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Abstract—This abstract provides an overview of image 

compression techniques using deep learning methods. It discusses 

the use of autoencoders, variational autoencoders, convolutional 

neural networks (CNNs), recurrent neural networks (RNNs), and 

generative adversarial networks (GANs) for image compression. 

The concept of vector quantization and its application in image 

compression is introduced. Image interpolation and the 

development of Super-Resolution techniques to enhance image 

resolution are discussed. This paper contributes to a greater 

understanding of these topics, providing insights into 

advancements and potential directions for future research in 

image compression, deep learning architectures, and image 

enhancement techniques. 

Keywords—deep learning, image compression, vector quantization, 

encoder-decoder architecture, super resolution. 

I. INTRODUCTION

Image compression and retrieval are crucial tasks in various 

domains, ranging from multimedia communication and storage 

to content-based image analysis. The rapid growth in digital 

imagery and the amount of media consumed by the world on a 

daily basis. Thus there is a need for minimizing storage 

requirements, reducing transmission bandwidth, and ensuring 

faster image rendering. 

Image compression is a critical technique employed to reduce 

the size of image files while ensuring acceptable visual 

quality. Its primary objective is to facilitate efficient 

transmission and storage of images, as mentioned in [13]. The 

field of image compression encompasses two main techniques: 

lossless compression and lossy compression. Lossless 

compression methods employ algorithms that identify and 

exploit patterns and redundancies within the image data, 

resulting in a compressed file that can be fully reconstructed 

without any loss of information. On the other hand, lossy 

compression methods achieve higher compression ratios by 

selectively discarding less significant data, such as 

imperceptible details or redundant colour information. This 

trade-off between file size reduction and preservation of visual 

quality allows for effective image compression in various 

applications, including digital imaging, multimedia systems, 

and web-based image transmission. 

In applications where image quality preservation is crucial, 

lossless compression is essential, whereas lossy compression 

is commonly used for web image transmission. Compressive 

sensing, an emerging field, emphasizes efficient signal 

acquisition and storage through reconstruction from limited 

data samples [14-16]. Within the broader context of 

compressive sensing, we will specifically explore vector 

quantization (VQ) as a subtopic in our survey paper. VQ offers 

a means of reducing data dimensionality by grouping similar 

data points, thus facilitating efficient representation and 

compression of images. 

Deep learning has revolutionized numerous disciplines by 

enabling the efficient representation and generation of 

complex data. One such area is image processing, where a 

large number of Deep learning techniques have been employed 

to perform tasks such as image compression. Deep learning 

techniques have brought about a revolutionary transformation 

in image compression by utilizing their capacity to learn 

hierarchical representations directly from unprocessed image 

data. These models excel at capturing and utilizing the spatial 

correlations and intricate patterns found in images. 

Compressed image methods based on deep learning have 

exhibited exceptional performance in terms of compression 

effectiveness and visual fidelity. 

Encoder-decoder architectures have emerged as a significant 

paradigm in this field, addressing the difficulties posed by 

sequential and variable-sized inputs. The encoder compresses 
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 the input into a lower-dimensional latent representation, while 

the decoder reconstructs the output data from the latent space. 

These architectures' applications consist of image processing, 

natural language processing, and speech recognition.As stated 

previously, these architectures have the potential to 

revolutionize a variety of disciplines. 

Image interpolation is a technique used in digital image 

processing to resize or distort an image from one-pixel grid to 

another. It is required when changing the total number of 

pixels, whereas remapping can occur when correcting for lens 

distortion or rotating an image. However, modern computer 

graphics models lack the ability to render elements 

independently of the pixel grid. Thus, Super-Resolution was 

developed so as to improve the resolution of optical systems. 

Although it has been a problem for many years, finding a 

solution is still a challenging task. This is due to the high 

subjectivity of a High-Resolution (HR) image generated from 

a low Resolution (LR) image. The high subjectivity could be 

due to multiple variations in lighting, camera angles, 

brightness, noise, contrast and other variables. 

II. IMAGE COMPRESSION USING DEEP LEARNING

TECHNIQUES 

Deep Leaning(DL) techniques have revolutionized image 

compression and reconstruction by utilizing their ability to 

learn complex representations directly from raw image data. 

DL-based compression models have capabilities in capturing

intricate image features and preserving visual quality during

compression.

A. Autoencoders

Autoencoders (AE) are neural networks used for unsupervised

learning tasks, including image compression. By learning to

reconstruct an input image from a compressed representation,

AE-based compression techniques can effectively reduce

image size while preserving important visual features. AE are

widely used for image compressions because they allow

reduction in the dimensionality of the input image. An AE

consists of three parts: an input layer, a bottleneck layer where

the latent space is represented, and an output layer. AE-based

image compression models were developed as early as

2016[1].

B. Variational Autoencoders

Variational Autoencoders (VAE) add a probabilistic element

to the compression process. This allows to generate high-

quality images from compressed encodings. VAE produce

better results than simple AE but also use up more

computation power, for still image compression.

