in the successive frame can be 

obtained by using object tracking or background 

substraction. Background construction- based video object 

extraction can be keep object tracking with fast moving 

objects. Furthermore, its computational cost is low and its 

implementation is easy. 

        In foreground extraction-based video object extraction, 

temporal information, spatial information, or temporal – 

spatial information is first used to obtain an initial video 

object. Then, the video object in the successive frame can be 

obtained by using motion information, change information 

and other feature information. In contrast to background 

construction-based video object extraction, foreground 

extraction- based video object extraction can obtain accurate 

video object boundaries for low moving objects. 

        However, background construction-based video object 

extraction is difficult to obtain good background 

information when the moving object exists in the first frame 

of the video sequence. That is, good background 

information has not yet been constructed in the first frame. 

Therefore, foreground extraction- based video object 

extraction is suitable for video object extraction when the 

moving object exists in the first frame of the video 

sequence. 

        In this paper, a foreground extraction-based method  

using motion information is proposed to obtain good human 

video object extraction in the whole video sequence. In the 

proposed method, the motion information of the video 

object is obtained using the angle-module rule. Then, a 

coarse foreground extraction is obtained by using motion 

information. Next, the human video object is extracted using 

the horizontal / vertical filling scheme based on the coarse 

foreground extraction and fine foreground extraction. 
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Finally, the conditional random field is applied for video 

object segmentation. 

        A conditional random field is applied to automatically 

determines the label (foreground or background) of each 

pixel based on the observed models. With the ability to 

preserve both spatial and temporal consistency. A 

conditional random field is applied to effectively combine 

the saliency induced features, which allows us to deal with 

unknown pose and scale variations of the foreground object 

(and its articulated parts). Based on the ability to preserve 

both spatial continuity and temporal consistency in the 

proposed HOE framework, experiments on a variety of 

videos verify that our method is able to produce 

quantitatively and qualitatively satisfactory HOE results. 

           However, without any prior knowledge on the 

subject of interest or training data, it is still very challenging 

for computer vision algorithms to automatically extract the 

foreground object of interest in a video. 
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fig 1:Overview of the proposed system 

 

II. RELATED WORK 

 

Several methods were proposed to detect object 

parts rather than the entire object. For example, Nevatia et al 

and Davis et al Both decomposed an object shape model in 

a hierarchical way to train object part detectors. These 

detectors are used to describe all possible configurations of 

the object of interest. Gorelick and Basri collected a set of 

object silhouette exemplars. To extract the object of interest, 

the authors over-segmented the input image and determined 

the segments which best matched the associated templates. 

To deal with multiple human instances with large pose 

deformations, Niebles et al applied a human body detector 

on each frame, and their detection results were refined by 

pose density estimation function and probability diffusion 

between adjacent frames. Recently in the authors further 

utilized template matching between the result produced by 

pedestrian detectors and a set of upright human pose 

templates, which is to simultaneously regularize and reduce 

the search space of possible object model configurations. 

However, these part-based methods typically assume that 

the object categories are known in advance, and they need 

to collect the object part templates to design each part 

detector. 

       Besides the above approaches, graph-based methods 

have been shown to be effective for foreground object 

segmentation. Using such methods, an image is typically 

represented by a graph, in which each observed node 

indicates an image pixel and the associated hidden node 

corresponds to its label. By determining the cost between 

adjacent hidden nodes using color, motion, etc. information, 

one can segment the foreground object by dividing the 

graph into disjoint parts while minimizing the total cost. 

Previous work such as and focused on an interactive scheme 

and required users to manually provide the ground truth 

label information. 

 

Our Contributions: 

This paper  aims at automatically extracting foreground 

objects in videos which are captured by freely moving 

cameras. Instead of assuming that the background motion is 

dominant and different from that of the foreground, we relax 

this assumption and allow foreground objects to be 

presented in freely moving scenes. We advance both visual 

and motion saliency information across video frames, and a 

CRF model is utilized for integrating the associated features 

for HOE (i.e., visual saliency, shape, 

foreground/background color models, and spatial/temporal 

energy terms). From our quantitative and qualitative 

experiments, we verify that our HOE performance exhibits 

spatial consistency and temporal continuity, and our method 

is shown to outperform state-of the- art unsupervised HOE 

approaches. It is worth noting that, our proposed HOE 

framework is an unsupervised approach, which does not 

require the prior knowledge (i.e., training data) of the object 

of interest nor the user interaction for any annotation. 

