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Abstract— Accurate branch prediction mechanisms contributes 

to the optimization of processor performance. As the number of 

pipelines stages in modern processors are steadily increasing, 

the importance of a good branch prediction logic is rising.  

 Traditional branch prediction relies on history of 

branch for prediction. Several researchers have worked on 

branch prediction accuracy. Modern branch predictors rely 

heavily on longer global history to produce accurate branch 

prediction. The entire length of the program is however, not 

related with recently executed branches. For these parts of the 

program, the extra information encoded in the global history 

does more harm than good. This limitation gave us motivation 

for looking beyond using larger history length. In the Hybrid 

branch predictor, branch prediction accuracy can be improved 

by basing prediction on the outcome of neighboring branches 

(global behavior) and outcome of the branch itself (local 

behavior). 

 This paper deals with the implementation of the 

Hybrid branch predictor with the help of neural networks, 

which provides higher predictive capabilities than commonly 

used global branch predictors. The hardware resources 

required for Learning based predictor scale linearly with the 

history length, in contrast with other purely dynamic schemes 

that need exponential memory that permits our predictor to 

consider longer branch histories. 

Keywords—Branch Predictor, Alloyed predictor, Global History, 

Perceptron , Path History. 

I. INTRODUCTION 

The techniques of instruction level parallelism and 

pipelining have been used well to speed up the execution of 

instructions. High performance and high-accuracy designs 

call for deeper pipelines, which lead to costly misprediction 

penalties. The conditional branches are the critical factor to 

the effectiveness of a deep pipeline. The question of how to 

predict the direction of conditional branches has received 

intense study in recent years. Branch prediction has been a 

very important method to improve processor performance 

which tries to solve control dependency issues exposed in 

program instructions and improve instruction level 

parallelism, thus enabling deeper processor pipeline for better 

performance results. 

 Branch prediction techniques can be classified into 

two groups: static or dynamic. Static Branch Prediction are 

simple compile-time schemes in which predictions are Static. 

They are fixed for each branch during the entire execution, 

and the predictions are compiling time guesses. In Dynamic 

Branch Prediction, the hardware influences the prediction 

while execution proceeds. Prediction is decided on the 

computation history of the program.  

 Many researchers have been focusing on branch 

direction algorithms and recent improvement on the 

predictive accuracy in literatures is achieved by increasing 

the complexity of algorithms.  

 Traditional branch predictor keeps a separate history 

buffer for each conditional branch. As correlation between 

the branches are important, global history buffer have been 

used. It keeps a shared history of all conditional branches. 

The advantage of global history is that any correlation 

between different conditional branches is part of making a 

prediction. Generally speaking, dynamic branch prediction 

gives better results than static one at the cost of increased 

hardware complexity, and has caught a lot of attention in the 

past few years. There are many proposed algorithms for 

dynamic branch predictors, such as bimodal, two-level and 

hybrid which are extensively implemented in to predict the 

branch directions. Bimodal prediction uses a table of 2-bit 

saturating counters indexed by branch addresses to predict the 

most common direction. Two-level prediction employs two 

levels of information such as branch history records and 

pattern history table for the direction prediction. Hybrid 

prediction takes advantage of combined strategies for the 

same purpose. 

  As the length of the application program is steadily 

increasing, longer global history length needs to be used to 

provide better prediction accuracy. Several researchers have 

been reported that larger history length branch prediction 

gives higher prediction accuracy.  

 A neural branch prediction which was first proposed 

in 1999 and is very promising now a day’s uses more 

complex algorithms to weight for the possible paths in order 

to select a definite way for branch direction. Neural branch 

predictor using perceptron, one of the simplest possible 

neural networks. Perceptrons are easy to understand, simple 

to implement, and have several attractive properties that 

differentiate them from more complex neural networks. 

Perceptron based branch predictor has shown promise in 

attaining high prediction accuracy due to linear resource 

growth compare to the exponential resource growth of 

traditional predictor. 

 

 Larger history length branch predictor using neural 

network, such as FPB,PLB,TAGE and O-GEHL gives better 
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prediction accuracy than traditional counter parts such as G-

Share.[1][2][3][4][5]. 