In [3], the authors introduced a VAE architecture using

nonlinear transform and uniform quantizer for image

compression. In [4], the authors introduced a VAE-based

architecture meant for image compression on high-resolution

images. To enhance the training process, the authors

incorporated a non-local attention module (NLAM). However,

this resulted in a significant increase in the overall complexity

of the model.

C. Convolutional Neural Networks

Convolutional Neural Networks (CNN) have shown great

potential in image compression due to its feature extraction

characteristics. CNN can learn compact representations of

images and reduce file size while maintaining perceptual

quality.

In [5]– [7], the authors used CNNs to compress images. These

compression models scored better than JPEG and JPEG-2000

in structural similarity index measure (SSIM) and peak signal-

to-noise ratio (PSNR).

D. Recurrent Neural Networks

Recurrent Neural Networks (RNN) have been applied to image

compression by leveraging sequential modeling. An RNN-

based image compression architecture combines convolutional

layers for initial feature extraction, GDN and IGDN layers for

feature normalization and reconstruction, RNN modules for

capturing temporal dependencies, and binarized convolutional

layers for efficient compression. RNN-based compression

models capture temporal dependencies in images and can

achieve efficient compression by encoding and reconstructing

images in a sequential manner. In [8], the authors introduced

an RNN-based compression architecture that utilized a stop

code tolerant (SCT) approach for training the model. Their

model was evaluated on the Kodak and ImageNet datasets. In

another study [9], an RNN-based compression method was

proposed specifically for still images. The training dataset in

this study consisted of Kodak images. The performance of this

model surpassed that of JPEG, JPEG-2000, and WebP. The

authors in [10], illustrated the use of RNN with entropy

encoding to compress images.

E. Generative Adversarial Networks

Generative Adversarial Networks (GAN) are used in image

compression by incorporating a generator and a discriminator

network. GAN-based compression techniques generate

compressed representations that can be decoded to high-

quality images while achieving high compression ratios. The

authors in [11], illustrated the use of GAN for the compression

and classification of semantic data. In [12], the authors

demonstrated the use of unified binary GAN (BGAN+) for

image compression and image retrieval. The model achieved

better than JPEG and JPEG-2000. The visual quality of the

reconstructed image was significantly improved compared to

JPEG and JPEG-2000 at low bit-rates.

F. Performance Evaluation

Image compression plays a crucial role in reducing the size of

digital images while maintaining acceptable visual quality. To

evaluate the effectiveness of various compression techniques,

performance metrics like Minimum bpp, PSNR, and MS-

SSIM are used.

Minimum bpp (bits per pixel): Minimum bpp refers to the

minimum number of bits required to represent a single pixel in

a compressed image. It measures the average compression

ratio achieved by a particular algorithm. Lower minimum bpp

values indicate more efficient compression, as fewer bits are

needed to encode each pixel.
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PSNR (Peak Signal-to-Noise Ratio): PSNR is a widely used 

metric to evaluate the quality of compressed images. It 

measures the ratio between the maximum possible power of a 

signal (in this case, an image) and the power of the noise 

introduced by compression. PSNR is expressed in decibels 

(dB) and higher PSNR values indicate better quality. 

MS-SSIM (Multi-Scale Structural Similarity Index): MS-SSIM 

is an advanced metric that considers both structural and 

perceptual similarity between the original and compressed 

images. Unlike PSNR, MS-SSIM takes into account human 

visual perception. MS-SSIM outputs a value between 0 and 1, 

where higher values indicate better similarity. 

Table 1: Summary of performance evaluation 

Research Model Minimum 

bpp 

PSNR 

(dB) 

MS-SSIM 

[3] VAE 0.15 30.76 0.955 

[4] VAE 0.2 30 0.7768 

[5] CNN 0.0726  23.93 0.8118 

[6] CNN 0.519  33.62 0.981 

[7] CNN 0.2 31 0.7878 

[9] RNN 0.5 33.59 0.9877 

[11] GAN 0.0983  28.54 0.973 

III. VECTOR QUANTIZATION

Vector quantization (VQ) is an extensively employed data 

compression method that efficiently stores and transmits data 

by processing k-dimensional vectors (k-pixel blocks) rather 

than individual scalars [17-19]. In image compression, VQ 

maps input vectors to an output space, representing the 

original image faithfully while reducing the number of distinct 

vectors used for compression. VQ accomplishes significant 

compression ratios while maintaining acceptable image quality 

by effectively capturing image correlations and redundancies. 

Its ability to manage k-dimensional vectors and exploit image 

correlations has made VQ the preferred method for efficient 

image compression, thereby enabling applications that require 

optimal data storage and transmission efficiency. 

A. Lossy compression schemes for image coding

Lossy compression techniques exploit the human eye's

tolerance for image distortion, achieving lower bit rates by

sacrificing data [17, 18]. Quantization during encoding

eliminates redundant information, resulting in smaller bit sizes

[17, 18]. The trade-off between image quality and bitrate is

dependent on the application and extent of degradation desired

[19]. Techniques such as vector quantization and hybrid

coding optimize compression efficacy [20] and provide a

balance between compression rates and image quality. These

methods play a vital role in numerous applications that require

efficient data transmission and storage.

