
 

 

 

  
 

 

 

 

 

 

 

 

 

 

 

Abstract—

 

In the present work the effect of transverse cracks on 

natural frequencies of a simply supported beam with symmetric 

overhangs is investigated and an algorithm has been developed 

for identifying damage in the same. In the numerical example, 

single and triple cracks are considered in the dynamic analysis. 

Flexibility matrix of the intact beam and an additional flexibility 

matrix due to damaged beam is derived and added up to obtain 

the flexibility matrix of the cracked beam element. Stiffness 

matrix of cracked beam element is derived by multiplying a 

transformation matrix with the inverse of the final flexibility 

matrix of the cracked beam element. The natural frequencies and 

the corresponding mode shapes of vibration are obtained by 

solving eigen value problem. It is found that for a simply 

supported beam with symmetric overhangs, the 1st

 

frequency 

decreases with an increase in the crack depth, and, it decreases 

the most at mid span. In case of 2nd

 

and 3rd

 

frequency, these 

decreases the most at 20% and 80% of the total length from the 

left support. For triple cracks several important observations are 

also made.  

 

Keywords—Damage Detection, Structural Health Monitoring, 

Modal Analysis, Cracks, Beams.

  
I.

  

INTRODUCTION 

 
Engineering Structures withstand loads during their service 

life. Buildings are usually designed on strong column, weak 

beam concept. So, beams are more vulnerable to cracks. 

Vibrational measurements are an efficient means of crack 

detection. Crack leads to reduction in stiffness of beam, 

thereby reducing its natural frequency. A lot of research work 

has been done to develop effective methods for crack 

detection. Pandey and Biswas (1991) have evaluated changes 

in flexibility matrix in order to locate damage. Pandey et.al. 

(1990) have used curvature mode shape to detect and locate 

damage in structure. It is shown that curvature mode shape 

localizes in the damage

 

region whereas the displacement mode 

shapes are not localized. Further, MAC and COMAC are not 

sensitive enough to detect damage in its earlier stage. Morassi 

and Rovere (1997) have identified localized damage in a 

multistory steel frame. Vibration tests were performed on a 

five story steel frame with a notch of fixed position and 

variable depth. Damage is localized by considering 

frequencies related to shear type modes only. Rizos et.al. 

(1989) have used the measurement of flexural vibrations of a 

cantilever beam with rectangular cross section having 

transverse surface crack extending uniformly along the width 

of the beam to locate crack location and crack depth. The 

method requires amplitude measurements at two positions of 

the structure only. The application of this method is limited to 

moderate cracks only. Liang et.al (1992) have developed 

theoretical relationship between eigen frequency changes, 

crack location and crack depth of damaged cantilever and 

simply supported beam. This theory can be more specifically 

applied to steel frame structures. Chondros and Dimarogonas 

(1979) have discussed the influence of crack in a welded joint 

on the dynamic behavior of a structural member. Local 

flexibility was used to establish relationship between crack 

depth to the change of natural frequency for the cases of a 

cantilever beam with a transverse crack at the welded root of 

the beam and of a beam welded (clamped) at both ends with a 

transverse crack at one welded end. This method is applicable 

to members of simple geometry. It is applied to individual 

members of large structures where member flexibility is larger 

than flexibility of supporting members. Mostafa Attar (2012) 

has used an analytical approach to investigate natural 

frequencies and mode shapes of a stepped

 

beam with an 

arbitrary number of cracks and general form of boundary 

conditions. A simple transfer matrix is used to obtain general 

form of characteristic equation for the cracked beam. It is a 

function of crack location, crack depth, frequency, boundary 

conditions, geometrical and physical parameters of the beam. 