 

III. AUTOMATIC OBJECT MODELING AND 

EXTRACTION 

 

Most existing unsupervised HOE approaches assume the 

foreground objects as outliers in terms of the observed 

motion information, so that the induced appearance, color, 

etc. features are utilized for distinguishing between 

foreground and background regions. However, these 

methods cannot generalize well to videos captured by freely 

moving cameras as discussed 

earlier. In this work, we propose a saliency-based HOE 

framework which learns saliency information in both spatial 

(visual) and temporal (motion) domains. By advancing 

conditional  random fields (CRF), the integration of the 

resulting features can automatically identify the foreground 

object without the need to treat either foreground or 

background as outliers. Fig. 1 shows the proposed VOE 

framework, and we now detail each step in the following 

subsections. 
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Fig. 2. Example of visual saliency calculation. (a) Original 

video frame.(b) Visual saliency of (a) derived by (1). (c) 

Visual saliency of (a) refined by (2). 
 

A. Determination of Visual Saliency 

 

To extract visual saliency of each frame, we perform image 

segmentation on each video frame and extract color and 

contrast information. In our work, we advance Turbopixels 

proposed by  for segmentation, and the resulting image 

segments (superpixels) are applied to perform saliency 

detection. The use of  Turbopixels allows us to produce 

edge preserving superpixels with similar sizes, which would 

achieve improved visual saliency results as verified later. 

For the kth superpixel rk , we calculate its saliency score S(rk 

) as follows: 

S(rk ) = ∑ exp(Ds (rk , ri )/σ 2
s )ω(ri )Dr (rk , ri ) 

                                    rk+ri 

≈ ∑exp(Ds (rk , ri )/σ 2
s )Dr (rk , ri)                                          

(1) 
                                    rk +ri 

 

where Ds is the Euclidean distance between the centroid of 

rk  and that of its surrounding superpixels ri , while σs 

controls the width of the kernel. The parameter ω(ri ) is the 

weight of the neighbor superpixel ri , which is proportional 

to the number of pixels in ri . Compared to [27], ω(ri ) can 

be treated as a constant for all superpixels due to the use of 

Turbopixels (with similar sizes). The last term Dr (rk , ri ) 

measures the color difference between rk and ri , which is 

also in terms of Euclidean distance. 

As suggested by [22], we consider the pixel i as a salient 

point if its saliency score satisfies S(i) > 0.8 ∗  max(S), and 

the collection of the resulting salient pixels will be 

considered as a salient point set. Since image pixels which 

are closer to this salient point set should be visually more 

significant than those which are farther away, we further 

refine the saliency ˆS(i ) for each pixel i as follows: 

 

ˆS(i ) = S(i ) ∗  (1 − dist(i )/distmax)                                           

(2) 

 

where S(i ) is the original saliency score derived by (1), and 

dist(i ) measures the nearest Euclidian distance to the salient 

point set. We note that distmax in (2) is determined as the 

maximum distance from a pixel of interest to its nearest 

salient point within an image, thus it is an image-dependent 

constant. An example of visual saliency calculation is 

shown in Fig. 2. 

 

B. Extraction of Motion-Induced Cues 

 

1) Determination of Motion Saliency: We now discuss how 

we determine the motion saliency, and how we extract the 

associated cues for HOE purposes. Unlike prior works 

which assume that either foreground or background exhibits 

dominant motion, our proposed framework aims at 

extracting motion salient regions based on the retrieved 

optical flow 

 
 

Fig. 3. Motion saliency calculated for Fig. 2. (a) Calculation 

of the optical flow. (b) Motion saliency derived from (a). 