Fig.1:  Flowchart for Lossy compression image coding 

B. Vector quantisation in image compression

Vector quantization (VQ) is a coding method derived from

Shannon's rate distortion theory, which implies that coding

vectors of information yields superior performance to coding

scalars [21]. Numerous applications, such as image coding,

have involved extensive research. In VQ, an image is divided

into tiles, and each tile is regarded as a k-dimensional vector U.

The encoder selects the codeword y that minimises the

distortion measure d(u, y) for each tile from the codebook. The

index j corresponding to the chosen codeword is transmitted

over the channel. If the channel is error-free, the decoder

retrieves codeword y from the received index and outputs it as

the reconstructed image tile if the channel is error-free.

Mathematically, VQ encoding is a mapping from a k-

dimensional vector space to a finite set of symbols, J

VQ: u = (u1, u2, …, uk) → j          (1) 

    where k = nm, j E J, and J has size J = Y. The rate, R, 

of the quantization is 

R = log2Y            (2) 

where R is bits per input vector. The compression rate is R/k 

bits per pixel. Typically, Y is chosen to be a power of 2, so R 

is an integer. Consequently, VQ encoding generates codes of 

R bits in length with every R-bit code corresponding to some y 

E Y. 

C. Practical limitations of basic vector quantisation

Vector quantization (VQ) for image coding is hindered by

computational complexity and memory requirements, which

restricts its application to small dimensions and low bitrates.

Efforts to reduce complexity through techniques such as

cluster merging and dimension reduction result in marginally

inferior codebooks, whereas the generation of optimal

codebooks requires a significant amount of computation time.

In VQ-based image coding, additional research is required to

strike a balance between codebook quality and computational

efficacy. [22]

D. Experimental Results and Comparison

In our research, we compared VQ-based compression to

conventional methods such as JPEG and PNG, concentrating

on compression efficiency, image quality, bandwidth reduction,

and preservation of fidelity. VQ attained high compression

ratios by exploiting image correlations efficiently, particularly

with small block sizes. Subjective and objective evaluations

confirmed that VQ maintained acceptable image quality at

lower bitrates, frequently outperforming conventional methods.

Analysis of bandwidth reduction demonstrated VQ's efficiency

International Journal of Engineering Research & Technology (IJERT)

ISSN: 2278-0181http://www.ijert.org

IJERTV12IS123101
(This work is licensed under a Creative Commons Attribution 4.0 International License.)

Published by :

Vol.12 Issue 12, DECEMBER 2023

www.ijert.org
www.ijert.org


in optimizing network utilization, making it advantageous for 

constrained networks. Moreover, VQ effectively reconstructed 

images with minimal distortion, preserving essential image 

components and visual characteristics. Our findings 

demonstrate that VQ is a promising alternative to conventional 

compression methods. 

Fig.2: (A) "Lena" without compression. (B) VQ-compressed 

"Lena" image, codebook size of 1,024, compression time of 6 

minutes, 2.6 bits/pixel. (C) VQ-compressed "Lena" image, 

codebook size of 2,048, compression time of 10 minutes and 

2.9 bits per pixel. 

From the above figures, it is evident that the quality of the 

images increases with codebook size. Increasing the codebook 

size increases, the computations per image. Hence, a flexible 

choice of the trade-off between compression ratio and fidelity 

must be made in accordance with the application requirements 

and resource constraints. 

IV. ENCODER – DECODER ARCHITECTURE

The encoder-decoder architecture is a powerful model that has 

found success in various domains, including both natural 

language processing (NLP) and image processing. While 

attention-based (transformer) encoder-decoder models have 

become the de-facto standard in NLP, similar advancements 

have also been made in the field of image processing. The 

encoder-decoder architecture has exhibited notable 

progression throughout its history, accommodating the 

expanding complexities of deep learning objectives. During 

the initial phases, the framework predominantly consisted of 

fully connected dense layers, convolutional layers, recurrent 

networks, and their respective variations, as mentioned in [30]. 

The initial encoder-decoder models exhibited proficiency in 

specific tasks, however, they encountered difficulties in 

processing complex data structures, such as sequential or 

variable-sized inputs. [23] 

 (a)  (b) 

Fig.3: (a) Encoder-decoder architecture (b) Attention based 

encoder-decoder architecture 

However, RNN-based encoder-decoder models introduced the 

concept of sequence-to-sequence learning, allowing the 

processing of sequential data, such as language translation. 

CNN-based encoder-decoder architectures became 

instrumental in image processing tasks, leveraging their ability 

to capture spatial features and perform tasks like image 

segmentation and generation. [24][25][31] 

A general encoder-decoder architecture consists of two key 

components: an encoder network and a decoder network. The 

encoder network takes in input data, such as an image or a 

sequence of text, and processes it to generate a compressed 

representation called the latent space or hidden state. This 

latent space representation captures the essential information 

and patterns present in the input data in a more compact and 

abstract form. The latent space serves as a compressed and 

informative representation that retains the most important 

features of the input while discarding unnecessary details. The 

decoder network takes this latent space representation as input 

and aims to reconstruct the original data or generate a desired 

output. By utilizing the latent space representation, the decoder 

network can effectively reconstruct the data, preserving its 

essential content and characteristics.  