 

 The objective of the branch predictor is to reduce the 

probability of making an incorrect decision, to avoid fetching 

instructions that eventually ought to be discarded. Branch 

predictors plays an important role in achieving highly 

effective performance in several modern pipelined 

microprocessors. 

II. RELATED WORK 

 

 Several researchers have worked on improving on 

branch prediction accuracy.[5][1][9][3][4][7][10][11].  

 Yeh and Patt [1] introduced the global history 

register (GHR) in their two level predictor; to keep outcomes 

of the previously executed branch.GHR provides the 

correlation of current branch with previously executed 

branches. The advantages of GHR further used in G-share/G-

select predictor. Traditional predictors were using 10-15 bits 

for GHR which provides short distance correlations. 

Generally, longer branch history enables branch correlation 

with more distant branches, so recent predictors tend to adopt 

long history at the cost of complicated hardware.  

 To boost the accuracy of branch predictor several 

researchers have worked on combining global history and 

local history of branch Zhi et al. introduced alloyed predictor, 

a new hardware-based two-level branch predictor that 

concatenate global and local history with some bits of 

program counter [9]  . 

  Jimenez et al. [3, 4] introduced neural based 

perceptron predictor, which uses global history to train a 

neural network. A perceptron of weights which depends on 

the length of the global history register. When a branch 

arrives, predictor will input the has a number branch address 

to the hash function to generate the index to the perceptron 

weight table to pick a perceptron. The weights of the selected 

perceptron are then used with the global branch histories to 

compute the  dot product and accumulate results .The branch 

prediction is determined by the value of summation, if the 

value is positive, then the branch is predicted Taken, 

otherwise Not Taken,. Finally the final branch outcomes will 

update the perceptron weights. If the branch outcome agrees 

with the prediction, then weights will be incremented, 

otherwise decremented accordingly.  

 Path history should provide better correlation 

information than pattern history, because path history is a 

superset of pattern history. Path information includes the 

branches by which the current branch was reached, not just 

the pattern of directions that they went to reach the current 

branch. Jimenez et al [5] introduced Fast Path-Based (FPB) 

branch predictor is an improved neural perceptron predictor. 

this predictor improves accuracy by combining path and 

pattern history to overcome limitations inherent to previous 

neural based predictors. It provides lower latency than 

previous neural predictors.  

 

  Seznec [7] introduced O-GEHL predictor using 

geometric series principle. up to get the prediction result 

positive to predict Taken and vice versa.  Seznec [8] 

introduced TAGE predictor combines a traditional predictor 

such as gshare table, T0, which is default predictor, with 

some tables of variable history length for branch forecast. 

Each table has independent hash function using different 

historical length; the tag field of each selected table entry will 

be matched against the tag field of incoming hashed index. If 

there is a match in a higher table, the resulting pred field will 

be selected and override results from lower tables .If there is 

no match among higher tables, the prediction from the default 

predictor will be used.  

 Daniel [10] introduced scaling based neural branch 

predictor based on the principle of inverse linearity curve 

because each branch doesn’t contribute equally; 

unsurprisingly, more recent weights tends to have a stronger 

correlation with branch outcomes. Each weight of the 

perceptron table scale with correlation coefficients which can 

determine from the inverse linear curve. The correlation 

coefficients were generated using the publicly distributed 

traces for the CBP competition. By multiplying weights with 

coefficients proportional to their correlation, the predictor 

achieves higher accuracy.  

 Daniel [11] introduced optimized version of scaling 

based neural network ,hybridized with two simple two-level 

adaptive predictors .The predictor achieves higher accuracy 

by using some tricks such as value of threshold and 

coefficient vectors are selected empirically during run time of 

program. 

III. PROPOSED ALGORITHM 

  

Learning based branch predictor can be implemented using 

CBP framework. The following variables are used by the 

algorithm: 

 

W: A two-dimensional variable array of integers weights for 

global prediction.7-bits are used for weights saturate at +63 

and - 64. 

h: The global history length. This is an integer, variable in the 

implementation. 

Lh: The local history length. This is an integer, 17 in the 

implementation. 

