

Hybrid Learning-Based Branch Predictor

Parshvi Z. Shah

Department of Electronics Engineering

Fr.C.R.C.E

Mumbai, India

Sapna U. Prabhu
Department of Electronics Engineering

Fr.C.R.C.E

Mumbai, India

Abstract— Accurate branch prediction mechanisms contributes

to the optimization of processor performance. As the number of

pipelines stages in modern processors are steadily increasing,

the importance of a good branch prediction logic is rising.

 Traditional branch prediction relies on history of

branch for prediction. Several researchers have worked on

branch prediction accuracy. Modern branch predictors rely

heavily on longer global history to produce accurate branch

prediction. The entire length of the program is however, not

related with recently executed branches. For these parts of the

program, the extra information encoded in the global history

does more harm than good. This limitation gave us motivation

for looking beyond using larger history length. In the Hybrid

branch predictor, branch prediction accuracy can be improved

by basing prediction on the outcome of neighboring branches

(global behavior) and outcome of the branch itself (local

behavior).

 This paper deals with the implementation of the

Hybrid branch predictor with the help of neural networks,

which provides higher predictive capabilities than commonly

used global branch predictors. The hardware resources

required for Learning based predictor scale linearly with the

history length, in contrast with other purely dynamic schemes

that need exponential memory that permits our predictor to

consider longer branch histories.

Keywords—Branch Predictor, Alloyed predictor, Global History,

Perceptron , Path History.

I. INTRODUCTION

The techniques of instruction level parallelism and

pipelining have been used well to speed up the execution of

instructions. High performance and high-accuracy designs

call for deeper pipelines, which lead to costly misprediction

penalties. The conditional branches are the critical factor to

the effectiveness of a deep pipeline. The question of how to

predict the direction of conditional branches has received

intense study in recent years. Branch prediction has been a

very important method to improve processor performance

which tries to solve control dependency issues exposed in

program instructions and improve instruction level

parallelism, thus enabling deeper processor pipeline for better

performance results.

 Branch prediction techniques can be classified into

two groups: static or dynamic. Static Branch Prediction are

simple compile-time schemes in which predictions are Static.

They are fixed for each branch during the entire execution,

and the predictions are compiling time guesses. In Dynamic

Branch Prediction, the hardware influences the prediction

while execution proceeds. Prediction is decided on the

computation history of the program.

 Many researchers have been focusing on branch

direction algorithms and recent improvement on the

predictive accuracy in literatures is achieved by increasing

the complexity of algorithms.

 Traditional branch predictor keeps a separate history

buffer for each conditional branch. As correlation between

the branches are important, global history buffer have been

used. It keeps a shared history of all conditional branches.

The advantage of global history is that any correlation

between different conditional branches is part of making a

prediction. Generally speaking, dynamic branch prediction

gives better results than static one at the cost of increased

hardware complexity, and has caught a lot of attention in the

past few years. There are many proposed algorithms for

dynamic branch predictors, such as bimodal, two-level and

hybrid which are extensively implemented in to predict the

branch directions. Bimodal prediction uses a table of 2-bit

saturating counters indexed by branch addresses to predict the

most common direction. Two-level prediction employs two

levels of information such as branch history records and

pattern history table for the direction prediction. Hybrid

prediction takes advantage of combined strategies for the

same purpose.

 As the length of the application program is steadily

increasing, longer global history length needs to be used to

provide better prediction accuracy. Several researchers have

been reported that larger history length branch prediction

gives higher prediction accuracy.

 A neural branch prediction which was first proposed

in 1999 and is very promising now a day’s uses more

complex algorithms to weight for the possible paths in order

to select a definite way for branch direction. Neural branch

predictor using perceptron, one of the simplest possible

neural networks. Perceptrons are easy to understand, simple

to implement, and have several attractive properties that

differentiate them from more complex neural networks.

Perceptron based branch predictor has shown promise in

attaining high prediction accuracy due to linear resource

growth compare to the exponential resource growth of

traditional predictor.

 Larger history length branch predictor using neural

network, such as FPB,PLB,TAGE and O-GEHL gives better

International Journal of Engineering Research & Technology (IJERT)

Vol. 3 Issue 8, August - 2014

IJ
E
R
T

IJ
E
R
T

ISSN: 2278-0181

www.ijert.orgIJERTV3IS080701

(This work is licensed under a Creative Commons Attribution 4.0 International License.)

1135

prediction accuracy than traditional counter parts such as G-

Share.[1][2][3][4][5].

 The objective of the branch predictor is to reduce the

probability of making an incorrect decision, to avoid fetching

instructions that eventually ought to be discarded. Branch

predictors plays an important role in achieving highly

effective performance in several modern pipelined

microprocessors.