The significance of the latent space lies in its ability to capture 

the underlying structure and essence of the input data, enabling 

efficient storage, transmission, and manipulation. It allows for 

various tasks such as image compression, text generation, or 

other generative tasks, offering a powerful framework for 

information representation and generation in the field of deep 

learning. [26] 

Furthermore, the development of attention mechanisms, such 

as the transformer model, brought further advancements to 

encoder-decoder architectures. The attention mechanism 

allows the decoder to selectively focus on different parts of the 

input data during the reconstruction or generation process. By 

assigning varying degrees of importance to different elements 

of the input, such as specific regions or features in an image, 

the attention mechanism enables the decoder to generate more 

accurate and contextually relevant outputs. [27] Transformer 

based encoder-decoder models have become the standard in 

natural language processing (NLP), achieving state-of-the-art 

results in tasks like machine translation and text generation. 

 In image processing, attention based encoder-decoder models 

have led to improved reconstruction quality, better 

preservation of fine details, and the ability to handle complex 

visual scenes more effectively. The attention mechanism has 

revolutionized the encoder-decoder architecture, enabling it to 

capture and utilize the most relevant information from the 

input data, resulting in enhanced performance and more 

precise image processing capabilities. [32] 

In recent years, encoder-decoder architectures, in combination 

with super-resolution models, have emerged as a powerful 

solution to overcome the limitations of traditional image 

compression and reconstruction techniques. By incorporating 

an encoder network to compress the image into a compact 

latent representation and a decoder network for reconstruction,  
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encoder-decoder architectures offer the potential for improved 

image quality and reduced storage requirements. [28] 

One notable advantage of encoder-decoder architectures is 

their ability to leverage the power of deep learning to capture 

intricate image features during compression. By learning the 

underlying patterns and structures of the image data, the 

encoder network can create a compressed representation that 

retains essential information while discarding redundant 

details. This enables more efficient storage and transmission of 

images without significant loss of quality. [28][29] 

By leveraging encoder-decoder architectures along with super-

resolution models, researchers and practitioners have been able 

to overcome the limitations of traditional image compression 

techniques. These advanced approaches provide a promising 

avenue for achieving high-quality image reconstructions with 

reduced storage requirements, offering significant advantages 

in applications where bandwidth optimization, storage 

efficiency, and preservation of image quality are crucial 

considerations. 

V. SUPER RESOLUTION

The concept of image Super-Resolution focuses on recovering 

a high-resolution (HR) image from a low-resolution (LR) 

image input. The LR image is obtained by applying a 

degradation function to the HR image, including scaling 

factor, blur type, and noise. The SR process aims to predict the 

inverse of the degradation function and estimate the HR image 

corresponding to the input LR image. 

Fig.4: Examples of Super-Resolution 

There are several different metrics that can be used to 

determine the quality of an image. One such metric is the Peak 

Signal to Noise Ratio (PSNR). PSNR is determined by the 

individual pixel intensity values of the generated HR image 

and the reference LR image and thus might not be able to 

identify when the overall image is not visually similar to the 

reference image. However, it is still used to compare new 

techniques to existing images [33-34]. To determine the 

structural quality of an image, the Structural Similarity Index 

Metric (SSIM) [35] was developed to measure the structural 

similarity between images by comparing the contrast and 

structural details within the reference image.  

Apart from the above-mentioned quantitative methods, 

qualitative methods which take into account the subjectivity of 

Super-Resolution such as Opinion Scoring were also 

developed. Opinion Scoring asks quality texters to grade the 

quality of images based on certain criteria. However, due to 

the use of humans, this could lead to several flaws, such as  

inconsistencies and human errors. Due to this, perceptual 

quality was developed. Perceptual quality is a measure of the 

perceptual impact of unwanted signals and how they detract 

from the enjoyment or interpretation of an image or video. The 

most common perceptual quality metrics are based on 

modeling the human visual system (HVS) using aspects such 

as contrast and orientation sensitivity and frequency among 

others. 

A variety of deep learning methods were developed over the 

years to solve the SR problem; wherein the models discussed 

are trained using both low and high-resolution images (LR-HR 

pairs). The models can be classified based on the upsampling 

method [36], network, learning algorithm and model 

frameworks.  

Many models using supervised Super-Resolution are 

commonly used for performing Super-Resolution tasks. 

Models such as SRResnet and SRGAN [37] are commonly 

used.  However, new innovations in the field of deep learning 

has led to the development of attention based [38], feedback 

based [39] and wavelet based approaches to Super-Resolution 

[40]. 

The main issue with supervised methods is that the LR images 

are generated using degradation methods. One approach is 

using weakly supervised methods where in the unpaired LR 

and HR images are used. Although these methods are used it 

does not have associations between the LR and HR images. 

