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Abstract: - We have implemented the image denoising 

method which is hybridization of double density 

discrete wavelet transform and dual tree complex 

wavelet transform. This hybrid model possesses the 

properties of both the double density discrete wavelet 

transform and the dual tree complex wavelet 

transform. The design procedure for the complex 

double density dual tree wavelet transform is based on 

two distinct scaling functions and four distinct 

wavelets where the two wavelets are offset from one 

another by one half and where the two wavelets form 

an approximate Hilbert transform pair & on the flat-
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delay filter, spectral factorization and paraunitary 

filter bank completion. The solutions have vanishing 

moments and compact support. The resulting wavelets 

are much smoother than the dual tree wavelets and 

double density wavelets. The complex double density 

dual tree wavelet transform based image denoising 

method is analyzed and the experimental results 

demonstrate that the complex double density dual tree 

wavelet transform outperforms for applications like 

image denoising and enhancement. 

 
Keywords: Complex Wavelet Transform (CWT), 

Double Density Wavelet Transform (DDWT), Dual 

Tree Complex Wavelet Transform (DTCWT), Complex 

Double Density Dual Tree Wavelet Transform 

(CDDDTWT), Filter Bank, Shift Invariance. 

 

 

I. INTRODUCTION 

 

Wavelet techniques are successfully applied to various 

problems in signal and image processing. Data 

compression, motion estimation, texture synthesis, 

segmentation, classification and denoising are only 

some examples. Denoising of images is an important 

task in image processing and analysis and it plays a 

significant role in modern applications in different 

fields, including medical imaging and preprocessing 

for computer vision. The goal of denoising is to 

remove that noise. The Discrete Wavelet Transform 

(DWT) of image signals produces a non-redundant 

image representation, which provides better spatial 

and spectral localization of image formation. But, it 

has lack of shift invariance, lack of symmetry of the 

mother wavelet and poor directional selectivity. 

However, a major problem of the common decimated 

discrete wavelet transform is its lack of shift 

invariance. This means that on shifts of the input  

 

signal, the wavelet coefficients vary substantially.  

The DWT suffers from the following two problems: - 

 

• Lack of shift invariance: - this results from the 

down sampling operation at each level. When the 

input signal is shifted slightly, the amplitude of the 

wavelet coefficients varies so much. 

 

• Lack of directional selectivity: - as the DWT filters 

are real and separable the DWT cannot distinguish 

between the opposing diagonal directions. 

 

These disadvantages can be diminished using a 

complex wavelet transform. Complex wavelets have 

not been used widely in image processing due to the 

difficulty in designing complex filters which satisfy a 

perfect reconstruction property. To overcome this 

problem, Kingsbury proposed a dual-tree 

implementation of the CWT (DT-CWT), which uses 

two trees of real filters to generate the real and 

imaginary parts of the wavelet coefficients separately. 

The DT-CWT is an alternative to the basic DWT, the 

outputs of each tree are down sampled by summing 

the outputs of the two trees during reconstruction and 

the aliased components of the signal are suppressed 

and approximate shift invariance is achieved. The DT-

CWT has improved shift-invariance and directional 

selectivity than the separable DWT. Another type of 

complex wavelet transform is double density wavelet 

transform. The three-channel filter bank develops the 

double density DWT. The double density DWT is less 

shift-sensitive than an orthonormal wavelet basis and 

has fewer rectangular artifacts. 

 

Thus, we proposed the complex double density dual 

tree wavelet transform which is an over complete 

discrete wavelet transform designed to simultaneously 

possess the properties of the double density discrete 

wavelet transform and the dual tree complex wavelet 

transform. The double density DWT and the dual tree 

CWT are similar in several respects such as they are 

both overcomplete by a factor of two, they are both 

nearly shift-invariant and they are both based on FIR 

perfect reconstruction filter banks, but they are quite 

different from one another in other important respects. 