LW: A two-dimensional array of integers weights for local 

prediction.7-bits are used for weights saturate at +63 and - 

64.This array has 96 entries. 

A: An array of addresses. As branches are executed, their 

addresses are shifted in to the first position of this array. In 

the implementation, the elements of the array are the lower 

9 bits of the branch address. 

C: An array of scaling coefficient. The Coefficients are 

chosen as c[i]=1/(a+b*i).where a=0.1111 and b=0.037 [10]. 

sum_global: An integer. This integer is the dot product of a 

weight vector chosen dynamically from W and the global 

history register. 

sum_local: An integer. This integer is the dot product of a 

weight vector chosen dynamically from LW and the local 

history register. 
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Sum: An integer. This integer is the sum of sum_pos, 

sum_local and bias weight. 

 

 The neural prediction algorithm presented below 

achieves higher accuracies than previously proposed neural 

algorithms. Predictors are divided in to two parts one is for 

global prediction and other is for per-branch prediction i.e. 

Local prediction. The higher accuracies result from: 

1. Accessing the weights using a function of the PC and the 

path for global prediction and function of PC for local 

prediction. 

2. Breaking the weights into a number of independently 

accessible tables for global prediction. 

3. Scaling the weights by the coefficients as previously 

described. 

4. Taking the dot product of a global branch history vector 

and the scaled weights to get the value of sum_global. 

5. Taking the dot product of local branch history which can 

access using a function of PC and local weights also can 

access using a function of PC to get value of sum_local. 

6. Finally add the result of local predictor i.e. sum_local, 

global predictor i.e. sum_global with bias weight to get final 

result sum. 

7. Once the actual outcomes of the branch become known, 

the training algorithm uses this outcome and the value of sum 

to update the weights in local and global weights table. 

Training algorithm is same as basic perceptron training 

algorithm with 

Threshold value Ɵ = [1.93h + 14],[7] where h is history 

length. 

A. Global History based prediction 

Fig 1. shows a block diagram of the global prediction 

algorithm. The two key parameters of the predictor are h, the 

global history length, with which the dot product is 

computed, and R the number of rows in each weights table. 

Other inputs to the global predictor are A, a vector of the 

low-order 9 bit of each of the past h branch addresses (A is 

effectively a path vector). 

 

 
 

Fig. 1.Global prediction Algorithm 

The two components of the dot-product computation are the 

history vector and the weights vector. The history vector 

consists of h, which provides history bits of the most recent h 

branches. The second component of the dot-product 

computation, the weights vector, is obtained by reading eight 

weights from each of columns. The first 7 columns, 

containing the weights for the most recent history bits, have 

512 entries than other columns because the most recent 

weights are the most important. Next six columns have 256 

entries. Rest of the columns has 128 entries. 

 

 For e.g. in the design if h=128 and r = 512, 256, or 

128. The columns are partitioned into 16, rather than just one 

large indexed row of 128 weights (num_col=history 

length/block size), because the separation reduces aliasing 

and achieves higher accuracy with low additional complexity. 

To index each table, an eight-bit fraction of the A vector is 

XORed with the low-order eight bits of the branch PC, 

resulting in an eight-bit index for one of the rows. In the first 

7 columns with 512 entries, an extra bit of the branch PC is 

XORed with a second address bit from the most recent 

branch to produce a nine-bit index. The bias weight table is 

indexed with 11 lower-order bits from the branch PC. 

 

B. Per-branch history prediction 

Fig 2.Shows a block diagram of the local branch prediction. 

To improve the accuracy, combination of global and per-

branch history is used rather than just global history as 

outlined in the algorithm above. 

 

 
 

Fig. 2. Local branch prediction 

 

    A table of per-branch histories is kept and indexed by 

branch address modulo numbers of histories. Weights for 

local 

Perceptrons are kept separately from global weights. These 

histories are incorporated into the computations for the 

prediction and training in the same way as the global 

histories. 
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C. Predictor Update 

Updating the predictor consists of three phases, some of 

which can occur in parallel. 

 

1. Updating histories: 

When the outcome of a branch becomes known, it is shifted 

into H. The lowest-order bit of the branch address is shifted 

into A. 