Boltezar et.al. have shown the crack identification procedure 

for free-free uniform beams in flexural vibrations. Khiem and 

Toan (2014) have proposed a novel method for calculating the 

natural frequencies of a multiple cracked beam and detecting 

unknown number of multiple cracks from measured natural 

frequencies. An explicit expression for natural frequencies 

through crack parameters is derived as modification of 

Rayleigh quotient for multiple cracked beams. Hu and Liang 

(1993) have developed two damage modeling techniques. First 

modeling technique involves use of massless, infinitesimal 

springs to represent discrete cracks and other employs a 

continuum damage concept. In spring model, castigliano’s 

theorem and perturbation technique are used to derive crack 

location, extent of crack and eigen frequency changes. In 

continuum damage model, effective stress concept together 

with Hamilton’s principle are used to derive similar 

relationship in continuum

 

form. Antonino Morassi (1993) has 

shown that frequency sensitivity for any beam like structure 

can be evaluated on the basis of undamaged system by general 
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perturbation approach. Frequency sensitivity plays a vital role 

in crack identification. Freund Herrmann concept of using a 

spring to represent effect of crack on section is taken into 

account. Frequency sensitivity is proportional to potential 

energy stored for relevant mode shape at cross section where 

crack occurs. Ratios of frequency changes of various orders 

are independent of crack severity but helps in localizing 

damage.
 

 

II.
 

PROPOSED ALGORITHM FOR IDENTIFYING TRANSVERSE 

CRACKS IN SIMPLY SUPPORTED BEAM WITH OVERHANGS
 

a)
 

Derivation Of Differential Equation Of Transverse 

Vibration Of Beam
 

 

 

 

 

 

 

 

Figure 3.1. Free body diagram of forces acting on beam
 

Pittman (2004) derived the solution of the differential equation 

for transverse beam vibration.From the above free body 

diagram and equation of equilibrium of the vertical forces 

according to Newton’s second law, we have
 

 
  or          (1)

 

The sum of moments about any point of the element yields:
 

   or            (2)
 

Substituting eq. 2 into eq. 1, we have
 

                               (3)
 

It is assumed that vibration occurs in symmetric planes of 

beam. So, the differential equation of the deflected curve is:
 

                                     (4)
 

Combining eq. 3 and 4, we have
 

                          (5)
 

Using the method of separation of variables:
 

                       (6)
 

Substituting eq.6 in 5
 
and μ = ρA , we have,

 

                            (7)
 

The term on left side of
 
eq. 7

 
is dependent only on x and the 

right side only on t. To be equal to each other, both side must 

be equal to same constant ω2. Then the left hand side of eq. 7
 

can be written as
 

                     
 
(8)

 

Where,
 

And, ω = Natural frequency in rad/sec.
 

The characteristic equation of the above differential equation 

is
 

 
or (λ+k)(λ-k)(λ2+k2)=0

 

Which gives the eigen values as 
 

k1
 
= -λ,  k2

 
= λ, k3

 
= iλ, k4

 
= -iλ

 

which yields the general solution as 
 

X(x) = C1e-λx + C2eλx + C3
 
cos(λx) + C4

 
sin(λx)

 

Or
 

X(x) = C1
 
cosh(λx) + C2

 
sinh(λx) + C3

 
cos(λx)  + C4

 
sin(λx)   

 

C1
 
, C2

 
, C3,and C4 are determined from boundary conditions at 

the ends of a beam.
 

Since the beam has symmetric overhangs, so we divide it into 

three sections. Each section will have a separate coordinate 

system for measuring the distance x with the origin for each 

section being at the left end of each section.
 

 

V 

V 
 

 
-M 
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b) Proposed damage identification algorithm for simply 

supported beam with overhangs 

 

 

 

 

 

 

 

 

 

Figure 2.
 
Geometry of simply supported beam with symmetric overhangs and 

coordinate system.
 

From the basic vibration theory, the harmonic motion of 

the beam and its first, second and third derivative for left 

overhang (i = 1), centre span (i=2) and right overhang(i=3) are 

as follows 

    

(9) 

General boundary Conditions for crack lying in beam: 

For a single crack located anywhere in the left overhang, 

Centre span and right overhang, the general boundary 

conditions are as follows 

At xi
 = Rc

 , 

                              (10) 

                              (11) 

                             (12) 

              (13) 

Here, Rc
 is the distance of crack from left. i =1,2,3 for left 

overhang, Centre span and right overhang respectively. 