II. RELATED WORK

 Several researchers have worked on improving on

branch prediction accuracy.[5][1][9][3][4][7][10][11].

 Yeh and Patt [1] introduced the global history

register (GHR) in their two level predictor; to keep outcomes

of the previously executed branch.GHR provides the

correlation of current branch with previously executed

branches. The advantages of GHR further used in G-share/G-

select predictor. Traditional predictors were using 10-15 bits

for GHR which provides short distance correlations.

Generally, longer branch history enables branch correlation

with more distant branches, so recent predictors tend to adopt

long history at the cost of complicated hardware.

 To boost the accuracy of branch predictor several

researchers have worked on combining global history and

local history of branch Zhi et al. introduced alloyed predictor,

a new hardware-based two-level branch predictor that

concatenate global and local history with some bits of

program counter [9] .

 Jimenez et al. [3, 4] introduced neural based

perceptron predictor, which uses global history to train a

neural network. A perceptron of weights which depends on

the length of the global history register. When a branch

arrives, predictor will input the has a number branch address

to the hash function to generate the index to the perceptron

weight table to pick a perceptron. The weights of the selected

perceptron are then used with the global branch histories to

compute the dot product and accumulate results .The branch

prediction is determined by the value of summation, if the

value is positive, then the branch is predicted Taken,

otherwise Not Taken,. Finally the final branch outcomes will

update the perceptron weights. If the branch outcome agrees

with the prediction, then weights will be incremented,

otherwise decremented accordingly.

 Path history should provide better correlation

information than pattern history, because path history is a

superset of pattern history. Path information includes the

branches by which the current branch was reached, not just

the pattern of directions that they went to reach the current

branch. Jimenez et al [5] introduced Fast Path-Based (FPB)

branch predictor is an improved neural perceptron predictor.

this predictor improves accuracy by combining path and

pattern history to overcome limitations inherent to previous

neural based predictors. It provides lower latency than

previous neural predictors.

 Seznec [7] introduced O-GEHL predictor using

geometric series principle. up to get the prediction result

positive to predict Taken and vice versa. Seznec [8]

introduced TAGE predictor combines a traditional predictor

such as gshare table, T0, which is default predictor, with

some tables of variable history length for branch forecast.

Each table has independent hash function using different

historical length; the tag field of each selected table entry will

be matched against the tag field of incoming hashed index. If

there is a match in a higher table, the resulting pred field will

be selected and override results from lower tables .If there is

no match among higher tables, the prediction from the default

predictor will be used.

 Daniel [10] introduced scaling based neural branch

predictor based on the principle of inverse linearity curve

because each branch doesn’t contribute equally;

unsurprisingly, more recent weights tends to have a stronger

correlation with branch outcomes. Each weight of the

perceptron table scale with correlation coefficients which can

determine from the inverse linear curve. The correlation

coefficients were generated using the publicly distributed

traces for the CBP competition. By multiplying weights with

coefficients proportional to their correlation, the predictor

achieves higher accuracy.

 Daniel [11] introduced optimized version of scaling

based neural network ,hybridized with two simple two-level

adaptive predictors .The predictor achieves higher accuracy

by using some tricks such as value of threshold and

coefficient vectors are selected empirically during run time of

program.

III. PROPOSED ALGORITHM

Learning based branch predictor can be implemented using

CBP framework. The following variables are used by the

algorithm:

W: A two-dimensional variable array of integers weights for

global prediction.7-bits are used for weights saturate at +63

and - 64.

h: The global history length. This is an integer, variable in the

implementation.

Lh: The local history length. This is an integer, 17 in the

implementation.

LW: A two-dimensional array of integers weights for local

prediction.7-bits are used for weights saturate at +63 and -

64.This array has 96 entries.

A: An array of addresses. As branches are executed, their

addresses are shifted in to the first position of this array. In

the implementation, the elements of the array are the lower

9 bits of the branch address.

C: An array of scaling coefficient. The Coefficients are

chosen as c[i]=1/(a+b*i).where a=0.1111 and b=0.037 [10].

sum_global: An integer. This integer is the dot product of a

weight vector chosen dynamically from W and the global

history register.

sum_local: An integer. This integer is the dot product of a

weight vector chosen dynamically from LW and the local

history register.

International Journal of Engineering Research & Technology (IJERT)

Vol. 3 Issue 8, August - 2014

IJ
E
R
T

IJ
E
R
T

ISSN: 2278-0181

www.ijert.orgIJERTV3IS080701

(This work is licensed under a Creative Commons Attribution 4.0 International License.)