Both wavelet transforms can outperform the critically  

 

 

sampled DWT for several signal processing 

applications, but they do so for different reasons. It is 

therefore natural to investigate the possibility of a 

single wavelet transform that has the characteristics of 

both the double density DWT and the dual tree 

complex wavelet transform. 

 

II. DUAL TREE COMPLEX WAVELET 

TRANSFORM 

 

The Dual Tree Complex Wavelet Transform (DT-

CWT) has been developed to incorporate the good 
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properties of the Fourier transform in the wavelet 

transform. As the name implies, two wavelet trees are 

used, one generating the real part of the complex 

wavelet coefficients real tree and the other generating 

the imaginary part of the complex wavelet coefficients 

imaginary tree. 

 

The Dual-Tree Complex Wavelet Transform (DT-

CWT) provides the following properties:- 

 

1. Shift Invariance: - 

DT-DWT has approximate shift-invariance or in other 

words, improved time-shift sensitivity in comparison 

with standard DWT. The reconstructed details at 

various levels and approximation at the last level have 

almost uniform shifts for the time-shifted unit step 

functions. The property of shift invariance makes the 

DT-DWT well suited for applications such as Motion 

estimation and Image fusion at various resolution 

levels. 

 

2. Good Selectivity and Directionality: - 

DT-DWT gives better directional selectivity in 2-D 

with Gabour like filters (also true for higher 

dimensionality m-D). Standard DWT offers the 

feature selectivity in only 3 directions with poor 

selectivity for diagonal features, where as DT-DWT 

has 12 directional wavelets (6 for each of real and 

imaginary trees) oriented at angles of in 2-D. The 

improved directionality with more orientations 

suggests the advantage of DT-DWT in a vide rage of 

directional image processing applications e.g. texture 

analysis. 

 

3. Phase Information: - 

Local phase extraction is possible through analytic 

interpretation of two parallel trees of DT-DWT. The 

phase of any given sub-band at a given level can be 

computed with its corresponding real and imaginary 

coefficients.  

 

4. Perfect Reconstruction (PR): - 

The DT-DWT structure follows PR conditions; hence, 

the original signal can be reconstructed from the 

transform domain complex wavelet coefficients. 

 

5. Limited Redundancy: - 

DT-DWT has redundancy of 2:1 (2
m

:1) for 1-D (m-D) 

independent of scales (levels) of iteration. Though 

DT-DWT structure is expensive than standard DWT, 

it is significantly less expensive than WP, or non-

decimated DWT for the same advantage of reduced 

shift-sensitivity. Moreover, DT-DWT has other 

advantages such as improved directionality and phase 

information to compensate for its limited redundancy 

over standard DWT. 

 

The Dual-Tree CWT comprises of two parallel 

wavelet filter bank trees that contain carefully 

designed filters of different delays that minimize the  

aliasing effects due to down sampling. The Dual-Tree  

CWT of a signal x(n) is implemented using two 

critically-sampled DWTs in parallel on the same data. 

The transform is two times expansive because for an 

N-point signal it gives 2N DWT coefficients. If the 

filters in the upper and lower DWTs are the same, 

then no advantage is gained. So the filters are 

designed in a specific way such that the sub-band 

signals of the upper DWT can be interpreted as the 

real part of a complex wavelet transform and sub-band 

signals of the lower DWT can be interpreted as the 

imaginary part. When designed in this way the DT 

CDWT is nearly shift invariant, in contrast to the 

classic DWT. 

 

The filter bank structure of Dual Tree CWT that it 

resembles the filter bank structure of standard DWT 

with twice the complexity. It can be seen as two 

standard DWT trees operating in parallel. One tree is 

called as a real tree and other is called as an imaginary 

tree. Sometimes the real tree will be referred to as 

tree-a and the imaginary tree as tree-b. 

 

The design of the filters is particularly important for 

the transform to occur correctly and the necessary 

characteristics are: - 

 

 The low-pass filters in the two trees must 

differ by half a sample period. 