Subscript L and R refers to the left and right side of the crack. 

 

General boundary Conditions for Point A in the beam: 

At x1
 = 0, 

                            (14) 

                           (15) 

Here, M = 1L for left overhang and 1 for Centre span and right 

overhang. Subscript L refers to the left side of the crack. 

General boundary Conditions for Point D in the beam: 

At x3
 = δ    

                           (16) 

                           (17) 

Here, N = 3 for left overhang and Centre span and 3R for right 

overhang. Subscript R refers to the right side of the crack. 

General boundary Conditions for Point B in the beam: 

At x1= δ, x2
 = 0, 

                                (18) 

                                (19) 

                     (20) 

                  (21) 

Here, M = 1R for left overhang and 1 for centre span and right 

overhang. N = 2 for left and right overhang and 2L for centre 

span. Here, Q and S = 1R for left overhang and 1 for centre 

span and right overhang. Also, R and T = 2 for left and right 

overhang and 2L for centre span. 

 

 

   L 

x1
 x2

 x3
 

δ 
S δ 

A B C D 
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General boundary Conditions for Point C in the beam: 

At x2 = S, x3 = 0, 

                            (22) 

                            (23) 

                     (24) 

                    (25) 

Here, M = 2 for left overhang and right overhang and 2R for 

centre span. N = 3 for left overhang and centre span and 3L 

for right overhang. Here, Q and S = 2 for left overhang and 

right overhang and 2R for centre span. Also, R and T = 3 for 

left overhang and centre span and 3L for right overhang. 

III. PRESENT FINITE ELEMENT FORMULATION FOR FINDING 

NATURAL FREQUENCIES 

A. Finite Element Formulation 

When crack is induced in a beam, then its flexibility is 

increased. So, first we calculate the additional flexibility 

induced in it. Then it is added up with the flexibility matrix of 

intact beam element. The inverse of the overall flexibility 

matrix thus obtained is multiplied with the transformation 

matrix to obtain the required stiffness matrix of the cracked 

beam element. This stiffness matrix is assembled along with 

the stiffness matrices of the intact beam element and thereafter 

the natural frequencies are calculated from the equation K – 

ω2M=0, where K= Assembled stiffness matrix of the beam, 

M=Assembled mass matrix and ω= Natural frequency 

(rad/sec). According to Dimarogonas et.al. (1983) and Tada 

et.al. (2000) the additional stain energy due to existence of 

crack can be expressed as  

 

ПC =

C

C

A

GdA                                          (26) 

Where, G = the strain energy release rate, and 

             AC = the effective cracked area. 

 

G =
2 2 2

2 2 2

1 1 1

1
( ) ( ) ( )

'
In IIn IIIn

n n n

K K k K
E   

 
  

 
              (27) 

 

Where, E’ = E   for plane stress 

             E’ = E/1-ν2 for plane strain 

            k = 1 + ν 

            ν=Poisson’s ratio 

            E=Young’s Modulus of elasticity. 

KI, KII and KIII = stress intensity factors for sliding, tearing 

and opening type cracks respectively. Neglecting effect of 

axial force and for open cracks above equation can be written 

as  
 

G = 2 2

1 2 1

1
( )

'
I I IIK K K

E
   

                       (28) 

 

The expressions for stress intensity factors from earlier studies 

are given by Uttam Kumar Mishra (2014) as follows 
 

KI1 = 1

12

6 CPL
F

hbh




 
 
 

                                  (29) 

2

2 12

6
I

P
K F

hbh




 
  

 
                                   (30) 

2

1II II

P
K F

bh h




 
  

 
                                   (31) 

From definition, the elements of the overall additional 

flexibility matrix Cij can be  
2

i C

ij

j i j

C
P P P

  
 
  

   , (I, j=1,2)                      (32) 

Substituting Eq (29),(30),(31) into Eq (28), then into Eq (26) 

and Eq (32) subsequently we get,  
 

2 22

1 1 1

1 1 12 2

6 6

'

c

ij

i j

PL P Pb
C F F F d

E P P h h bh hbh bh

  
   