1136

Sum: An integer. This integer is the sum of sum_pos,

sum_local and bias weight.

 The neural prediction algorithm presented below

achieves higher accuracies than previously proposed neural

algorithms. Predictors are divided in to two parts one is for

global prediction and other is for per-branch prediction i.e.

Local prediction. The higher accuracies result from:

1. Accessing the weights using a function of the PC and the

path for global prediction and function of PC for local

prediction.

2. Breaking the weights into a number of independently

accessible tables for global prediction.

3. Scaling the weights by the coefficients as previously

described.

4. Taking the dot product of a global branch history vector

and the scaled weights to get the value of sum_global.

5. Taking the dot product of local branch history which can

access using a function of PC and local weights also can

access using a function of PC to get value of sum_local.

6. Finally add the result of local predictor i.e. sum_local,

global predictor i.e. sum_global with bias weight to get final

result sum.

7. Once the actual outcomes of the branch become known,

the training algorithm uses this outcome and the value of sum

to update the weights in local and global weights table.

Training algorithm is same as basic perceptron training

algorithm with

Threshold value Ɵ = [1.93h + 14],[7] where h is history

length.

A. Global History based prediction

Fig 1. shows a block diagram of the global prediction

algorithm. The two key parameters of the predictor are h, the

global history length, with which the dot product is

computed, and R the number of rows in each weights table.

Other inputs to the global predictor are A, a vector of the

low-order 9 bit of each of the past h branch addresses (A is

effectively a path vector).

Fig. 1.Global prediction Algorithm

The two components of the dot-product computation are the

history vector and the weights vector. The history vector

consists of h, which provides history bits of the most recent h

branches. The second component of the dot-product

computation, the weights vector, is obtained by reading eight

weights from each of columns. The first 7 columns,

containing the weights for the most recent history bits, have

512 entries than other columns because the most recent

weights are the most important. Next six columns have 256

entries. Rest of the columns has 128 entries.

 For e.g. in the design if h=128 and r = 512, 256, or

128. The columns are partitioned into 16, rather than just one

large indexed row of 128 weights (num_col=history

length/block size), because the separation reduces aliasing

and achieves higher accuracy with low additional complexity.

To index each table, an eight-bit fraction of the A vector is

XORed with the low-order eight bits of the branch PC,

resulting in an eight-bit index for one of the rows. In the first

7 columns with 512 entries, an extra bit of the branch PC is

XORed with a second address bit from the most recent

branch to produce a nine-bit index. The bias weight table is

indexed with 11 lower-order bits from the branch PC.

B. Per-branch history prediction

Fig 2.Shows a block diagram of the local branch prediction.

To improve the accuracy, combination of global and per-

branch history is used rather than just global history as

outlined in the algorithm above.

Fig. 2. Local branch prediction

 A table of per-branch histories is kept and indexed by

branch address modulo numbers of histories. Weights for

local

Perceptrons are kept separately from global weights. These

histories are incorporated into the computations for the

prediction and training in the same way as the global

histories.

International Journal of Engineering Research & Technology (IJERT)

Vol. 3 Issue 8, August - 2014

IJ
E
R
T

IJ
E
R
T

ISSN: 2278-0181

www.ijert.orgIJERTV3IS080701

(This work is licensed under a Creative Commons Attribution 4.0 International License.)

1137

C. Predictor Update

Updating the predictor consists of three phases, some of

which can occur in parallel.

1. Updating histories:

When the outcome of a branch becomes known, it is shifted

into H. The lowest-order bit of the branch address is shifted

into A.

2. Training the predictor:

If the prediction was incorrect, or if the magnitude of the

predictor output was under a set threshold (Ɵ = [1.93h + 14]),

where h is history length, then the predictor invokes its

training algorithm. As in previous neural predictors, the

weights responsible for the output are incremented if the

corresponding history outcome matches the current branch

Outcome, and decremented otherwise. The weights use

saturating arithmetic.

3. Updating the training threshold:

An adaptive threshold training algorithm is used to

dynamically adjust the threshold at which training will be

invoked for a correct prediction.

 This algorithm is the same as the one used for O-

GEHL [7].The threshold is increased after a certain number

of incorrect predictions, and decreased after a certain number

of correct predictions whose outputs were not as large as the

current threshold. Seznec observed that good accuracy is

achieved when the training algorithm is invoked equally

many times after correct and incorrect predictions [9]; this

threshold training strategy strives to achieve that balance.

