
Impact of Refactoring on Software Quality

Prabhjot Kaur

Computer Science and Engg. Department

Punjab Technical University

Jalandhar, India

Puneet Mittal
Computer Science and Engg. Department

Baba Banda Singh Bahadur Engineering College

Fatehgarh Sahib, India

Abstract— Refactoring is the process of transformation of

software. It changes its internal structure of software without

affecting its external behavior. Bad smells means there are

potential problems in the code, which we have to refactor. In

this paper, we use two tools for bad smells detection on object

oriented open source software are PMD and JDeodrant. Then

after refactoring bad smells, we analyze the impact of

refactoring on external quality attribute of software.

Keywords— Refactoring, Metrics, Quality of Software

I. INTRODUCTION

A. Refactoring

Refactoring code is the process of reorganizing code with the

intent of simplifying both design and structure while not

changing the functionality of the code [4]. By refactoring, we

makes the code clean. It enhances the quality of software by

removing potential problem in code. It minimizes the chances

of introducing of bugs in the code.

B. Bad Smells
Bad smells are the defect in design of the software. Code

smells are called as Bad smell. It is an indication of flaws in
code which to be removed by applying appropriate refactoring
technique. Fowler [16] given 22 bad smells and their
respective 72 refactoring techniques to remove these bad
smells. There are various tools to detect the bad smells. We
detect 6 bad smells in the code. JDeodrant tool will detect 4
bad smells are- God class, Long method, Feature envy and
Type Checking. Bad smell detected by PMD are- Dead code
and Long parameters list.

 God Class- means a large class. Too many
functions in one class so it’s difficult to
understand functionality of class.

 Long Method-means very long method in a class.

 Feature envy-means a class that is more
interested to use function or methods of another
class.

 Type Checking-it is switch statement bad smell.
It has more duplication of code. So it is best to
use polymorphism instead of switch statements.

 Dead Code- means variable, methods and classes
that does not perform any functionality in
software.

 Long Parameter List-means too many parameters
are passed in parameter List.

C. Refactoring Techniques

Technique used for refactor the bad smells are called as

Refactoring Techniques. These are the set of procedures to

remove bad smell or clean the code. There are some

refactoring techniques [16] used are-

 Extract Method - means extracting the set of

statements into a new method.

 Extract Class – means extracting the set of methods

and statements into a new class from the old class.

 Move Method – means methods from one class to

another more relevant class.

 Remove or Delete – means delete the unused

imports, local variables, unused private methods.

 Replace Conditional with Polymorphism- means

replace switch conditional statements with

polymorphism.

 Introduce Parameter Object–means replace

parameter with an object.

 Replace Parameter with Method Call – means

replace parameter passing function with value

getting code inside the class.

D. Tools Used

 Eclipse- It is an Java based open source Integrated
Development platform. It is designed in such a way
that it can be extensible using plugins. It supports
various languages C, C++, JAVA, PHP and COBOL.
We can integrate bad smell detection plugins and
refactoring tools into eclipse for refactoring the code.

 JDeodrant Plugin- is an eclipse plugin which are used
for detecting and removing bad smells in the code. It
can detect four bad smells are –Feature envy, God
Class, Type Checking and Long Method. It detects bad
smells in java based code.

 PMD Plugin-is a static java source analyze. It can be
integrated into eclipse as a plugin. It can detect bad
smells are- Dead code, Long Parameter List and
Duplication Code.

 Metrics 1.3.6 Plugin- is a quality calculation tool. It
can calculates No. of attributes, Lines of code, No. of
classes, Weighted methods per Class, Cohesion and
Coupling.

E. Quality Attributes

Software Quality Attributes are the characteristics of software

by which quality is described and evaluated. It is divided into

two groups- Internal Quality Attributes and External Quality

Attributes. Internal Quality is measured directly from the

International Journal of Engineering Research & Technology (IJERT)

ISSN: 2278-0181

Published by, www.ijert.org

ESDST - 2017 Conference Proceedings

Volume 5, Issue 05

Special Issue - 2017

1

code. External quality attributes are measured with the help

of internal quality attributes.