          
           

            


    

(33)   

Substituting i,j (1,2) values, we get 

2

2 2

11 12

0 0

362
( ) ( )

'

a a

h h

C

II

L
C xF x dx xF x dx

E b h


 
 

  
 
 

 
                 (34) 

2

12 1 212

0

72
( )

'

a

h
cL

C xF x dx C
E bh


                           (35) 

2

22 12

0

72
( )

'

a

h

C xF x dx
E bh


                                  (36) 

4

0.923 0.199 1 sintan
22

( )

cos
2 2

I

ss

F s
s s



 

    
     

     
    
    

     

                (37) 

2 31.122 0.561 0.085 0.180
( )

1
II

s s s
F s

s

  



                 (38) 

3 2

11 12

2

21 22

3 2

2

  

e e

total

e e

L L
C C

EI EI

L
C

EI I

C
L

C
E



 
  

 
 

  
 

                         (39) 

The stiffness matrix Kcrack of a cracked beam element can be 

obtained as Kcrack =
1 T

totLC L
, Where, L is the transformation 

matrix for equilibrium condition 
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1 0

1

1 0

0 1

   
e

L
L

 
 
 
 
 
 
 

                                          (40) 

Here, equation 1, 2and 3 are coefficients of additional 
flexibility matrix, a= crack depth, h= total depth of the beam, 
Lc= distance of crack from right node of beam element. 
E’=E/(1-ν2), where ν= Poisson’s ratio, E= modulus of 
elasticity. 

IV. RESULTS BASED ON FORWARD PROCESS
 FOR FINDING 

NATURAL FREQUENCIES
 

 

Natural Frequencies of simply supported beam with 

symmetric overhangs having single crack: 

 

Problem Description: A simply supported beam with 

symmetric overhangs on both ends having various crack depth 

ratio at various locations is taken. It has following properties 

and is divided into 4 elements, Length, L = 0.78m, Breadth, b 

= 0.04m, Height, h = 0.01m, Mass density, ρ = 7860 kg/m3, 

Young’s Modulus, E = 210 GPa, Number of elements = 4, 

Supports located at node 2 and node 4, Elemental length = 

0.195 m 

 

 

Figure 1. Convergence Study for single crack simply supported beam with 

symmetric overhangs.
 

TABLE I. 
 

1ST 
NATURAL FREQUENCY OF SIMPLY SUPPORTED BEAM 

WITH SYMMETRIC OVERHANGS
 

 

beta
 

rcd=0.0
 

rcd=0.2
 

rcd=0.4
 

rcd=0.6
 

rcd=0.8
 

0.1
 

85.650656
 

85.63637
 

85.58624
 

85.42792
 

84.51325
 

0.2
 

85.650656
 

85.55792
 

85.22798
 

84.14173
 

77.0658
 

0.4
 

85.650656
 

85.26477
 

83.94458
 

80.10458
 

64.98897
 

0.6
 

85.650656
 

85.26477
 

83.94459
 

80.10458
 

64.98898
 

0.8
 

85.650656
 

85.55792
 

85.22798
 

84.14173
 

77.06582
 

0.9
 

85.650656
 

85.63637
 

85.58624
 

85.42792
 

84.51326
 

 

 

TABLE II. 
 

2ND 
NATURAL FREQUENCY OF SIMPLY SUPPORTED BEAM 

WITH SYMMETRIC OVERHANGS
 

beta
 

rcd=0.0
 

rcd=0.2
 

rcd=0.4
 

rcd=0.6
 

rcd=0.8
 

0.1
 

141.98397
 

141.8973
 

141.5952
 

140.6614
 

135.8193
 

0.2
 

141.98397
 

141.4341
 

139.5647
 

134.254
 

116.4698
 

0.4
 

141.98397
 

141.785
 

141.1351
 

139.4817
 

135.2091
 

0.6
 

141.98397
 

141.785
 

141.1351
 

139.4817
 

135.2091
 

0.8
 

141.98397
 

141.4341
 

139.5647
 

134.254
 

116.4698
 

0.9
 

141.98397
 

141.8973
 

141.5952
 

140.6614
 

135.8193
 

TABLE III. 
 

