
Identification and Defense Mechanisms for XSS Attack

Nency Patel

Department of Computer Engineering

D.J.Sanghavi College of engineering

Mumbai, India

Narendra Shekokar

Department of Computer Engineering

D.J.Sanghavi College of engineering

Mumbai, India

Abstract— XSS vulnerabilities are growing with each day and

at the same time their disclosure rate is alarming. XSS attacks

are generally simple, since HTML encoding is known for its

simplicity and flexibility providing the attacker means for

bypassing server-side input filters. Several approaches have been

proposed to mitigate XSS attacks. The different techniques for

prevention of XSS such as NOXES, NoMoXSS and ARDILLA

have been studie. Based on the comparative analysis we have

proposed a solution to eliminate the dependency on the browser’s

parser to build parse trees for untrusted HTML tags. This

proposed solution converts untrusted contents to atrusted model,

which is generated for each comment in the HTML page which

has malicious code. Thus the application’s output is modified by

replacing each instance of untrusted HTML with its

corresponding model and leaving trusted content unaltered.

Keywords—Cross site scripting, Noxes, NoMoXSS, ARDILLA.

I. INTRODUCTION

Cross-site Scripting (XSS) is the name of a class of security

loopholes that can occur in Web applications. These are all

vulnerabilities that allow an attacker to inject HTML Markup

or JavaScript into the affected Web application's front-end

client [6].

Figure 1: Typical XSS Scenario

 Usually the attacker will encode the malicious portion of

the link to the site in HEX (or other encoding methods) so the

request is less suspicious-looking to the user. After the data is

collected by the web application, it creates an output page for

the user containing the malicious data that was originally sent

to it, but in a manner to make it appear as valid content from

the website. Figure 1 shows the typical cross site scripting

scenario.

A. Types of Cross Site Scripting

 Persistent or Stored XSS:

A persistent cross-site scripting vulnerability is when the

attacker provides malicious data to the web application and is

stored permanently on a database or some other similar storage.

This malicious data can at a later date be accessed and

executed by the victims without filtering or sanitizing it [8].

 Non Persistent or Reflected XSS:

 Reflected XSS takes place when the data provided by

the attacker is used immediately by the web application right

away in some response. This is what happens in website error

messages and search results.

 DOM based XSS:

 The Document Object Model (DOM) is a method for

representing and interacting with objects in HTML/XML.

Browsers work with the DOM; when a page is loaded the

browser parses the page into an object structure. DOM-based

XSS occurs in the content processing stages performed by the

client [3].

The remaining part of this paper is organized as follows.

Three different cross site scripting prevention techniques are

discussed and compared in Section 2, followed by the proposed

solution based on disadvantages of three techniques in Section

3 and we conclude in Section 4.

II. LITERATURE SURVEY

One reason for the popularity of XSS vulnerabilities is that

developers of web-based applications often have little or no

security background. Moreover, business pressure forces these

developers to focus on the functionality for the end-user and to

work under strict time constraints, without the resources (or the

knowledge) necessary to perform a thorough security analysis

of the applications being developed. The result is that poorly

developed code, riddled with security flaws, is deployed and

3219

International Journal of Engineering Research & Technology (IJERT)

Vol. 3 Issue 1, January - 2014

IJ
E
R
T

IJ
E
R
T

ISSN: 2278-0181

www.ijert.orgIJERTV3IS11041

made accessible to the whole Internet. Currently, XSS attacks

are dealt with by fixing the server side vulnerability, which is

usually the result of improper input validation routines. While

being the obvious course of action, this approach leaves the

user completely open to abuse if the vulnerable web site is not

willing or able to fix the security issue.

E. Kirda et al, have proposed a solution called NOXES

which is the first client-side solution to alleviate cross-site

scripting attacks. The Noxes was inspired by windows personal

firewalls which are widely used on PCs and notebooks.

Although personal firewalls play an important role in

protecting users from a wide range of intimidation, they are

nearly helpless against web based client-side attacks, like the

XSS attacks. Noxes provides an additional layer of protection

that existing personal firewalls do not support. The main idea is

to allow the user to endeavor control over the connections that

the browser is making, just as personal firewalls allow a user to

control the internet connections received by or originating from

processes running on the local machine [1]. Therefore it would

be safe to say Noxes operates as a web proxy that fetches HTTP

requests on behalf of the user’s browser. Hence, all web

connections of the browser pass through Noxes and can either

be blocked or allowed based on the current security policy.

Comparable to personal firewalls, Noxes allows the user to

create filter rules (i.e., firewall rules) for web requests.

Philipp Vogt et al, have proposed a solution that uses

dynamic data tainting. The goal is to ensure that a JavaScript

program can send sensitive information only to the site from

which it was loaded. To this end, the information flow of

sensitive data is tracked inside the JavaScript engine of the

browser. Whenever an attempt to relay such information to a

third party (i.e., the adversary) is detected, the user is warned

and given the possibility to stop the transfer [2]. The authors

have done:

 A dynamic taint analysis together with a integral static

analysis can prevent XSS attacks by observation of the flow

of sensitive information in the web browser.