Internal Quality Attributes are-

 Lack of Cohesion

 Coupling

 Depth of Inheritance

 Number of Classes

 Lines of Codes

 Weighted Method per Class

 Abstractness

External Quality Attributes are-

 Understandability

 Reusability

 Functionality

 Effectiveness

 Flexibility

 Extendibility

II. LITERATURE SURVEY

Fowler et al. [16] describes the 22 bad smells and

their 72 respective techniques to refactor bad smells. They

mention duplicate code as a serious kind of bad smell. It

increases maintenance cost of software. Due to increasing use

of open source software and its variants, there is also

increased use of code reuse. Due to Code reuse, it results in

duplication of code.

Bansiya and Davis [10] presented a QMOOD

(Quality Model for Object Oriented Designed) that access

quality attributes like reusability, functionality, extendibility,

flexibility, understandability, effectiveness. QMOOD relates

low level design properties such as encapsulation, coupling

and cohesion to high level quality attributes. It weighted

quality attributes accordance to their influence and

importance in the system.

Alshayed [1] investigate the effect of refactoring on

software quality attributes. He focused on quality attributes

like adaptability, maintainability, understandability,

reusability and testability. They apply refactoring on three

open source software- UML tool, terpPaint, Rabtpad. But

after refactoring, he concludes that it does not necessary that

refactoring improve the quality attributes of software.
 Kannangara and Wijayanaka [21] investigate the

impact of refactoring on internal quality attributes are

maintainability, DIT, LOC, coupling. They compare quality

attributes of nonrefactored code with refactored code. After

study, they get result that only maintainability is improve,

other attributes does not show any positive effect.

 Tsantalis et al. [15] presented a tool, JDeodrant

which is implemented as a plugin in Eclipse that

automatically indentifies God class. They remove these

smells by extract class refactoring. They also indentify the

application of extract class refactoring in bad smells removal.

Kaur and Kaur [14] provide a review on bad smell

detection tool PMD and JDeodrant using eclipse. They

discuss and compare the bad smell detected by PMD and

JDeodrant and their refactoring. They apply refactoring

techniques on Online Exam System which is written in java.

They refactor 6 bad smells using tools.

III. PROBLEM FORMULATION

 To maintain the poorly design system is difficult and

tough work. Software goes through various evolutionary

development lifecycle, and then its quality attributes degrade.

So it becomes difficult for developer to maintain the

understandability, extensibility and reusability of the

software. So refactoring is a way to maintain overall

functionality and behavior of the system. So we proposed to

detect the bad smells in object oriented open source java

software and remove these by refactoring techniques. Then

after refactoring, we analyze the impact of refactoring on

external quality attributes of the software.

 To find different bad smells in an open source

softwares.

 To analyze various refactoring techniques.

 To clean code by removing these bad smells through

refactoring.

 To analyze the impact of refactoring on software

quality before and after refactoring.

IV. RESEARCH METHOLOGY

A. Methodology

JDeodrant and PMD are bad smells detector. Object

oriented open source software are JChart 2D

(3.2.1),GhantProject(9.11) and RabtPad(0.1).

1. Measure internal quality attributes of the software.

2. Detect code bad smell by using PMD and JDeodrant

tools in the software.

a. Indentify the type of bad smell detected.

b. Indentify location of bad smell detected.

c. Refactoring techniques to be applied to it to

refactor bad smell.

d. Check, is there any error occur during

refactoring, if not then move to next step to find

next bad smell, otherwise rollback refactoring

and applied another refactoring technique to

refactor bad smell.

3. Then after removing bad smells in the codes,

measure the internal quality attributes of software.

4. Calculates the external quality attributes of software

with the help of internal quality attributes. Compare

the external quality attributes of software before and

after refactoring to analyze the impact of refactoring.

B. External Quality Attributes.and Internal Qualiy Attributes

TABLE I. Shows the external quality attributes given by bansiya[12]

External Quality Attributes

C. Internal Quality Attributes

TABLE II. shows the internal quality attributes formula used for

calculation

External QA Formula Used for Calculation

Reusability -0.25*Coupling+0.25*Cohesion+0.5* Messaging+

0.5*Design Size.

Flexibility 0.25*Encapsulation - 0.25*Coupling + 0.5*Composition +

0.5* Polymorphism.

Understand-

ability

-0.33*Abstraction+0.33*Encapsulation-

0.33*Coupling+0.33* Cohesion-0.33*Polymorphism-
0.33*Complexity-0.33*Design Size.

Functionality 0.12*Cohesion + 0.22*Polymorphism + 0.22*Messaging +

0.22*Design Size +0.22*Hierarchies.