3RD 
NATURAL FREQUENCY OF SIMPLY SUPPORTED BEAM 

WITH SYMMETRIC OVERHANGS
 

beta
 

rcd=0.0
 

rcd=0.2
 

rcd=0.4
 

rcd=0.6
 

rcd=0.8
 

0.1
 

297.13671
 

296.9138
 

296.1418
 

293.8025
 

282.7459
 

0.2
 

297.13671
 

295.8371
 

291.6278
 

281.176
 

256.1695
 

0.4
 

297.13671
 

296.9124
 

296.1733
 

294.243
 

288.756
 

0.6
 

297.13671
 

296.9124
 

296.1733
 

294.2431
 

288.7561
 

0.8
 

297.13671
 

295.8371
 

291.6278
 

281.176
 

256.1695
 

0.9
 

297.13671
 

296.9138
 

296.1418
 

293.8025
 

282.746
 

 

Figure 2. 1st natural frequency of a simply supported
 
beam with symmetric 

overhangs.
 

 

Figure 3. 2nd natural frequency of a simply supported beam with symmetric 
overhangs.
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Figure 4. 3rd
 
natural frequency of a simply supported beam with symmetric 

overhangs.
 

From the above figure it can be concluded that for
 
a 

simply supported beam with overhangs 1st frequency, as the 

crack depth increases, the frequency decreases. It decreases 

the most at mid span. In case of 2nd frequency, as the crack 

depth increases the frequency decreases. It decreases the most 

near the first support
 
and second support i.e

 
at 20% and 80% 

of the total length. In case of third frequency, also the 

frequency decreases with increase in crack depth and 

decreases the most at 20% and 80% of the total length.
 

Natural Frequencies of simply supported beam with 

symmetric overhangs having triple crack:
 

Problem Description: A simply supported beam with 

symmetric overhangs on both ends having various crack depth 

ratio at various locations is taken. It has following properties 

and is divided into 4
 
elements, Length, L = 0.78m, Breadth, b 

= 0.04m, Height, h = 0.01m, Mass density, ρ = 7860 kg/m3, 

Young’s Modulus, E = 210 GPa, Number of elements = 4, 

Supports located at node 2 and node 4, Elemental length = 

0.195 m.
 

 

TABLE IV. 
 

1ST
 
NATURAL FREQUENCY OF SIMPLY SUPPORTED BEAM 

WITH SYMMETRIC OVERHANGS HAVING TRIPLE CRACK
 

 
 

 

 
 

 

 

TABLE V. 
 

2ND
 
NATURAL FREQUENCY OF SIMPLY SUPPORTED BEAM 

WITH SYMMETRIC OVERHANGS HAVING TRIPLE CRACK
 

Beta
 

rcd
 beta=0.2,0.4,0.6

 
beta=0.2,0.4,0.8

 
beta=0.2,0.6,0.8

 
beta=0.4,0.6,0.8

 

0.1
 
141.7352322

 
141.6444224

 
141.6444223

 
141.7352321

 

0.3
 
139.8257202

 
139.0683819

 
139.068376

 
139.8257211

 

0.5
 
134.6595384

 
132.3569261

 
132.3569234

 
134.6595553

 

0.7
 
119.1343277

 
114.082506

 
114.0825185

 
119.1343434

 

TABLE VI. 
 

3RD
 
NATURAL FREQUENCY OF SIMPLY SUPPORTED BEAM 

WITH SYMMETRIC OVERHANGS HAVING TRIPLE CRACK
 

Beta
 

rcd
 beta=0.2,0.4,0.6

 
beta=0.2,0.4,0.8

 
beta=0.2,0.6,0.8

 
beta=0.4,0.6,0.8

 

0.1
 

296.6757407
 
296.3914888

 
296.3914843

 
296.6757406

 

0.3
 

293.1816274
 
290.7360878

 
290.7360562

 
293.1816314

 

0.5
 

284.1079446
 

276.000332
 
276.0003583

 
284.107977

 

0.7
 

259.4173901
 
236.0703659

 
236.0704891

 
259.4173403

 

TABLE VII. 
 