 Reconstruction filters are the reverse of 

analysis. 

 

 All filters are from the same orthonormal set. 

 Tree (a) filters are the reverse of tree (b) 

filters. 

 Both trees have the same frequency response. 

 

The orthogonal two-channel filter banks with analysis 

low-pass filter given by the z-transform H0(z), analysis 

high-pass filter H1(z) and with synthesis filters G0(z) 

and G1(z) is shown in Figure1. 
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Fig 1:   DWT Filter Bank 

For an input signal X(z), the analysis part of the filter 

bank followed by upsampling produces the low-pass  

and the high-pass coefficients respectively and 

decomposes the input signal into a low frequency part 

Xl
1
(z) and a high frequency part Xh

1
(z), the output 

signal is the sum of these two components. 

 

 
Fig 2:  One level complex dual tree. 

One possibility to obtain a shift invariant 

decomposition can be achieved by the addition of a 

filter bank with shifted analysis filters and synthesis 

filters and subsequently taking the average of the low-

pass and the high-pass branches of both filter banks as 

shown in Figure 2. 

 

DT-DWT is developed to overcome two main 

drawbacks of DWT: shift variance and poor 

directional selectivity. With carefully designed filter 

banks, DT-DWT mainly has following advantages: 

approximate shift invariance, directional selectivity, 

limited redundancy and similar computation 

efficiency as DWT. Either the real part or the 

imaginary part of DT-DWT yields perfect 

reconstruction and thus can be employed as a stand-

alone transform. We use magnitude of sub-bands to 

calculate feature vector. The implementation of DT-

DWT is very straight forward. An input image is 

decomposed by two sets of filter banks, (H
0
a, H

1
a) 

and (H
0
b, H

1
b) separately, filtering the image 

horizontally and then vertically just as conventional 

2D DWT does. Then eight sub bands are obtained: 

LLa, HLa, LHa, HHa , LLb , HLb , LHb and HHb . 

Each high-pass sub-band from one filter bank is 

combined with the corresponding sub-band from the 

other filter bank by simple linear operations: 

averaging or differencing. The size of each sub-band  

is the same as that of 2D DWT at the same level. But  

there are six high pass sub-bands instead of three high 

pass sub-bands at each level. The two low pass sub-

bands, LLb and LLa, are iteratively decomposed up to 

a desired level within each branch. The basic 

functions of 2D DT-DWT and 2D DWT are shown in 

Fig. 3a and Fig. 3b respectively. Each DT-DWT basis 

function is oriented at a certain direction, including 

±75º, ± 15º, and ±45º. However, the basis function of 

HH sub-band of 2D DWT mixes directions of ±45º 

together. 

 

 
(a)                               (b) 

  

 
                                    (c)                                 

Fig 3: (a) Six basis functions of 2D DT-DWT (real part) at 

level 3 and (b) three basis functions of 2D   separable DWT 

at the same level.(c) frequency tiling of 2-D DT-DWT and 

six wavelets of 2-D DT-DWT. 

 

The Dual Tree CWT uses two trees of real filters to 

generate the real and imaginary parts of the wavelet 

coefficients separately. The outputs of each tree are 

down sampled by summing the outputs of the two 

trees during reconstruction, the aliased components of 

the signal can be suppressed and approximate shift 

invariance can be achieved.  

 

Moreover, the Dual Tree Complex DWT can be used 

to implement 2D wavelet transforms where each 
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wavelet is oriented, which is especially useful for 

image processing. The Dual-Tree Complex DWT 

outperforms the critically-sampled DWT for 

applications like image denoising and enhancement. 