 

information. To detect each moving part and its 

corresponding pixels, we perform dense optical-flow 

forward and backward propagation [28] at each frame of a 

video. A moving pixel qt at frame t is determined by 

 

qt =^qt, t−1∩^qt, t+1                                                                                          

(3) 

 

where ^q denotes the pixel pair detected by forward or  

ackward 

optical flow propagation. We do not ignore the frames 

which result in a large number of moving pixels at this stage 

as [13], [14] did, and thus our setting is more practical for 

real-world videos captured by freely-moving cameras.  

     After determining the moving regions, we propose to 

derive the saliency scores for each pixel in terms of the 

associated optical flow information. Inspired by visual 

saliency approaches like [27], we apply our proposed 

algorithms in (1) and (2) on the derived optical flow results 

to calculate the motion  saliency M(i, t) for each pixel i at 

frame t, and the saliency score at each  

frame is normalized to the range of [0, 1]  (see Fig. 3 for 

example). It is worth noting that, when the foreground 

object exhibits significant movements (compared to 

background), its motion will be easily captured by optical 

flow and thus the corresponding motion salient regions can 

be easily extracted. On the other hand, if the camera is 

moving and thus results in remarkable background 

movements, the proposed motion saliency method will still 

be able to identify motion salient regions (associated with 

the foreground object), as verified later by our experiments. 

Compare Figs. 1(a) and (b), we see that the motion saliency 

derived from the optical flow has a better representative 

capability in describing the foreground regions than the 

direct use of the optical flow does. Another example is 

shown in Fig. 3, in which we observe that the foreground 

object (the surfer) is significantly more salient than the 

moving background in terms of motion. From the above 

discussions, we consider motion saliency as an important 

and supplementary information for identifying foreground 

objects. 

 

2) Learning of Shape Cues: Although motion saliency 

allows us to capture motion salient regions within and 

across video frames, those regions might only correspond to 

moving parts of the foreground object within some time 

interval. If we simply assume the foreground should be near 

the high motion saliency region as the method in [13] did, 

we cannot easily identify the entire foreground object. Since 

it is typically observed that each moving part of a 

foreground object forms a complete sampling of the entire 
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foreground object (e.g., same assumption is made in [5], [6], 

[13], [14]), we advance part-based shape information 

induced by motion cues for characterizing the foreground 

object. 

 
 

Fig. 4. Visualization of sparse shape representation. (a) 

Example codewords for sparse shape representation. (b) 

Corresponding image patches (only top 5 matches shown). 

(c) Corresponding masks for each codeword. 

 

      To describe the motion salient regions, we convert the 

motion saliency image into a binary output and extract the 

shape information from the motion salient regions. More 

precisely, we first binarize the aforementioned motion 

saliency M(i, t) into Mask(i, t) using a threshold of 0.25. We 

divide each video frame into disjoint 8 × 8 pixel patches. 

For each image patch, if more than 30% of its pixels are 

with high motion saliency (i.e., pixel value of 1 in the 

binarized output), we compute the histogram of oriented 

gradients (HOG) descriptors with 4 × 4 = 16 grids for 

representing its shape information. To capture scale 

invariant shape information, we further downgrade the 

resolution of each frame and repeat the above process. We 

choose the lowest resolution of the scaled image as a quarter 

of that of the original one. We note that a similar setting for 

scale invariance has also been applied in [29] when 

extracting the HOG descriptors. 

       Since the use of sparse representation has been shown 

to be very effective in many computer vision tasks [30], we 

learn an over-complete codebook and determine the 

associated sparse representation of each HOG. Now, for a 

total of N HOG descriptors calculated for the above motion-

salient patches {hn, n = 1, 2, . . . , N} in a p-dimensional 

space, we construct an over-complete dictionary Dp × K 

which includes K basis vectors, and we determine the 

corresponding sparse coefficient αn of each HOG 

descriptor. Therefore, the sparse coding problem can be 

formulated as  

             n 

min   1 ∑ 1 ||hn − Dαn|| 22+ λ||αn||1                                                         

(4)                   