4TH
 
NATURAL FREQUENCY OF SIMPLY SUPPORTED BEAM 

WITH SYMMETRIC OVERHANGS HAVING TRIPLE CRACK
 

Beta
 

rcd
 beta=0.2,0.4,0.6

 
beta=0.2,0.4,0.8

 
beta=0.2,0.6,0.8

 
beta=0.4,0.6,0.8

 

0.1
 

823.5553966
 
823.3770847

 
823.3770825

 
823.5553952

 

0.3
 

807.8733341
 
806.6115086

 
806.6115075

 
807.8733313

 

0.5
 

767.7336102
 

765.62396
 
765.6239695

 
767.7336251

 

0.7
 

665.2350624
 
671.2620994

 
671.2620997

 
665.2349858

 

TABLE VIII. 
 

5TH
 
NATURAL FREQUENCY OF SIMPLY SUPPORTED BEAM 

WITH SYMMETRIC OVERHANGS HAVING TRIPLE CRACK
 

 
 

 

 
 

 

 

Beta
 

rcd
 beta=0.2,0.4,0.6

 
beta=0.2,0.4,0.8

 
beta=0.2,0.6,0.8

 
beta=0.4,0.6,0.8

 

0.1
 

85.42541912
 

85.50185911
 

85.50185897
 

85.42541911
 

0.3
 

83.71291933
 

84.35523699
 

84.35523717
 

83.71291952
 

0.5
 

79.22638862
 

81.22157178
 

81.22157319
 

79.22639125
 

0.7
 

66.96330109
 

71.6677455
 

71.66774656
 

66.96330167
 

Beta
 

rcd
 beta=0.2,0.4,0.6

 
beta=0.2,0.4,0.8

 
beta=0.2,0.6,0.8

 
beta=0.4,0.6,0.8

 

0.1
 
1295.374277

 
1294.538285

 
1294.538274

 
1295.374277

 

0.3
 
1289.118019

 
1282.067365

 
1282.06724

 
1289.118014

 

0.5
 
1274.636156

 
1252.50435

 
1252.504407

 
1274.636196

 

0.7
 
1244.677417

 
1189.939438

 
1189.94033

 
1244.677722

 

International Journal of Engineering Research & Technology (IJERT)

ISSN: 2278-0181http://www.ijert.org

IJERTV5IS060248
(This work is licensed under a Creative Commons Attribution 4.0 International License.)

Published by :

Vol. 5 Issue 06, June-2016

www.ijert.org 173



TABLE IX. 
 

6TH
 
NATURAL FREQUENCY OF SIMPLY SUPPORTED BEAM 

WITH SYMMETRIC OVERHANGS HAVING TRIPLE CRACK
 

 
 

 

 
 

Figure 5. 1st
 
natural frequency of a simply supported beam with symmetric 

overhangs having triple crack.
 

 
 

 

 
 

Figure 6. 2nd
 
natural frequency of a simply supported beam with symmetric 

overhangs having triple crack.
 

 
 

 

 
 

 

 
 

Figure 7. 3rd
 
natural frequency of a simply supported beam with symmetric 

overhangs having triple crack.
 

 

 
 

Figure 8. 4th
 
natural frequency of a simply supported beam with symmetric 

overhangs having triple crack.
 

 

 
 

Figure 9. 5th
 
natural frequency of a simply supported beam with symmetric 

overhangs having triple crack.
 

 

Beta
 

rcd
 beta=0.2,0.4,0.6

 
beta=0.2,0.4,0.8

 
beta=0.2,0.6,0.8

 
beta=0.4,0.6,0.8

 

0.1
 

1717.062955
 

1717.303203
 

1717.303177
 

1717.062969
 

0.3
 

1710.840064
 

1712.87886
 

1712.878668
 

1710.840161
 

0.5
 

1695.381055
 

1701.879419
 

1701.879576
 

1695.381344
 

0.7
 

1658.943026
 

1675.671543
 

1675.672746
 

1658.942178
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Figure 10. 6th natural frequency of a simply supported beam with symmetric 
overhangs having triple crack.