Another method is Zero Shot Super-Resolution (ZSSR) [37], 

which augments a single image and uses the augmentations for 

training. Another method commonly used is the use of deep 

image priors. [41] 

Some major domains in which Super-Resolution is used are 

face image Super-Resolution, real word image Super-

Resolution, remote sensing and satellite imaging, and video 

Super-Resolution. Alongside the above-mentioned domains 

fields such as medical imaging, scientific exploration, and law 

enforcement stand to benefit from the field of super imaging. 

Some potential complications arise from a lack of computing 

power due to the models’ complexity, lack of data, and 

subjectivity of Super-Resolution as there are a large number of 

factors that whilst not directly contrasting in nature are 

difficult to incorporate in Super-Resolution models such as 

contrast, brightness and structural integrity of the images. 

V. CONCLUSION

DL techniques have brought significant advancements to 

image compression and reconstruction tasks by leveraging 

their ability to learn intricate image representations. These 

techniques outperform traditional methods by providing 

superior compression efficiency, reduced artifacts, and 

improved visual quality in reconstructed images. VQ is an 

effective coding technique with the potential for significant 

bit-rate reduction and entropy enhancement. It permits fixed-

length code representations and can be designed to be 

relatively error-tolerant. However, it necessitates cautious 

codebook design and can present computational difficulties 

and image artifacts. The encoder-decoder architecture has 

proven to be a powerful framework in deep learning, finding 

applications in diverse fields such as natural language  
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processing and image processing. With its ability to compress, 

reconstruct and translate data, this architecture offers improved 

efficiency and quality. The integration of attention 

mechanisms and transformer models has further enhanced its 

capabilities. Continued research and advancements in encoder-

decoder architectures promise to address complex data 

processing challenges and drive innovation across domains. 

Super-Resolution poses a unique problem by offering a broad 

variety of possible solutions due to its subjectivity, with a 

broad number of classifications of the solutions based on a 

variety of factors. Due to the uniqueness of the problem, it has 

a large variety of applications in a large number of fields. 

Advancements in the future of computing power, big data, and 

new advancements in the field of deep learning will help 

address the problems posed by Super-Resolution. 

REFERENCES 

[1] J. Balle, V. Laparra and E. P. Simoncelli, “End-to-end optimized image ´ 
compression,” arXiv preprint, 2016. arXiv:1611.01704.

[2] Learning-Driven Lossy Image Compression; A Comprehensive Survey 

arXiv:2201.09240 Sonain Jamil, Md. Jalil Piran, Muhib Ur Rahman
[3] L. Zhou, C. Cai, Y. Gao, S. Su and J. Wu, ”Variational Autoencoder for 

Low Bit-rate Image Compression,” in Proc. of The IEEE Conf. on 

Computer Vision and Pattern Recognition (CVPR) Workshops, June 
2018. 

[4] T. Chen, H. Liu, Z. Ma, Q. Shen, X. Cao and Y. Wang, “End-to-End 

Learnt Image Compression via Non-Local Attention Optimization and 
Improved Context Modeling,” IEEE Transactions on Image Processing, 

vol. 30, pp. 3179–3191, Feb. 2021. 

[5] S. K. Raman, A. Ramesh, V. Naganoor, S. Dash, G. Kumaravelu and H. 

Lee, “CompressNet: Generative Compression at Extremely Low 

Bitrates,” in Proc. of The IEEE Winter Conf. on Applications of 

Computer Vision, pp. 2325–2333, 2020. 
[6] Z. Cheng, H. Sun, M. Takeuchi and J. Katto, “Learned image 

compression with discretized gaussian mixture likelihoods and attention 

modules,” in Proc. of the IEEE/CVF Conf. on Computer Vision and 
Pattern Recognition, pp. 7939–7948, 2020. 

[7] J. Lee, S. Cho and M. Kim, “An end-to-end joint learning scheme of 

image compression and quality enhancement with improved entropy 
minimization,” arXiv preprint arXiv:1912.12817, 2020.

[8] K. Islam, L. M. Dang, S. Lee and H. Moon, “Image Compression With 

Recurrent Neural Network and Generalized Divisive Normalization,” in 
... 14 Proc. of the IEEE/CVF Conference on Computer Vision and 

Pattern Recognition pp. 1875-1879, 2021. 

[9] G. Toderici, S. M. O’Malley, S. J. Hwang, D. Vincent, D. Minnen, S. 
Baluja, M. Covell and R. Sukthankar, “Variable Rate Image 

Compression with Recurrent Neural Networks,” CoRR, vol. 
abs/1511.06085, 2016

[10] G. Toderici, D. Vincent, N. Johnston, S. Jin Hwang, D. Minnen, J. Shor 

and M. Covell, “Full Resolution Image Compression with Recurrent 
Neural Networks,” in Proc. of the IEEE Conf. on Computer Vision and 

Pattern Recognition, pp. 5306–5314, 2017 

[11] R. Torfason, F. Mentzer, E. Augustsson, M. Tschannen, R. Timofte and 
L. V. Gool, “Towards Image Understanding from Deep Compression 

Without Decoding,” in Proc. of Int. Conf. on Learning Representations, 

2018. 
[12] J. Song, T. He, L. Gao, X. Xu, A. Hanjalic and T. H. Shen, “Unified 

Binary Generative Adversarial Network for Image Retrieval and 

Compression,” International Journal of Computer Vision, vol. 12.
[13] Image compression using vector quantization.