D,α    N n=1  2 

 

where λ balances the sparsity of αn and the l2-norm   

reconstruction error. We use the software developed by [31] 

to solve the above problem. Fig. 4(a) shows example basis 

vectors 

(codewords) in terms of image patches. We note that each 

codeword is illustrated by averaging image patches with the 

top 15 αn coefficients (see examples illustrated in Fig. 4(b), 

in which only the top 5 matches are shown). To alleviate the 

possible presence of background in each codeword k, we 

combine the binarized masks of the top 15 patches using the 

corresponding weights αn to obtain the map Mk. As a  

 
Fig. 5. Shape likelihood reconstructed by sparse shape 

representation. (a) Original frame. (b) Shape likelihood. 

 

result, the moving pixels within each map (induced by 

motion  saliency) has non-zero pixel values, and the 

remaining parts of that patch are considered as static 

background and thus are zeroes. Fig. 4(c) shows example 

results for each codeword shown in Fig. 4(a). 

After obtaining the dictionary and the masks to represent the 

shape of foreground object, we use them to encode all 

image patches at each frame. This is to recover non-moving 

regions of the foreground object which does not have 

significant motion and thus cannot be detected by motion 

cues. For each image patch, we derive its sparse coefficient 

vector α, and each entry of this vector indicates the 

contribution of each shape codeword. Correspondingly, we 

use the associated masks and their weight coefficients to 

calculate the final mask for each image patch. Finally, the 

reconstructed image at frame t using the above maps Mk can 

be denoted as foreground shape likelihood  

_ X 
S 

t , which is calculated as follows: 

_ XSt=_n∈ ItK_k=1(αn,k · Mk ) (5) 

 

where αn,k is the weight for the nth patch using the kth 

codeword. 

Fig. 5 shows an example of the reconstruction of a video 

frame using the motion-induced shape information of the 

foreground object. We note that _ XS t serves as the 

likelihood of foreground object at frame t in terms of shape 

information. 

 

3) Learning of Color Cues: Besides the motion-induced 

shape information, we also extract both foreground and 

background color information for improved VOE 

performance. According to the observation and the 

assumption that each moving part of the foreground object 

forms a complete sampling of itself, we cannot construct 

foreground or background color models simply based on 

visual or motion saliency detection results at each individual 

frame; otherwise, foreground object regions which are not 

salient in terms of visual or motion appearance will be 

considered as background, and the resulting color models 

will not be of sufficient discriminating capability. In our 

work, we utilize the shape likelihood ^ X
S
t obtained from the 

previous step, and we threshold this likelihood by 0.5 to 
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determine the candidate foreground (FSshape) and 

background (BSshape) regions. In other words, we consider 

color information of pixels in FSshape for calculating the 

foreground color GMM, and those in BSshape for deriving 

the background color GMM.Once these candidate 

foreground and background regions 

are determined, we use Gaussian mixture models (GMM) 

GC f and GCb to model the RGB distributions for each 

model. The parameters of GMM such as mean vectors and 

covariance matrices are determined by performing an Fig. 6. 

CRF for foreground object segmentation.expectation-

maximization (EM) algorithm. Finally, we integrate both 

foreground and background color models with visual 

saliency and shape likelihood into a unified framework for 

HOE. 

 
 

Fig. 6. CRF for foreground object segmentation. 

 

IV. CONDITION RANDOM FIELD FOR HOE 

 

A. Feature Fusion via CRF 

 

      Utilizing an undirected graph, conditional random field 

(CRF) [32] is a powerful technique to estimate the structural 

information (e.g. class label) of a set of variables with the 

associated observations. For video foreground object  

segmentation, CRF has been applied to predict the label of 

each observed pixel in an image I [13], [14]. As illustrated 

in Fig. 6, pixel i in a video frame is associated with 

observation zi , while the hidden node Fi  indicates its 

corresponding label (i.e. foreground or background). In this 

framework, the label Fi is calculated by the observation zi , 

while the spatial coherence between this output and 

neighboring observations z j and labels Fj are simultaneously 

taken into consideration. Therefore, predicting the label of 

an observation node is equivalent to maximizing the 

following posterior probability function  

 

p(F|I,ψ) α exp   − (∑ (ψi ) +∑ (ψi, j ) )                    

(6) 
                                          i€I          i€I, j€Neighbor 

 

where ψi is the unary term which infers the likelihood of Fi 

with observation zi . ψi, j is the pairwise term describing the 

relationship between neighboring pixels zi and z j, and that 

between their predicted output labels Fi and Fj . Note that 

the observation z can be represented by a particular feature, 

or a combination of multiple types of features (as our 

proposed framework does). 