 

 

Validation of proposed FEM method for triple cracked 

cantilever beam 

Problem Description: A cantilever with crack depth ratio of 

0.1 for all the three cracks with cracks located at various 

locations is taken. It has following properties and is divided 

into 16 elements 

Length, L = 0.5m 

Breadth, b = 0.02m 

Height, h = 0.02m 

Mass density, ρ = 7860 kg/m3. 

Young’s Modulus, E = 210 GPa 

Poisons ratio =0.3 

TABLE X. 

 

FIRST THREE NATURAL FREQUENCIES OF A

 

TRIPLE CRACKED CANTILEVER BEAM
 

TABLE XI. 
 

4TH
 

,5TH
 

AND
 

6TH
  

NATURAL
 

FREQUENCY
 

OF A
 

TRIPLE CRACKED CANTILEVER BEAM 

 

V. RESULTS BASED ON INVERSE PROCESS
 FOR 

IDENTIFYING CRACKS FROM FIRST THREE
 NATURAL 

FREQUENCIES
 

Problem Description: A simply supported beam with 

symmetric overhangs having cracks located at various 

locations with various depths is taken. It has following 

properties. Cracks are identified for single cracked simply 

supported beam with symmetric overhangs by finding 

determinant of matrix formed by applying boundary 

conditions.  

Length, L = 10m 

Breadth, b = 0.2m 

Height, h = 0.6m 

Mass density, ρ = 2350 kg/m3. 

Young’s Modulus, E = 2.8*10^10 N/m2. 

I=0.0036 m4. 

 

TABLE XII. 
 

PREDICTED CRACK LOCATION FOR SINGLE CRACK
 
LOCATED 

AT DIFFERENT LOCATIONS IN CENTRE SPAN OF SIMPLY
 
SUPPORTED BEAM WITH 

SYMMETRIC OVERHANGS.
 

 

CENTRE SPAN
 

Sl.no.
 

1st Natural 

frequency 

(ω1) in 

rad/sec
 

2nd Natural 

frequency 

(ω2) in 

rad/sec
 

3rd Natural 

frequency 

(ω3) in 

rad/sec
 

Actual 

Crack 

Location, 

in metres
 

Predicted  

Crack 

Location,
 

in metres
 

1
 

126.58
 

206.27
 

442.6
 

0.5
 

0.5
 

2
 

124.092
 

216.165
 

436.3544
 

3
 

3
 

3
 

125.494
 

210.566
 

450.17
 

4
 

4
 

4
 

122.317
 

198.99
 

437.47
 

4.5
 

4.5
 

 

 

 
 

 

 
 

Case
 

Crack Location
 

Method
 

Natural Frequency
 

X1/L
 

X2/L
 

X3/L
 

ω1
 ω2

 
ω3

 

1
 

0.2
 

0.4
 

0.6
 

M. Attar
 

416.9159
 

2612.213
 

7324.21
 

Present FEM
 

417.16
 

2613.9
 

7328.4
 

2
 

0.2
 

0.4
 

0.8
 

M. Attar
 

417.0864
 

2620.455
 

7318.811
 

Present FEM
 

415.07
 

2618.8
 

7342.7
 

3
 

0.2
 

0.6
 

0.8
 

M. Attar
 

417.6464
 

2617.786
 

7315.833
 

Present FEM
 

415.58
 

2616.4
 

7339.6
 

4
 

0.4
 

0.6
 

0.8
 

M. Attar
 

418.7517
 

2610.361
 

7311.243
 

Present FEM
 

416.57
 

2609.7
 

7335.9
 

Case
 

Crack Location
 

Method
 

Natural Frequency
 

X1/L
 

X2/L
 

X3/L
 

ω4
 ω5

 
ω6

 