 The assimilation of the analyses into the popular Firefox

web browser.

 The development of a Firefox-based web crawler capable of

simulating user actions. This can allow us to perform a

large-scale empirical validation of their techniques based on

the automatic browsing of more than one million web

pages.

Adam Kiezun et al, have proposed an automatic technique

for creating inputs that expose SQLI and XSS vulnerabilities.

The technique while generating sample inputs, symbolically

track taints through execution (also those by database

accesses), at the same time mutating the inputs to produce

concrete exploits. This is the first analysis of precisely

addresses second-order XSS attacks [3].

Table 1: Comparisons of NOXES, NoMoXSS and ARDILLA

Techniques NOXES NoMoXSS Ardilla

Symbolic

Executer

C# phpBB, myBB,

webCal

Appolo

Platform .NET PHP PHP

Focus on XSS, Advanced

XSS

XSS SQLI, XSS1,

XSS2

Detect/Exploit Exploit Exploit Exploit

Detection method Personal

firewall

Dynamic data

tainting

Taint

propagation

Table 1 represents the comparisons of NOXES, NoMoXSS

and ARDILLA based on different criteria.

Noxes is the first client side prevention technique. But its

main drawback is it just bothers about sensitive data on web

application; it doesn’t take care about JavaScript code if it

contains any malicious content. NOMOXSS has additional

protection layer when surfing the web without depending on

the security of the web application. But same as NOXES it also

doesn’t take care about JavaScript code if it contains any

malicious content [17] [2]. The third technique discussed above

is ARDILLA tool has advantage that it is the first analysis of

precisely addressed second order XSS [3]. It has disadvantages

like Input generations cannot simulate sessions and If any

improvement in input generation is likely to improve

ARDILLA’s effectiveness.

III. PROPOSED SOLUTION

Many web applications are built on top of frameworks that

APIs providing extensive defense mechanisms against

everyday attacks such as cross-site scripting (XSS) and cross-

site request forgery (CSRF). The three techniques discussed in

literature survey prevent sensitive data from being corrupted by

XSS attack. This technique cannot prevent invasion by

malicious JavaScript. JavaScript is used as a vehicle to infect

websites because it's a programming language that underpins

today's web. It's primarily used in the form of client-side

JavaScript, implemented as part of a web browser in order to

provide enhanced user interfaces and dynamic websites.

Figure 2 presents an abstract description of how HTML input

coming from path A flows through a web browser as it is

parsed and interpreted. Whenever HTML page is processed the

HTML lexer and parser generates HTML parse tree. Then

HTML parse tree is given as input to Document generator that

generates JavaScript code. This JS code goes to JavaScript

lexer and parser and generates JS parse tree. This tree goes to

JS runtime environment to generate instructions of HTML

page that comes through the entire path to perform specific task

and goes to DOM API. This way HTML page is accessed and

3220

International Journal of Engineering Research & Technology (IJERT)

Vol. 3 Issue 1, January - 2014

IJ
E
R
T

IJ
E
R
T

ISSN: 2278-0181

www.ijert.orgIJERTV3IS11041

most of the HTML page contains JavaScript. Attacker can add

malicious code in JavaScript and can inject the Javascript by

putting malicious code in comment. Malicious JavaScript

generates high-traffic and redirect users to malicious web pages

without the victim's knowledge. This process starts initiating

vulnerabilities and when people visit these malicious sites,

further scripts exploit client-side vulnerabilities. To mitigate

this vulnerability we have proposed a solution to eliminate

dependence on the browser’s parser for building unpatriotic

HTML parse trees. The proposed solution generates and

encapsulates a model for each comment in the HTML page

which can contain malicious code. So whenever we come

across a malicious piece of code the application’s output is

converted into new alternative by replacing each of unpatriotic

HTML with its corresponding model and not making any

changes to the trusted content.

Figure 2: Generalized HTML interpretation process

In our approach, we build the parse tree at the first level

only. The parse tree is generated for unpatriotic content

programmatically using a small set of low-level Document

Object Model (DOM) primitives that are well documented [19]

and supported on all JavaScript-enabled browsers. In this

solution we have modeled web application output along with a

short, trusted script that calls upon the client side JavaScript

library, which decodes and safely reconstructs the parse tree

within the browser.

IV. CONCLUSION

XSS is one of the most common types of attack on web

services. XSS attacks can be carried out very easily and the

attacks are generally simple, but preventing them is very

difficult because HTML is very flexible encoding schemes

which provides to the attacker capabilities for circumventing

server-side input filters. Many different approaches have been

proposed to overcome XSS attacks.