    To solve a CRF optimization problem, one can convert 

the above problem into an energy minimization task, and the 

object energy function E of (6) can be derived as 

E = −log(p) 

                                =∑(ψi ) + ∑(ψi, j ) 
                                                    i€I                 i€I 

                                                                    j€Neighbor 

 

                                = Eunary + Epairwise.                                 

(7) 

 

 

In our proposed VOE framework, we define the shape 

energy function ES in terms of shape likelihood ^XS
t (derived 

by (5)) as one of the unary terms 

                              E
S
 = −ws log(^X

S
t ).                                      

(8) 

 

In addition to shape information, we need incorporate visual 

saliency and color cues into the introduced CRF framework. 

As discussed earlier, we derive foreground and background 

color models for VOE, and thus the unary term EC 

describing color information is defined as follows: 

                               E
C = w

c
(E

CF
 − E

CB
)                                      

(9) 

 

Note that the foreground and background color GMM 

models GC f and GCb (discussed in Section III-B) are utilized 

to derive the associated energy terms ECF and ECB, which 

are calculated as 

E
CF

 = −log (∑i€ I G
C
 f (i )) 

E
CB

 = −log(∑i€ I G
C
 b(i )) 

 

   As for the visual saliency cue at frame t, we convert the 

visual saliency score ˆSt derived in (2) into the following 

energy term E
V
 : 

        E
V
 = −w

v
  log(^St )                                                         . 

(10) 

 

We note that in the above equations, parameters ws , wc, and 

wv are the weights for shape, color, and visual saliency cues, 

respectively. These weights control the contributions of the 

associated energy terms of the CRF model for performing 

HOE. It is also worth noting that, Liu and Gleicher [13]  

only considers the construction of foreground color models 

for HOE. As verified by [14], it can be concluded that the 

disregard of background color models would limit the 

performance of HOE, since the only use of foreground color 

model might not be sufficient for distinguishing between 

foreground and background regions. In the proposed HOE 

framework, we now utilize multiple types of visual and 

motion salient features for HOE, and our experiments will 

confirm the effectiveness and robustness of our approach on 

a variety of real-world videos. 

 

B. Preserving Spatio-Temporal Consistency 

 

     In the same shot of a video, an object of interest can be 

considered as a compact space-time volume, which exhibits 

smooth changes in location, scale, and motion across 

frames. Therefore, how to preserve spatial and temporal 

consistency within the extracted foreground object regions 

across video frames is a major obstacle for HOE. Since 
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there is no guarantee that combining multiple motion-

induced features would address the above problem, we need 

to enforce additional constraints in the CRF model in order 

to achieve this goal. 

      1) Spatial Continuity for HOE: When applying a pixel-

level prediction process for VOE (like ours and some prior 

HOE methods do), the spatial structure of the extracted 

foreground region is typically not considered during the 

HOE process. This is because that the prediction made for 

one pixel is not related to those for its neighboring ones. To 

maintain the spatial consistency for the extracted foreground 

object, we add a pairwise term in our CRF framework. The 

introduced pairwise term Ei, j is defined as 

         Ei, j =   ∑|Fi − Fj |  ×(λ1 + λ2(exp(−||zi − z j|| ))) 
                      i€I                                                                 β  

                        j € Neighbor.                                        
 

 
 

Fig. 7. (a) Original frame. Example HOE results (b) with 

and (c) without imposing the temporal consistency term for 

CRF. 