1
 

0.2
 

0.4
 

0.6
 

M. Attar
 

14357.28
 

23592.02
 

35604.06
 

Present FEM
 

14366.24
 

23634.15
 

35634.05
 

2
 

0.2
 

0.4
 

0.8
 

M. Attar
 

14301.02
 

23602.31
 

35574
 

Present FEM
 

14373.25
 

23688.01
 

35549.85
 

3
 

0.2
 

0.6
 

0.8
 

M. Attar
 

14301.53
 

23603.48
 

35574.12
 

Present FEM
 

14374.84
 

23688.36
 

35548.87
 

4
 

0.4
 

0.6
 

0.8
 

M. Attar
 

14338.46
 

23577.32
 

35598.16
 

Present FEM
 

14408.62
 

23669.04
 

35568.63
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TABLE XIII.  PREDICTED CRACK LOCATION FOR SINGLE CRACK LOCATED 

AT DIFFERENT LOCATIONS IN LEFT AND RIGHT OVERHANG OF SIMPLY 

SUPPORTED BEAM WITH SYMMETRIC OVERHANGS. 

 

LEFT OVERHANG 

Sl.no. 1st Natural 

frequency 

(ω1) in 

rad/sec 

2nd Natural 

frequency 

(ω2) in 

rad/sec 

3rd Natural 

frequency 

(ω3) in 

rad/sec 

Actual 

Crack 

Location, 

in metres 

Predicted  

Crack 

Location, 

in metres 

1 130.785 215.276 445.77 1 1 

2 125.65 194.23 411.37 2.3 2.3 

3 130.43 213.27 441.39 1.5 1.5 

RIGHT OVERHANG 

1 131.04 216.84 450.23 2 2.1 
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Figure 11: Location of crack in a single cracked simply supported beam with 
symmetric overhangs having actual crack location = 0.5m of centre span. 
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Figure 12: Location of crack in a single cracked simply supported beam with 

symmetric overhangs having actual crack location = 2.3m of left overhang. 

 

 

Discussion: 

A new algorithm has been proposed to identify cracks in a 

simply supported beam with symmetric overhangs. A 16 16 

matrix is formed from the harmonic equation of the beam after 

applying the boundary conditions. The determinant of the 

above matrix is equated to zero and therefore graph is plotted 

between the two unknowns, stiffness (K) and crack location 

for the first three natural frequencies (rad/sec). The 

intersection of the curves for corresponding first three natural 

frequencies gives the crack location and corresponding 

stiffness. 

VI. CONCLUSIONS 

 

Based on the results obtained for simply supported beam 

having single and multiple cracks following conclusions can 

be drawn 

 Frequencies decreases with increase in crack depth. 

 Frequencies are same for symmetric location of cracks. 

 For single crack 1st frequency decreases the most at 

midspan whereas for 2nd and 3rd frequencies it decreases 

the most near the supports. 

 For a simply supported beam with overhangs 1st 

frequency, as the crack depth increases, the frequency 

decreases. It decreases the most at mid span. In case of 2nd 

frequency, as the crack depth increases the frequency 

decreases. It decreases the most near the first support and 

second support i.e at 20% and 80% of the total length. In 

case of third frequency, also the frequency decreases with 

increase in crack depth and decreases the most at 20% and 

80% of the total length. 

 For the case of simply supported beam with symmetric 

overhangs having triple cracks, as the crack depth 

increases, frequency decreases. Frequencies are same for 

the crack location combination of 0.2L-0.4L-0.6L and 

0.4L-0.6L-0.8L. It is also same for the crack location 

combination of 0.2L-0.4L-0.8L and 0.2L-0.6L-0.8L. A 

significant difference among the first six frequencies is 

that the 1st ,4th and 6th frequencies increases as the crack 

location shifts towards the midspan whereas it is vice 

versa for the 2nd ,3rd and 5th one. 

 An algorithm has been developed to identify cracks in 

simply supported beam with symmetric overhangs. The 

algorithm can also identify cracks located in simply 

supported beam with different overhanging lengths. 
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