Pamela Cosman,Karen L. Oehler,E.A. Riskin,Robert M Gray 

[14] Compressed sensing. David L. Donoho 

[15] Robust uncertainty principles: Exact signal reconstruction from highly 
incomplete frequency information.Emmanuel J. Candès,Justin 

Romberg,Terence Tao

[16] Near-optimal signal recovery from random projections: Universal 
encoding strategies. Emmanuel J. Candes,Terence Tao

[17] A mathematical theory of communication.

C. E. SHANNON 
[18] Vector quantization and signal compression.

Gersho A,Gray R.M 

[19] Introduction to data compression. 
Sayood, K 

[20] The JPEG still picture compression standard.

Gregory K. Wallace 
[21] Vector quantization. 

Robert M. Gray

[22] Image Coding Using Differential Vector Quantization. 
James E. Fowler, Jr.,Matthew R. Carbonara,Stanley C. Ahalt

[23] Understanding How Encoder-Decoder Architectures Attend

Kyle Aitken, Vinay V Ramasesh, Yuan Cao Google Research, Niru 
Maheswaranathan 

[24] A survey on deep learning approaches for medical images and a 

systematic look up into real-time object detection
AmritaKaur, YadwinderSingh, NirvairNeeru, LakhwinderKaur, 

AshimaSingh 

[25] Neural Machine Translation by jointly learning to align and translate
Dzmitry Bahdanau, KyungHyun Cho, Yoshua Bengio

[26] Efficient structuring of the latent space for controllable data 
reconstruction and compression

Elena Trunz, Michael Weinmann, Sebastian Merzbach, Reinhard Klein

[27] Attention is all you need
Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion 

Jones, Aidan N. Gomez, Lukasz Kaiser, and Illia Polosukhin

[28] Image and Video Compression with Neural Networks: A Review
Siwei Ma, Xinfeng Zhang, Chuanmin Jia, Zhenghui Zhao,Shiqi Wang, 

Shanshe Wang 

[29] An End-to-End Deep Learning Image Compression Framework Based 

on Semantic Analysis 

Cheng Wang, Yifei Han, Weidong Wang

[30] Sequence to Sequence Learning with Neural Networks
Ilya Sutskever, Oriol Vinyals, Quoc V. Le

[31] SegNet: A Deep Convolutional Encoder-Decoder Architecture for Image 

Segmentation 
Vijay Badrinarayanan, Alex Kendall, Roberto Cipolla 

[32] Attention mechanisms in computer vision: A survey

Meng-Hao Guo, Tian-Xing Xu, Jiang-Jiang Liu, Zheng-Ning Liu, Peng-
Tao Jiang, Tai-Jiang Mu, Song-Hai Zhang, Ralph R. Martin, Ming-Ming 

Cheng, Shi-Min Hu 

[33] Image quality metrics: PSNR vs. SSIM
A. Horé, D. Ziou

[34] Stego image quality and the reliability of PSNR

A Almohammad, G Ghinea
[35] Analyzing the role of visual structure in the recognition of natural image

content with multi-scale SSIM D.M. Rouse, S.S. Hemami

[36] An investigation of Pre-Upsampling generative modelling and 

Generative adversarial networks in audio Super-Resolution James King, 

Ramon Vinas Torne, Alexander Campbell, Pietro Lio

[37] Photo-realistic single image Super-Resolution using a generative 
adversarial network C. Ledig, L. Theis, F. Huszár, J. Caballero, A. 

Cunningham, A. Acosta, A. Aitken, A. Tejani, J. Totz, Z. Wang, W. Shi 

[38] Second-order Attention Network for Single Image Super-Resolution 
Tao Dai, Jianrui Cai3 , Yongbing Zhang, Shu-Tao Xia, Lei Zhang

[39] Feedback Network for Image Super-Resolution

Zhen Li, Jinglei Yang. Zheng Liu. Xiaomin Yang, Gwanggil Jeon,  Wei 
Wu 

[40] Wavelet-based residual attention network for image Super-Resolution 

Shengke Xue, Wenyuan Qiu, Fan Liu, Xinyu Jin
[41] Deep Image Prior Dmitry Ulyanov, Andrea Vedaldi, Victor Lempitsky

International Journal of Engineering Research & Technology (IJERT)

ISSN: 2278-0181http://www.ijert.org

IJERTV12IS123101
(This work is licensed under a Creative Commons Attribution 4.0 International License.)