The different techniques for prevention of XSS, Noxes,

NoMoXSS and ARDILLA, have been studied. Noxes operates

as a web proxy that fetches HTTP requests on behalf of the

user’s browser. NoMoXSS is a solution that uses dynamic data

tainting. ARDILLA is an automatic technique for creating

inputs that expose SQLI and XSS vulnerabilities. Based on the

comparative study these techniques cannot prevent invasion by

malicious JavaScript. To mitigate this problem we have

proposed a solution that eliminates the use of HTML parse

tree. This proposed solution automatically generates and

embeds an alternative code for each comment in the HTML

page which has malicious code. In the proposed solution all the

comments or instance of malicious code is replaced by model

which contains trusted code.

REFERENCES

[1] E. Kirda, C. Kruegel, G. Vigna, and N. Jovanovic, “Noxes:

A client-side solution for mitigating cross-site scripting

attacks,” in 21st Annual ACM Symposium on Applied

Computing, Dijon, France, Apr. 2006.

[2] P. Vogt, F. Nentwich, N. Jovanovic, E. Kirda, C. Kruegel,

and G. Vigna, “Cross-site scripting prevention with

dynamic data tainting and static analysis,” in 14th Annual

Network & Distributed System Security Symposium, San

Diego, CA, USA, Feb. 2007.

[3] Adam Kiezun, Philip J. Guo, Karthick Jayaraman, Michael

D. Ernst, “Automatic creation of SQL Injection and Cross

site scripting Attacks” in 31st International Conference on

Software Engineering IEEE computer society Washington,

DC, USA 2009.

[4] S. Artzi, A. Kie˙zun, J. Dolby, F. Tip, D. Dig, A. Paradkar,

and M. Ernst. Finding bugs in dynamic Web applications.

In ISSTA, 2008.

[5] D. Balzarotti, M. Cova, V. Felmetsger, N. Jovanovic, E.

Kirda, C. Kruegel, and G. Vigna. Saner: Composing static

and dynamic analysis to validate sanitization in Web

applications. In S&P, 2008.

[6] W. Halfond, A. Orso, and P. Manolios. WASP: Protecting

Web applications using positive tainting and syntax-aware

evaluation. IEEE TSE, 34(1):65, 2008.

[7] Victor Mehai Christiansenn SecPoint - Best IT Security

products [online]. Available:

http://www.secpoint.com/what-is-cross-site-scripting.html

[8] W. G. Halfond and A. Orso. AMNESIA: Analysis and

Monitoring for NEutralizing SQL-Injection Attacks. In

ASE, 2005.

3221

International Journal of Engineering Research & Technology (IJERT)

Vol. 3 Issue 1, January - 2014

IJ
E
R
T

IJ
E
R
T

ISSN: 2278-0181

www.ijert.orgIJERTV3IS11041

[9] Y.-W. Huang, F. Yu, C. Hang, C.-H. Tsai, D.-T. Lee, and

S.- Y. Kuo. Securing Web application code by static

analysis and runtime protection. In WWW, 2004.

[10] M. Lam, M. Martin, B. Livshits, and J. Whaley. Securing

Web applications with static and dynamic information flow

tracking. In PEPM, 2008.

[11] D. Balzarotti, M. Cova, V. Felmetsger, N. Jovanovic, E.

Kirda, C. Kruegel, and G. Vigna. Saner: Composing static

and dynamic analysis to validate sanitization in Web

applications. In S&P, 2008.

[12] M. Emmi, R. Majumdar, and K. Sen. Dynamic test input

generation for database applications. In ISSTA, 2007.

[13] M. Martin and M. Lam. Automatic generation of XSS and

SQL injection attacks with goal-directed model checking.

In USENIX Security, 2008.

[14] J. Newsome and D. Song. Dynamic taint analysis for

automatic detection, analysis, and signature generation of

exploits on commodity software. In NDSS, 2005.

[15] G.Wassermann, D. Yu, A. Chander, D. Dhurjati, H.

Inamura, and Z. Su. Dynamic test input generation for Web

applications. In ISSTA, 2008.

[16] S. Cook. A web developer’s guide to cross-site scripting.

Technical report, SANS Institute, 2003.

[17] Y.W. Huang, S.K. Huang, T.P. Lin, and C.H. Tsai. Web

application security assessment by fault injection and

behavior monitoring. In: Proceedings of the 12th

International World Wide Web Conference (WWW 2003),

May 2003.

[18] Y.W. Huang, S.K. Huang, T.P. Lin, and C.H. Tsai, F. Yu,

C. Hang, D. Lee, and S.Y. Kuo. Securing Web Application

Code by Static Analysis and Runtime Protection. In:

Proceedings of the 13th International World Wide Web

Conference (WWW 2004) May 2004.

[19] World Wide Web Consortium, “Document object model

(DOM) level 2 core specification,” Nov. 2000. [Online].

Available: http://www.w3.org/TR/DOM-Level-2-Core/

3222

International Journal of Engineering Research & Technology (IJERT)

Vol. 3 Issue 1, January - 2014

IJ
E
R
T

IJ
E
R
T

ISSN: 2278-0181

www.ijert.orgIJERTV3IS11041