 

III. DOUBLE DENSITY WAVELET 

TRANSFORM: 

 

The Double Density discrete wavelet transform is 

based on a single scaling function and two distinct 

wavelets where the two wavelets are designed to be 

offset from one another by one half, the integer 

translates of one wavelet fall midway between the 

integer translates of the other wavelet. In this way, the 

Double Density DWT approximates the continuous 

wavelet transform (having more wavelets than 

necessary gives a closer spacing between adjacent 

wavelets within the same scale). The Double Density 

DWT is two-times expansive regardless of the number 

of scales implemented potentially much less than the 

Undecimated DWT. The Double Density DWT has 

twice as many coefficients as the critically sampled 

DWT. 

 
Fig 4: Idealized time-frequency localization diagrams. The 

double density DWT gives a denser sampling of the time-

frequency plane than the critically sample DWT. 

 

The number of points shown in the figure 4 indicates 

the redundancy incurred by each of the transforms. 

The Double Density DWT is redundant by a factor of 

two regardless of the number of scales used. Having a 

closer spacing between adjacent wavelets within the 

same scale makes the Double Density DWT less shift-

sensitive than the critically sampled DWT while 

keeping the redundancy much lower than that of the 

Undecimated DWT. 

 

The new version of DWT known as Double Density 

DWT has the following important additional 

proprieties:  

 It employs one scaling function and two 

distinct wavelets which are designed to be 

offset from one another by one half. 

 The double density DWT is over complete by 

a factor of two. 

 It is nearly shift-invariant where complex 

wavelets with real and imaginary parts 

approximating Hilbert pairs are proposed for 

denoising signal. 

 

To develop the Double Density DWT we begin by 

selecting an appropriate filter bank structure. The filter 

bank matches the strategy for sampling the time-

frequency plane in the second panel. This resembles 

the usual two-channel filter bank used in 

implementing the critically sampled DWT; however, 

the down-sampler and up-sampler in the high-pass 

channel have been deleted. This is called an 

oversampled filter bank because the total rate of the 

sub-band signals is exceeds the input rate by 3/2, we 

have called the corresponding transform the Double 

Density DWT. This is because, when the filter bank is 

iterated a single time on its low pass branch (h0), the 

total oversampling rate will be 7/4. For a three-stage 

filter bank, the oversampling rate will be 15/8. The 

Double Density DWT is then implemented by 

recursively applying this filter bank on the low-pass 

sub-band signal, the total oversampling rate increases 

towards two. 

 

To construct a Double Density DWT with FIR filters 

we will use the oversampled filter bank which is the 

basic design of the Double-Density DWT. The filter 

h0(n) will be a low-pass (scaling) filter, while h1(n) 

and h2(n) will both be high-pass (wavelet) filters. 

The three-channel filter bank which we use to develop 

the Double Density DWT corresponds to a wavelet 

frame based on a single scaling function Φ(t) and two 

distinct wavelets Ψ1(t) and Ψ2(t).  

 

 

The scaling function Φ(t) and the wavelets Ψ1(t), Ψ2(t) 

are defined through these equations by the low-pass 
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(scaling) filter h0(n) and the two high-pass (wavelet) 

filters h1(n) and h2(n). 

 

To design the filters hi(n) we can follow Daubechies' 

program: look for filters hi(n) of minimal length under 

the constraint that the scaling function and wavelets 

satisfy certain polynomial properties. Similar to the 

critically sampled case, the properties we ask Φ(t) to 

satisfy can be translated into conditions on hi(n). 

However, in the oversampled case under 

consideration, more degrees of freedom are available. 

Accordingly, it is possible to obtain wavelets that are 

much smoother. 

 

The analysis filter bank consists of three analysis 

filters-one low pass filter denoted by h0(-n) and two 

distinct high pass filters denoted by h1(-n) and h2(-n). 

As the input signal x(n) travels through the system, the 

analysis filter bank decomposes it into three sub-

bands, each of which is then down-sampled by 2. 

From this process we obtain the signals c(n), d1(n), 

and d2(n), which represent the low frequency (or 

coarse) sub-band, and the two high frequency (or 

detail) sub-bands respectively.  