Published by :

Vol.12 Issue 12, DECEMBER 2023

https://arxiv.org/abs/1611.01704
https://arxiv.org/abs/1611.01704
https://arxiv.org/abs/2201.09240
https://arxiv.org/abs/2201.09240
https://openaccess.thecvf.com/content_cvpr_2018_workshops/w50/html/Zhou_Variational_Autoencoder_for_CVPR_2018_paper.html
https://openaccess.thecvf.com/content_cvpr_2018_workshops/w50/html/Zhou_Variational_Autoencoder_for_CVPR_2018_paper.html
https://openaccess.thecvf.com/content_cvpr_2018_workshops/w50/html/Zhou_Variational_Autoencoder_for_CVPR_2018_paper.html
https://openaccess.thecvf.com/content_cvpr_2018_workshops/w50/html/Zhou_Variational_Autoencoder_for_CVPR_2018_paper.html
https://www.researchgate.net/publication/349465014_End-to-End_Learnt_Image_Compression_via_Non-Local_Attention_Optimization_and_Improved_Context_Modeling
https://www.researchgate.net/publication/349465014_End-to-End_Learnt_Image_Compression_via_Non-Local_Attention_Optimization_and_Improved_Context_Modeling
https://www.researchgate.net/publication/349465014_End-to-End_Learnt_Image_Compression_via_Non-Local_Attention_Optimization_and_Improved_Context_Modeling
https://www.researchgate.net/publication/349465014_End-to-End_Learnt_Image_Compression_via_Non-Local_Attention_Optimization_and_Improved_Context_Modeling
https://openaccess.thecvf.com/content_WACV_2020/papers/Raman_CompressNet_Generative_Compression_at_Extremely_Low_Bitrates_WACV_2020_paper.pdf
https://openaccess.thecvf.com/content_WACV_2020/papers/Raman_CompressNet_Generative_Compression_at_Extremely_Low_Bitrates_WACV_2020_paper.pdf
https://openaccess.thecvf.com/content_WACV_2020/papers/Raman_CompressNet_Generative_Compression_at_Extremely_Low_Bitrates_WACV_2020_paper.pdf
https://openaccess.thecvf.com/content_WACV_2020/papers/Raman_CompressNet_Generative_Compression_at_Extremely_Low_Bitrates_WACV_2020_paper.pdf
https://arxiv.org/abs/2001.01568
https://arxiv.org/abs/2001.01568
https://arxiv.org/abs/2001.01568
https://arxiv.org/abs/2001.01568
https://arxiv.org/abs/1912.12817
https://arxiv.org/abs/1912.12817
https://arxiv.org/abs/1912.12817
https://arxiv.org/abs/2109.01999
https://arxiv.org/abs/2109.01999
https://arxiv.org/abs/2109.01999
https://arxiv.org/abs/2109.01999
https://arxiv.org/abs/1511.06085
https://arxiv.org/abs/1511.06085
https://arxiv.org/abs/1511.06085
https://arxiv.org/abs/1511.06085
https://arxiv.org/abs/1608.05148
https://arxiv.org/abs/1608.05148
https://arxiv.org/abs/1608.05148
https://arxiv.org/abs/1608.05148
https://arxiv.org/abs/1803.06131
https://arxiv.org/abs/1803.06131
https://arxiv.org/abs/1803.06131
https://arxiv.org/abs/1803.06131
https://link.springer.com/article/10.1007/s11263-020-01305-2
https://link.springer.com/article/10.1007/s11263-020-01305-2
https://link.springer.com/article/10.1007/s11263-020-01305-2
https://www.researchgate.net/publication/260685772_Using_Vector_Quantization_for_Image_Processing
https://www.researchgate.net/profile/Pamela-Cosman
https://www.researchgate.net/scientific-contributions/Karen-L-Oehler-5960876
https://www.researchgate.net/profile/Ea-Riskin
https://www.researchgate.net/profile/Robert-Gray-5
https://people.ece.ubc.ca/janm/Papers_RG/Donoho_IT_April06.pdf
https://authors.library.caltech.edu/4792/1/CANieeetit06.pdf
https://authors.library.caltech.edu/4792/1/CANieeetit06.pdf
https://authors.library.caltech.edu/6806/1/CANieeetit06b.pdf
https://authors.library.caltech.edu/6806/1/CANieeetit06b.pdf
https://people.math.harvard.edu/~ctm/home/text/others/shannon/entropy/entropy.pdf
https://books.google.co.in/books?hl=en&lr=&id=GgnrBwAAQBAJ&oi=fnd&pg=PR13&dq=Gersho,+A.+and+Gray,+R.M.,+1992.+Vector+quantization+and+signal+compression.+Springer+Science+%26+Business+Media.&ots=VlAVidk3-q&sig=oUQuQdb9rDlvMvZRE-oTE1xDD3E&redir_esc=y#v=onepage&q=Gersho%2C%20A.%20and%20Gray%2C%20R.M.%2C%201992.%20Vector%20quantization%20and%20signal%20compression.%20Springer%20Science%20%26%20Business%20Media.&f=false