2. Training the predictor: 

If the prediction was incorrect, or if the magnitude of the 

predictor output was under a set threshold (Ɵ = [1.93h + 14]), 

where h is history length, then the predictor invokes its 

training algorithm. As in previous neural predictors, the 

weights responsible for the output are incremented if the 

corresponding history outcome matches the current branch 

Outcome, and decremented otherwise. The weights use 

saturating arithmetic. 

3.  Updating the training threshold: 

An adaptive threshold training algorithm is used to 

dynamically adjust the threshold at which training will be 

invoked for a correct prediction. 

 

 This algorithm is the same as the one used for O-

GEHL [7].The threshold is increased after a certain number 

of incorrect predictions, and decreased after a certain number 

of correct predictions whose outputs were not as large as the 

current threshold. Seznec observed that good accuracy is 

achieved when the training algorithm is invoked equally 

many times after correct and incorrect predictions [9]; this 

threshold training strategy strives to achieve that balance. 

This training requires single saturated Threshold 

counter.(TC). 

 

if ((P!=Out)  {TC= TC + 1; if (θ is saturated positive) 

{θ=θ+1; TC=0 ;}} 

if ((P == Out) & (|s|<θ)) { TC= TC - 1; if (θ is saturated 

negative) 

{ θ=θ-1; TC=0 ;}} 

IV. RESULTS 

 

 This section presents the experimental results of the 

Hybrid learning-based predictor. The experimental data 

presented in this report were collected using CBP Traces. The 

Traces are compiled to execute on the Framework model. The 

framework models a simple out-of-order core with 256 entry 

re-order buffer, 3 schedulers, 4 14 stage wide pipeline and 2-

level cache. The trace set includes 40 traces, classified into 5 

categories: CLIENT, INT (Integer), MM (Multimedia), 

SERVER and WS (Workstation).  

 Experiments have been conducted for the following 

different combinations: 

1. without path and without scaling, 

2. without path and with scaling 

3. without scaling and with path 

4. with all 

With variation of global history length (128,256 and 512 bits) 

by running 40 traces of 5 different classes. All results are 

compared in term of Miss Prediction per kilo instructions 

(MPKI) where, 

 MPKI= (mispredicted branches/number of 

instructions)*1000 

 

A. Analysis of Results 

Fig. 3 and Table I. shows the average MPKI for all four 

combinations, with three different history lengths. 

TABLE I. COMPARATIVE ANALYSIS 

 

HISTORY 

LENGTH= 

128 

HISTORY 

LENGTH= 

256 

HISTORY 

LENGTH= 

512 

With All 4.93 4.79 4.77 
Without 

Scaling And 

With Path 5.14 5.03 5 
Without Path 

And With 

Scaling 5.37 5.26 5.26 
Without Path 

And With 

Scaling 5.72 5.49 5.44  
 

 

 

 

Fig. 3. Comparative Analysis 

1. The performance of without path and without scaling with 

history length 256 is better than with history length 128 and 

gives improvement of approximately 4.02%.simillarly with 

history length 512 gives improvement of 0.9% over with 

history length 256 and 4.89% improvement over history length 

128. 

2. The performance of without path and with scaling with history 

length 256 is better than with history length 128 and gives 

improvement of approximately 2.04%.simillarly with history 

length 512 doesn’t gives any improvement over with history 

length 256 and 2.04% improvement over history length 128. 

3. The performance of without scaling and with path with history 

length 256 is better than with history length 128 and gives 

improvement of approximately 2.72%.simillarly with history 
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length 512 gives improvement of 0.59% over with history 

length 256 and 2.72 % improvement over history length 128. 

4. The performance of with all with history length 256 is better 

than with history length 128 and offers improvement of 

approximately 2.83%.simillarly with history length 512 

provides improvement of 0.41% over with history length 256 

and 3.24 % improvement over history length 128. 

5. Figure 3. Shows final output with four combinations and three 

different history lengths. It shows that combination ―with all‖ 

gives better improvement irrespective of the history lengths. 

B. Size of the predictor 

The number of bits going to be used by the predictor has 

importance since there is always a tradeoff between 

hardware implementation and accuracy of the predictor. 