The synthesis filter bank consists of three synthesis 

filters-one low pass filter denoted by h0(n) and two 

distinct high pass filters denoted by h1(n) and h2(n) 

which are essentially the inverse of the analysis filters. 

As the three sub-band signals travel through the 

system, they are up-sampled by two filtered and then 

combined to form the output signal y(n). 

We can obtain the minimal-length low-pass filter h0(n) 

satisfying the perfect reconstruction conditions and the 

constraints. As in Daubechies' construction, the filter 

h0(n) can be obtained through the spectral 

factorization of a suitably designed symmetric filter. 

Once the low-pass filter h0(n) is obtained, the two 

(non-unique) wavelet filters h1(n) and h2(n) can be 

obtained using a poly phase formulation. Then the 

three-channel filter bank of Figure 5 can be redrawn 

as the filter bank of figure 5. 

 

 

 

        Fig 5: The Oversampled filter bank in Poly phase form. 
 

One of the main concerns in filter bank design is to 

ensure the perfect reconstruction condition. That is, to 

design h0(n), h1(n), and h2(n) such that y(n)=x(n). 

A separable 2D Double Density DWT can be obtained 

by alternating between rows and columns as is usually 

done for 2D separable DWTs. The corresponding 

filter bank, illustrated in figure 6, is iterated on the low 

pass branch (the first branch). While the 1D Double-

Density DWT is redundant by a factor of 2, the 

corresponding 2D version is redundant by a factor of 

8/3, not by 2 or 4 as one might initially expect. In the 

oversampled filter bank for the 2D case, the 1D 

oversampled filter bank is iterated on the rows and 

then on the columns. This gives rise to 9 2D branches. 

One of the branches is a 2D low pass scaling filter, 

while the other 8 make up the 8 2D wavelet filters. 

 

Like the Dual Tree DWT of Kingsbury, the 

overcomplete DWT described above is less shift-

sensitive than an orthonormal wavelet basis and in the 

2D case has fewer rectangular artifacts. 

 

 
       Fig 6: An Oversampled filter bank for 2D signals. 
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IV. COMPLEX DOUBLE DENSITY DUAL TREE 

WAVELET TRANSFORM: 

 

We proposed the Double-Density Dual-Tree discrete 

wavelet transform which is an overcomplete discrete 

wavelet transform designed to simultaneously possess 

the properties of the Double-Density discrete wavelet 

transform and the Dual-Tree CWT. The Double-

Density DWT and the Dual-Tree CWT are similar in 

several respects (they are both overcomplete by a 

factor of two, they are both nearly shift-invariant, and 

they are both based on FIR perfect reconstruction 

filter banks), but they are quite different from one 

another in other important respects. Both wavelet 

transforms can outperform the critically sampled 

DWT for several signal processing applications, but 

they do so for different reasons. It is therefore natural 

to investigate the possibility of a single wavelet 

transform that has the characteristics of both the 

Double-Density DWT and Dual-Tree Complex DWT. 

This is the motivation for the development of the 

Double-Density Dual-Tree DWT described in this 

thesis. 

 

The Double-Density Dual-Tree DWT proposed which 

is designed to simultaneously possess the properties of 

the Double-Density DWT and the Dual-Tree DWT is 

based on two distinct scaling functions and four 

distinct wavelets where the two wavelets are offset 

from one another by one half and where the two 

wavelets form an approximate Hilbert transform pair. 

One pair of the four wavelets are designed to be offset 

from the other pair of wavelets so that the integer 

translates of one wavelet pair fall midway between the 

integer translates of the other pair. Simultaneously, 

one pair of wavelets are designed to be approximate 

Hilbert transforms of the other pair of wavelets so that 

two complex (approximately analytic) wavelets can be 

formed. Therefore, they can be used to implement 

complex and directional wavelet transforms. The 

design procedure for the Double-Density Dual-Tree 

CWT is based on the flat-delay filter, spectral 

factorization and paraunitary filter bank completion. 