https://books.google.co.in/books?hl=en&lr=&id=3DFHDgAAQBAJ&oi=fnd&pg=PP1&dq=Sayood,+K.,+2017.+Introduction+to+data+compression.+Elsevier&ots=gGPmewPe45&sig=etysJMdofcGDbge5AX5_jo3yM6Y&redir_esc=y#v=onepage&q=Sayood%2C%20K.%2C%202017.%20Introduction%20to%20data%20compression.%20Elsevier&f=false
https://web.stanford.edu/class/ee398a/handouts/papers/Wallace%20-%20JPEG%20-%201992.pdf
https://www.csd.uoc.gr/~hy474/bibliography/VectorQuantizationGray.pdf
https://my.ece.msstate.edu/faculty/fowler/Publications/Papers/FCA1993.pdf
https://arxiv.org/pdf/2110.15253.pdf
https://arxiv.org/pdf/2110.15253.pdf
https://arxiv.org/pdf/2110.15253.pdf
https://www.researchgate.net/publication/355070005_A_Survey_on_Deep_Learning_Approaches_to_Medical_Images_and_a_Systematic_Look_up_into_Real-Time_Object_Detection
https://www.researchgate.net/publication/355070005_A_Survey_on_Deep_Learning_Approaches_to_Medical_Images_and_a_Systematic_Look_up_into_Real-Time_Object_Detection
https://www.researchgate.net/publication/355070005_A_Survey_on_Deep_Learning_Approaches_to_Medical_Images_and_a_Systematic_Look_up_into_Real-Time_Object_Detection
https://www.researchgate.net/publication/355070005_A_Survey_on_Deep_Learning_Approaches_to_Medical_Images_and_a_Systematic_Look_up_into_Real-Time_Object_Detection
https://arxiv.org/pdf/1409.0473.pdf
https://arxiv.org/pdf/1409.0473.pdf
https://www.sciencedirect.com/science/article/pii/S2666629422000122
https://www.sciencedirect.com/science/article/pii/S2666629422000122
https://www.sciencedirect.com/science/article/pii/S2666629422000122
https://arxiv.org/pdf/1706.03762.pdf
https://arxiv.org/pdf/1706.03762.pdf
https://arxiv.org/pdf/1706.03762.pdf
https://arxiv.org/pdf/1904.03567.pdf
https://arxiv.org/pdf/1904.03567.pdf
https://arxiv.org/pdf/1904.03567.pdf
https://www.mdpi.com/2076-3417/9/17/3580
https://www.mdpi.com/2076-3417/9/17/3580
https://www.mdpi.com/2076-3417/9/17/3580
https://arxiv.org/pdf/1409.3215.pdf
https://arxiv.org/pdf/1409.3215.pdf
https://arxiv.org/pdf/1511.00561.pdf
https://arxiv.org/pdf/1511.00561.pdf
https://arxiv.org/pdf/1511.00561.pdf
https://link.springer.com/article/10.1007/s41095-022-0271-y
https://link.springer.com/article/10.1007/s41095-022-0271-y
https://link.springer.com/article/10.1007/s41095-022-0271-y
https://link.springer.com/article/10.1007/s41095-022-0271-y
https://ieeexplore.ieee.org/document/5596999
https://ieeexplore.ieee.org/document/5596999
https://doi.org/10.1109/IPTA.2010.5586786
https://doi.org/10.1109/IPTA.2010.5586786
https://www.researchgate.net/publication/253230209_Analyzing_the_role_of_visual_structure_in_the_recognition_of_natural_image_content_with_multi-scale_SSIM
https://www.researchgate.net/publication/253230209_Analyzing_the_role_of_visual_structure_in_the_recognition_of_natural_image_content_with_multi-scale_SSIM
https://www.researchgate.net/publication/253230209_Analyzing_the_role_of_visual_structure_in_the_recognition_of_natural_image_content_with_multi-scale_SSIM
https://arxiv.org/pdf/2109.14994.pdf
https://arxiv.org/pdf/2109.14994.pdf
https://arxiv.org/pdf/2109.14994.pdf
https://arxiv.org/pdf/2109.14994.pdf
https://arxiv.org/pdf/1609.04802.pdf
https://arxiv.org/pdf/1609.04802.pdf
https://arxiv.org/pdf/1609.04802.pdf
https://arxiv.org/pdf/1609.04802.pdf
https://www4.comp.polyu.edu.hk/~cslzhang/paper/CVPR19-SAN.pdf
https://www4.comp.polyu.edu.hk/~cslzhang/paper/CVPR19-SAN.pdf
https://arxiv.org/pdf/1903.09814.pdf
https://arxiv.org/pdf/1903.09814.pdf
https://arxiv.org/pdf/1903.09814.pdf
https://www.sciencedirect.com/science/article/abs/pii/S0925231219316467
https://www.sciencedirect.com/science/article/abs/pii/S0925231219316467
https://openaccess.thecvf.com/content_cvpr_2018/papers/Ulyanov_Deep_Image_Prior_CVPR_2018_paper.pdf
https://openaccess.thecvf.com/content_cvpr_2018/papers/Ulyanov_Deep_Image_Prior_CVPR_2018_paper.pdf
www.ijert.org
www.ijert.org