 
 
TABLE  II. COMPARATIVE ANALYSIS OF NO. OF BITS USING FOR 

PREDICTOR 

 
 

TABLE  III.

 

COMPARATIVE

 

ANALYSIS

 

OF

 

NO.

 

OF

 

BITS

 

AND

 

MPKI

 

Table II. 

 

shows

 

no of bits used by predictor for three 

different history lengths. With history length of 128 predictor 

uses approximately 41KB (kilobits).with history length of 

256 predictor uses approximately 55KB and with history 

length of 512 predictor uses approximately 82KB.

 

 

Table III.

 

shows

 

the relation of number of bits with MPKI. 

Total MPKI can reduce by 2.83% using large history length 

of 256 with approximately 14 KB increasing in Number of 

bits. Similarly MPKI can reduce by 0.41% using larger 

history length of

 

512 with approximately 27KB increasing in 

number of bits.

 

 

Using a larger history length of 512 with increasing 

bits does not give much benefit. There for it’s always trade of 

between to large hardware and higher accuracy.

 

 

C.

 

Comparision with G-share predictor

 

 

G-Share predictor is the traditional Global branch 

predictor. For the purpose of analysis, global

 

history length 

18

 

is

 

used for G-share. The

 

approximate

 

size of the G-share 

predictor is 64KB.

 

TABLE IV.

  

ANALYSIS

 

OF

 

MPKI AND

 

PERCENTAGE O F

 

IMPROVEMENT

 

WITH

 

G-SHARE

 

 

 

 

 
 

Fig. 4.  Analysis of MPKI with G-Share 
 

 
 

Fig. 5.  Analysis of percentage of improvement with G-Share 

 

Table IV. And Fig. 4 and Fig.5 shows comparisons of Hybrid 

learning- based predictor with traditional G-Share Predictor. 

It shows that implemented predictor gives improvement of 

36.39% when history length is 128, 38.195% when history 

length is 256 and 38.45% when history length is 512. 

 

 Results show that hybrid learning based predictor 

implemented achieves better performance than the G-share 

predictor. 

   

   

   

   

 

  

   

   

   

   

Source of 

bits 

Quantity of bits 

for HL=128 

Quantity of bits 

for HL=256 

Quantity of bits 

for HL=512 

Local history 384x17=6,528 384x17=6,528 384x17=6,528 

Local 

weights 7x96x17=11424 7x96x17=11424 7x96x17=11424 

Global 

weights:       

1st 7 columns 

7x(8x7x512)=2,

00,704 

7x(8x7x512)=2,0

0,704 

7x(8x7x512)=2,0

0,704 

Next 6 

columns 

6x(8x7x256)=86

,016 

6x(8x7x256)=86,

016 

6x(8x7x256)=86,

016 

Next 3 

columns 

3x(8x7x128)=21

504 

19x(8x7x128)=1,

36,192 

51x(8x7x128)=3,

65,568 

Global 

history 128 128 128 

path history 9x128=1152 9x256=2304 9x512=4608 

Threshold 
counter 12 12 12 

Total No. Of 

bits 3,27,468 bits 4,43,436 bits 6,75,372 bits 

. No. of bits

MPKI for WITH 

ALL

HL=128 335872 4.93

HL=256 450560 4.79

HL=512 671744 4.77

MPKI %  of  improvement

G-Share 7.75 0.00%

HL=128 4.93 36.39%

HL=256 4.79 38.19%

HL=512 4.77 38.45%
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V. CONCLUSIONS 

 Branch predictor continues t o  evolve and 

improving branch prediction a c c u r a c y  i s  still an 

open problem. The proposed branch predictor uses 

Neural learning techniques-the perceptron-as basic 

mechanism with the variation of global history length. It 

includes the features like scaling of global history 

length to reduce noise due to larger history length and 

path history to provide the correlation information 

amongst the branches. The  proposed  branch  predictor  

ensures  increase  in prediction  accuracy  at  the  cost  of 

increased in hardware. 

 

 The future scope includes investigations of other 

techniques liked mixed -signal branch predictors which can 

be used to reduce mispredictions in a power-efficient 

manner. 
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