This training requires single saturated Threshold

counter.(TC).

if ((P!=Out) {TC= TC + 1; if (θ is saturated positive)

{θ=θ+1; TC=0 ;}}

if ((P == Out) & (|s|<θ)) { TC= TC - 1; if (θ is saturated

negative)

{ θ=θ-1; TC=0 ;}}

IV. RESULTS

 This section presents the experimental results of the

Hybrid learning-based predictor. The experimental data

presented in this report were collected using CBP Traces. The

Traces are compiled to execute on the Framework model. The

framework models a simple out-of-order core with 256 entry

re-order buffer, 3 schedulers, 4 14 stage wide pipeline and 2-

level cache. The trace set includes 40 traces, classified into 5

categories: CLIENT, INT (Integer), MM (Multimedia),

SERVER and WS (Workstation).

 Experiments have been conducted for the following

different combinations:

1. without path and without scaling,

2. without path and with scaling

3. without scaling and with path

4. with all

With variation of global history length (128,256 and 512 bits)

by running 40 traces of 5 different classes. All results are

compared in term of Miss Prediction per kilo instructions

(MPKI) where,

 MPKI= (mispredicted branches/number of

instructions)*1000

A. Analysis of Results

Fig. 3 and Table I. shows the average MPKI for all four

combinations, with three different history lengths.

TABLE I. COMPARATIVE ANALYSIS

HISTORY

LENGTH=

128

HISTORY

LENGTH=

256

HISTORY

LENGTH=

512

With All 4.93 4.79 4.77
Without

Scaling And

With Path 5.14 5.03 5
Without Path

And With

Scaling 5.37 5.26 5.26
Without Path

And With

Scaling 5.72 5.49 5.44

Fig. 3. Comparative Analysis

1. The performance of without path and without scaling with

history length 256 is better than with history length 128 and

gives improvement of approximately 4.02%.simillarly with

history length 512 gives improvement of 0.9% over with

history length 256 and 4.89% improvement over history length

128.

2. The performance of without path and with scaling with history

length 256 is better than with history length 128 and gives

improvement of approximately 2.04%.simillarly with history

length 512 doesn’t gives any improvement over with history

length 256 and 2.04% improvement over history length 128.

3. The performance of without scaling and with path with history

length 256 is better than with history length 128 and gives

improvement of approximately 2.72%.simillarly with history

International Journal of Engineering Research & Technology (IJERT)

Vol. 3 Issue 8, August - 2014

IJ
E
R
T

IJ
E
R
T

ISSN: 2278-0181

www.ijert.orgIJERTV3IS080701

(This work is licensed under a Creative Commons Attribution 4.0 International License.)

1138

length 512 gives improvement of 0.59% over with history

length 256 and 2.72 % improvement over history length 128.

4. The performance of with all with history length 256 is better

than with history length 128 and offers improvement of

approximately 2.83%.simillarly with history length 512

provides improvement of 0.41% over with history length 256

and 3.24 % improvement over history length 128.

5. Figure 3. Shows final output with four combinations and three

different history lengths. It shows that combination ―with all‖

gives better improvement irrespective of the history lengths.

B. Size of the predictor

The number of bits going to be used by the predictor has

importance since there is always a tradeoff between

hardware implementation and accuracy of the predictor.

TABLE II. COMPARATIVE ANALYSIS OF NO. OF BITS USING FOR

PREDICTOR

TABLE III.

COMPARATIVE

ANALYSIS

OF

NO.

OF

BITS

AND

MPKI

Table II.

shows

no of bits used by predictor for three

different history lengths. With history length of 128 predictor

uses approximately 41KB (kilobits).with history length of

256 predictor uses approximately 55KB and with history

length of 512 predictor uses approximately 82KB.

Table III.

shows

the relation of number of bits with MPKI.

Total MPKI can reduce by 2.83% using large history length

of 256 with approximately 14 KB increasing in Number of

bits. Similarly MPKI can reduce by 0.41% using larger

history length of

512 with approximately 27KB increasing in

number of bits.

Using a larger history length of 512 with increasing

bits does not give much benefit. There for it’s always trade of

between to large hardware and higher accuracy.

C.

Comparision with G-share predictor

G-Share predictor is the traditional Global branch

predictor. For the purpose of analysis, global

history length

18

is

used for G-share. The

approximate

size of the G-share

predictor is 64KB.

TABLE IV.

ANALYSIS

OF

MPKI AND

PERCENTAGE O F

IMPROVEMENT

WITH

G-SHARE

Fig. 4. Analysis of MPKI with G-Share

Fig. 5. Analysis of percentage of improvement with G-Share

Table IV. And Fig. 4 and Fig.5 shows comparisons of Hybrid

learning- based predictor with traditional G-Share Predictor.

It shows that implemented predictor gives improvement of

36.39% when history length is 128, 38.195% when history

length is 256 and 38.45% when history length is 512.