The solutions have vanishing moments and compact 

support. The resulting wavelets are much smoother 

than the Dual-Tree wavelets and unlike the Double-

Density wavelets; they form approximate Hilbert 

transform pairs. The design procedure also includes a 

parameter L that determines the degree to which the 

approximation is satisfied. 

 

The Double-Density Dual-Tree DWT proposed in this 

thesis is based on concatenating two oversampled 

DWTs. The filter bank structure corresponding to the  

Double-Density Dual-Tree DWT consists of two 

oversampled iterated filter banks operating in parallel 

similar to the Dual-Tree DWT. The oversampled filter 

bank is illustrated in figure 7.  

 

 
 
Fig 7: Iterated filter bank for the Double-Density Dual-Tree 

DWT. 

 

The iterated oversampled filter bank corresponding to 

the implementation of the Double-Density Dual-Tree 

is illustrated in figure 8. We will denote the filters the 

first filter bank by hi(n) and the filters in the second 

filter bank by  gi(n), for i=0,1,2 [28]. 

 

Note that in each of the filter banks to be considered, 

the synthesis filters are the time-reversed versions of 

the analysis filters. The goal will be to design the six 

FIR filters so that they do the following:-  

 They satisfy the perfect reconstruction 

property. 

 The wavelets form two (approximate) Hilbert 

transform pairs. 

 The wavelets have specified vanishing 

moments. 

 The filters are of short support. 

 

Using the infinite product formula, it was shown that 

for two orthogonal wavelets to form a Hilbert 

transform pair, the scaling filters should be offset by a 

half sample. In that, a design problem was formulated 

for the minimal length scaling filters such that the 

wavelets each have a specified number of vanishing 

moments (K) and the half-sample delay approximation 

is flat at w=0 with specified degree (L). 
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The low pass filters h0(n), g0(n) fully determine the  

two orthogonal wavelet bases. We look for pairs of 

orthonormal wavelets where the low pass scaling 

filters have the form [28] 

 

 
where d(n) the filter will be chosen to achieve the 

(approximate) half-sample delay. The first step of the 

design procedure will be to determine the appropriate 

filter to achieve the desired relationship between h0(n) 

and g0(n) [28]. In terms of the transfer functions, we 

have 

 

 
H0(z) and G0(z) have the common divisor F(z), so we 

can write  

 
The design procedure depends on the design of an All 

pass filter with approximately constant fractional 

delay. Several authors have addressed the design of 

All Pass systems that approximate a fractional delay. 

The following formula for the maximally flat delay 

All Pass filter is adapted from Thiran‟s formula for the 

maximally flat delay all pole filter [28]. We can 

recognize that the transfer functions. The maximally 

flat approximation to a delay of τ samples is given by 

 

 
with  

 
is an all pass system A(ω)=1. Therefore, 

 
If the All Pass system A(z) is an approximate half 

sample delay [28] 

 
or equivalently 

 
 

 

If the H0(ω) and G0(ω) are low pass CQF filters with 

 
then the corresponding wavelets are the Hilbert pair 

 
Equivalently, digital filter g0(n) is an half sample 

delay version of h0(n) 

 
Using longer filters, we have obtained solutions that 

have both good smoothness and good half-sample 

delay properties. Note that h0(n) and g0(n) do not need 

to have  linear phase in order for ψh and ψg to make a 

Hilbert transform pair, although it may be desirable 

for other reasons depending on the application [28]. 

 

This paper highlighted wavelet based enhancement of 

gray scale digital images corrupted by additive 

Gaussian noise. The Complex Double Density Dual 

Tree discrete wavelet transform outperforms in 

comparison with others wavelet transform in the 

highly corrupted images. In terms of image 

enhancement, the Double-Density complex wavelet 

transform performed much better at suppressing noise 

over the Double-Density discrete wavelet transform. 

However, to improve the performance further it is 

necessary to use a different threshold for each sub-

band because for this transform the wavelets 

associated with different sub-bands have different 

norms. The simulation results indicate that the 

Complex Double Density Dual Tree discrete wavelet 

transform performances better than others wavelet 

transform. 