 

Note that β is set as the averaged pixel color difference of 

all pairs of neighboring pixels. In (11), λ1 is a data-

independent Ising prior to smoothen the predicted labels, 

and λ2 is to relax the tendency of smoothness if color 

observations zi and z j form an edge (i.e. when _zi − z j _ is 

large). This pairwise term is able to produce coherent 

labeling results even under low contrast or blurring effects, 

and this will be verified later in Section V. 

2) Temporal Consistency for VOE: Although we exploit 

both visual and motion saliency information for 

determining the foreground object, the motion-induced 

features such as shape and foreground/background 

color GMM models might not be able to well describe 

the changes of foreground objects across videos due to 

issues such as motion blur, compression loss, or 

noise/artifacts presented in video frames. To alleviate 

this concern, we choose to propagate the 

foreground/background shape likelihood and CRF 

prediction outputs across video frames for preserving 

temporal continuity in our HOE results. To be more 

precise, when constructing the foreground and 

background color GMM models, the corresponding 

pixel sets FS and BS will not only be produced by the 

shape likelihood FSshape and BSshape at the current 

frame, those at the previous frame (including the CRF 

prediction outputs ˆFforeground and ˆFbackground) 

will be considered to update FS and BS as well. In other 

words, we update foreground and background pixel sets 

FS and BS at frame t + 1 by 

 

 

   FSt+1 = FSshape(t + 1)∩_FSshape(t)_ ˆFforeground(t) 

   BSt+1 = BSshape(t + 1)_BSshape(t)_ ˆFbackground(t)                                                                                                 

(12) 

 

where ˆFforeground(t) indicates the pixels at frame t to be 

predicted as foreground, and FSshape(t) is the set of pixels 

whose shape likelihood is above 0.5 as described in Section 

III.B3.Similar remarks apply for ˆFbackground(t) and 

BSshape(t). We show an example in Fig. 7 to verify the use 

of such temporal 

terms when updating our VOE model. 

Finally, by integrating (8), (9), (10), and (11), plus the 

introduced terms for preserving spatial and temporal 

information, the objective energy function (7) can be 

updated as 

          E = Eunary + Epairwise 

             = (E
S
 + E

CF
 − E

CB
 + E

V
) + Ei, j 

            = E
S 

+ E
C 

+ E
V 

+ Ei, j .                                                 

(13) 

 

To minimize (13), one can apply graph-based energy 

minimization techniques such as max-flow/min-cut 

algorithms. When the optimization process is complete, the 

labeling function output F would indicate the class label 

(foreground or background) of each observed pixel at each 

frame, and thus the HOE problem is solved accordingly. 

 

 

V. EXPERIMENTAL RESULTS 

 

In this section, we conduct experiments on a variety of 

videos. We first verify the integration of multiple types of 

features for HOE, and show that it outperforms the use of a 

particular type of feature. We also compare our derived 

saliency maps and segmentation results to those produced 

by other saliency based or state-of-the-art supervised or 

unsupervised HOE methods. Both qualitative and 

quantitative results will be presented to support the 

effectiveness and robustness of our proposed method. 

 
 
Fig. 8. VOE results using different feature cues (the CRF pairwise term is 

considered for all cases for fair comparisons). 
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VI. CONCLUSION 

In this paper, we proposed an automatic HOE approach 

which utilizes multiple motion and visual saliency induced 

features, such as shape, foreground/background color 

models, and visual saliency, to extract the foreground 

objects in videos.We advanced a CRF model to integrate the 

above  features, and additional constraints were introduced 

into our CRF model for preserving both spatial continuity 

and temporal consistency when performing HOE. 

Compared with state-of-the-art unsupervised HOE methods, 

our approach was shown to better model the foreground 

object due to the fusion of multiple types of saliency-

induced features. A major advantage of our proposed 

method is that we do not require the prior knowledge of the 

object of interest (i.e., the need to collect training data), nor 

the interaction from the users during the segmentation 

progress. Experiments on a variety of videos with highly 

articulated objects or complex background presented 

verified the effectiveness and robustness of our proposed 

method. 
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