 Results show that hybrid learning based predictor

implemented achieves better performance than the G-share

predictor.

Source of

bits

Quantity of bits

for HL=128

Quantity of bits

for HL=256

Quantity of bits

for HL=512

Local history 384x17=6,528 384x17=6,528 384x17=6,528

Local

weights 7x96x17=11424 7x96x17=11424 7x96x17=11424

Global

weights:

1st 7 columns

7x(8x7x512)=2,

00,704

7x(8x7x512)=2,0

0,704

7x(8x7x512)=2,0

0,704

Next 6

columns

6x(8x7x256)=86

,016

6x(8x7x256)=86,

016

6x(8x7x256)=86,

016

Next 3

columns

3x(8x7x128)=21

504

19x(8x7x128)=1,

36,192

51x(8x7x128)=3,

65,568

Global

history 128 128 128

path history 9x128=1152 9x256=2304 9x512=4608

Threshold
counter 12 12 12

Total No. Of

bits 3,27,468 bits 4,43,436 bits 6,75,372 bits

. No. of bits

MPKI for WITH

ALL

HL=128 335872 4.93

HL=256 450560 4.79

HL=512 671744 4.77

MPKI % of improvement

G-Share 7.75 0.00%

HL=128 4.93 36.39%

HL=256 4.79 38.19%

HL=512 4.77 38.45%

International Journal of Engineering Research & Technology (IJERT)

Vol. 3 Issue 8, August - 2014

IJ
E
R
T

IJ
E
R
T

ISSN: 2278-0181

www.ijert.orgIJERTV3IS080701

(This work is licensed under a Creative Commons Attribution 4.0 International License.)

1139

V. CONCLUSIONS

 Branch predictor continues t o evolve and

improving branch prediction a c c u r a c y i s still an

open problem. The proposed branch predictor uses

Neural learning techniques-the perceptron-as basic

mechanism with the variation of global history length. It

includes the features like scaling of global history

length to reduce noise due to larger history length and

path history to provide the correlation information

amongst the branches. The proposed branch predictor

ensures increase in prediction accuracy at the cost of

increased in hardware.

 The future scope includes investigations of other

techniques liked mixed -signal branch predictors which can

be used to reduce mispredictions in a power-efficient

manner.

REFERENCES

[1] Y. Yeh and Y. N. Patt, ―Two-level adaptive training branch

prediction,‖ in proc. 24th Annual IEEE/ACM International
Symposium, 1991, pp. 51–61

[2] E.R.E.Kessler and D.A.Webb,―The alpha 21264

microprocessor architecture,‖ in Proc.International Conference
on Computer Design, 1998, pp. 90–95

[3] D. A. J. Ì. nez and C. Lin, ―Dynamic branch prediction

with perceptrons,‖ in Proc.7th International Symposium on
High Performance Computer Architecture, January 2001, pp.

197–206.

[4] ——, ―Neural methods for dynamic branch prediction ,‖
i n Proc.ACM Transactions on Computer Systems,

November 2002.

[5] D. A. J. Ì. nez, ―Fast path-based neural branch prediction,‖ in
Proc.36th International Symposium o n Micro architecture,

2 0 0 3 .

[6] ——, ―Piecewise linear branch prediction,‖ in Proc. 32nd
Annual International Con ference on Computer

Architecture, June 2005, pp. 382–393.

[7] A. Ì. Seznec, ―Analysis of the o-geometric history length
branch predictor,‖ in Proc 32nd Annual International

Conference on Computer Architecture, June 2005, pp.394–

405.
[8] ——, ―The l-tage predictor,‖ Jou rn a l of Instruction Level

Paral lelism, April 2007.

[9] M. R. S. K. S. Zhijian Lu, John Lach, ―Alloyed branch
history: Combining global and local branch history for

robust performance,‖ International Journal of Paral lel
Programming, vol. 31, 2003

[1 0] D. A. J. RenÂťee St.Amant and D. Burger, ―Low-power,

high-performance analog neural branch prediction,‖ in
Proc.41th Annual IEEE/ACM International Symposium on

Micro architecture,

[11] D. A. J. Ì. nez, ―Oh-snap: Optimized hybrid scaled neural
analog predictor,‖ Journal of Instruction Level Paral lelism,

2011.

International Journal of Engineering Research & Technology (IJERT)

Vol. 3 Issue 8, August - 2014

IJ
E
R
T

IJ
E
R
T

ISSN: 2278-0181

www.ijert.orgIJERTV3IS080701

(This work is licensed under a Creative Commons Attribution 4.0 International License.)

1140