 

V. EXPERIMENTAL RESULTS:  

 

The properties of CWTs shift invariance and 

directionality are used in many areas of image 

processing like denoising, feature extraction, object 

segmentation and image classification. Here we shall 

consider the denoising example to analyze the 

effectiveness of the DDDT-CWT, different thresholds 

points and noise variance were selected from 0 to 45 

and from 25 to 75 on Lena & Peppers images with the 

distance of 5 respectively. But optimal thresholds 

points were giving the minimum square error from the 

original image and less noise variance values were 

giving the more PSNR value, showing a great 

effectiveness in removing the noise compared to the 

classical discrete wavelet transform. 

 

Lena images are corrupted with different noise 

variance ranging from 25 to 70. The first test involved 

reduction of Gaussian noise applied in an additive  
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form on the „Lena‟ . From the PSNR point of view, 

the results obtained are presented in table 1 and 2. 

Table 1 shows the PSNR value of the output image for 

„Lena‟ image using Dual Tree complex wavelet 

transform, Double Density wavelet transform & 

Complex Double Density Dual Tree wavelet 

transform approaches. 

 

Methods Dual Tree Double 

Density 

Double Density 

Dual Tree 

Noise 

Variance 

PSNR 

Value 

PSNR 

Value 

PSNR Value 

25 37.6 38.7 45.2 

30 37.4 38.3 44.8 

35 37.2 37.9 44 

40 36.9 37.8 43.6 

45 36.6 37.7 43.1 

50 35.9 36.8 42.4 

55 35.2 36 41.5 

60 34.2 34.9 40.6 

65 32.9 33.5 39.5 

70 31.4 31.9 38.3 

          Table 1: PSNR Values on „Lena‟ image. 

 

From the RMS Error point of view, the results btained 

with different threshold points ranging from 0 to 45 

are presented in table 2 and 3. Table 3 & 4 shows the 

RMS Vs. Threshold value of the output image for 

„Lena‟ image with noise variance 45 & 55 using Dual 

Tree complex wavelet transform, Double Density 

wavelet transform & Complex Double Density Dual 

Tree wavelet transform approaches respectively. 

 

Methods Dual 

Tree 

Double 

Density 

Double Density 

Dual Tree 

Threshold 

Point 

RMS 

Error 

RMS 

Error 

RMS Error 

0 91.2 93.7 83.4 

5 87.9 91.2 79.8 

10 85.1 89.3 76.6 

15 83.3 87.4 74.8 

20 82.1 86 73.3 

25 81.2 85.1 72.4 

30 80.5 84.2 71.8 

35 80.2 83.8 71.2 

40 79.6 82.4 70.9 

45 79.3 81.2 70.7 

Table 2: RMS Error Vs. Threshold Point with Noise 

Variance=45 for "Lena" Image 

 

 

 

Methods Dual 

Tree 

Double 

Density 

Double Density 

Dual Tree 

Threshold 

Point 

RMS 

Error 

RMS 

Error 

RMS Error 

0 95 97.7 87.8 

5 91 95 83.2 

10 87.8 92.4 79.6 

15 85.1 90.3 76.7 

20 83.4 88.5 74.7 

25 81.9 87.1 73.4 

30 81.1 85.8 72.5 

35 80.4 84.9 71.7 

40 79.9 84.3 71.3 

45 79.3 83.9 70.7 

Table 3: RMS Error Vs. Threshold Point with Noise 

Variance=55 for "Lena" Image 

 

Peak Signal to Noise Ratio at Noise Variance from 25 

to 75 are obtained from Dual Tree complex wavelet 

transform, Double Density & Double Density Dual 

Tree complex wavelet transform methods for „Lena‟ 

images are plotted and shown in the figure 8.  

 

 
Fig 8: PSNR value of „Lena‟ image 

 

 
   Fig 9: RMS error vs. Threshold point with noise 

variance=45 for „Lena‟ Image 
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Root Mean Squared error at various threshold points 

from 0 to 45 are obtained from Dual Tree complex 

wavelet transform, Double Density & Double Density 

Dual Tree complex wavelet transform methods at 

Noise variance = 45 & 55 for „Lena‟ images are 

plotted in Bar Chart & its graph are shown in the 

figure 9, 10, 11 & 12 respectively. 

 

 
Fig 10: RMS error vs. Threshold point with noise 

variance=55 for „Lena‟ Image 

 

 
Fig 11: RMS error vs. Threshold point with noise 

variance=45 for „Lena‟ Image 

 

 
Fig 12: RMS error vs. Threshold point with noise 

variance=55 for „Lena‟ Image 


      Fig13a: Original Image          Fig13b: Noisy Image 

 

 
Fig13c:Output from DTCWT Fig13d: Output from DDCWT   

  

 
Fig 13e: Output from DDDTCWT 

 

Fig 13: Output Images of „Lena‟ when Noise variance=45 

 

VI. CONCLUSIONS 

 

Discrete wavelet transform has been used in digital 

image denoising more frequently due to its excellent 

spatial localization and multi-resolution characteristics 

which are similar to the theoretical models of the 

human visual system. Denoising using discrete 

wavelet transform produces superb results because 

Wavelet Transform has compaction property of 

having only a small number of large coefficients and 

large number of small coefficients. But discrete 

wavelet transform functions insufficiently in some of 

signal processing tasks due to strong shift dependence, 

lack of directional selectivity, aliasing and oscillations 

of the coefficients. To solve these problems, complex 

discrete wavelet transform algorithms have been 

proposed to represent an input signal by the magnitude 

and phase where the magnitude is shift invariant and 

the phase offset encodes the shift.  
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The complex wavelets are a useful tool and it has 

wider implications of the research. The DT-CWT due  

to its approximate shift invariance and improved 

directional selectivity outperforms in a wide range of 

applications. For denoising application, the 

experimental results for the complex wavelet 

transform methods display an improvement in 

accuracy over the standard discrete wavelet methods. 

For most of the applications the CWT also gives better 

results than the discrete wavelet transform. The 

complex wavelet models were found to be particularly 

good for image denoising. 

 
Image Denoising using complex wavelet transform 

has been reviewed. Advantages, applications and 

limitations of popular standard DWT and its 

extensions are realized. Complex wavelet transform, a 

powerful extension to real valued DWT is thoroughly 

investigated, with the motivation to reduce the major 

limitations of standard DWT. The CWTs with their 

certain signal processing applications are collectively 

and comprehensively analyzed and its extensions in 

certain signal processing applications.  

 

In this paper, we proposed a hybridizing model of 

Double Density Dual Tree CWT for denoising 

estimation and significantly improve the performance 

of the noisy image.  Simulation and experimental 

results demonstrated on Lena image and found that the 

Complex Double Density Dual Tree wavelet 

transform outperforms a number of other existing 

wavelet transform techniques and it is particularly 

effective for the very highly corrupted images. 

Individual software codes are developed for 

simulation of Image Denoising using CWTs. 

Promising results are obtained using individual 

implementation of existing algorithms incorporating 

novel ideas into well-established frameworks. 

 

These CWTs has some possible future research 

directions for some additional applications tasks and 

suggests such as segmentations, Texture synthesis, 

imaging radar such as Synthetic Aperture Radar etc. 

and there is also investigating the application of the 

DT-CWT to 3D data sets such as from medical 

imaging techniques. For these data sets analogous 

segmentation techniques can be used to identify 

different biological structures. A single complex 

wavelet transform could be used for detecting both 

texture and the object edges. Large complex wavelet 

coefficients correspond to edges in an image and a 

simple edge detector can be built by simply detecting 

such large coefficients. 
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