Extendibility 0.5*Abstraction - 0.5*Coupling + 0.5*Inheritance +0.5*
Polymorphism.

Effectiveness 0.2*Abstraction + 0.2*Encapsulation + 0.2*Composition+

0.2* Inheritance+ 0.2*Polymorphism.

International Journal of Engineering Research & Technology (IJERT)

ISSN: 2278-0181

Published by, www.ijert.org

ESDST - 2017 Conference Proceedings

Volume 5, Issue 05

Special Issue - 2017

2

TABLE III. Shows the Intenal Quality Formula

V. RESULTS

Number of bad smells detected is shown in table IV. Table

V and table VI shows the internal quality attributes before

and after refactoring respectively. Then table V and table VI

shows the external quality attributes values before and after

refactoring respectively.

TABLE IV. Show the number of bad smell detected in software

TABLE V. Shows Internal Quality Attributes of Software Before
Refactoring

TABLE VI. Shows Internal Quality Attributes of Software After

Refactoring

TABLE VII. Shows External Quality Attributes of Software Before

Refactoring

TABLE VIII. Shows External Quality Attributes of Software After
Refactoring

Fig. 1. Shows External Quality Attributes of RabtPad before Refactoring

and after Refactoring.

Design

Property

Metrics used by Bansiya Metrics we Used

Design Size Design Size in Classes (DSC) Number of Classes

Hierarchies Number of Hierarchies (NOH) Depth of Inheritance

Tree

Abstraction Average Number of Ancestors

(ANA)

Abstractness

Encapsulation Data Access Metrics (DAM) (Total no. of attributes

–static Attributes) /
(Total no. of attributes

+ static Attributes)

Coupling Direct Class Coupling (DCC) Instability

Cohesion Cohesion Among Methods of
Classes(CAM)

1/Lack of Cohesion of
Methods

Composition Measure of Aggregation

(MOA)

Number of Overridden

Methods

Inheritance Measure of Functional

Abstraction (MFA)

No. of Overridden

Methods /Number of

Methods

Polymorphism Measure of Polymorphic
Methods (NOP)

Number of Overridden
Methods

Messaging Class Interface Size (CIS) Number of Methods

Complexity Number of Methods (NOM) Weighted Methods per

Class

Bad smells RabtPad JChart2D GhanttProject

God Class 10 8 33

Feature envy 5 9 34

Long method 27 16 150

Type Checking 6 - 6

Dead Code 31 5 70

Long Parameter List - 2 3

 Softwares

Metrics RabtPad JChart2D
Ghantt
Project

Coupling 0.252 0.406 0.397

Cohesion 2.551 2.463 0.2595

Messaging 7.581 3.991 6.189

Design Size 1.824 9.727 9.211

Encapsulation 0.4819 0.1797 0.5288

Composition 8.581 1.411 4.709

Polymorphism 0.258 0.467 0.417

Abstraction 0.044 0.0851 0.206

McCabe Complexity 18.871 8.533 15.034

Inheritance 0.966 0.882 0.937

Hierarchies 2.744 3.636 2.166

 Softwares

Metrics

RabtPad JChart2D Ghantt
Project

Coupling 0.296 0.623 0.397

Cohesion 3.164 2.898 0.2595

Messaging 10.12 4.236 6.189

Design Size 2.941 12.727 9.211

Encapsulation 0.4903 0.337 0.5288

Composition 5.38 1.543 4.709

Polymorphism 0.34 0.350 0.417

Abstraction 0.077 0.0865 0.206

McCabe Complexity 17.44 7.786 15.034

Inheritance 0.967 0.9174 0.937

Hierarchies 2.18 3.043 2.166

External Quality

Attributes
RabtPad JChart2D GhanttProject

Reusability 5.277 7.373 7.665

Flexibility 4.476 0.882 2.595

Understandability -6.011 -5.469 -8.077

Functionality 3.042 4.216 3.987

Extendibility 0.508 0.514 0.581

Effectiveness 2.066 0.604 1.359

External Quality

Attribute

RabtPad JChart2D GhanttProject

Reusability 7.247(↑) 9.050(↑) 11.431(↑)

Flexibility 2.908(↓) 0.875(↓) 1.731(↓)

Understandability -5.755(↑) -6.051(↓ -7.469(↑)

Functionality 3.807(↑) 4.826(↑) 5.710(↑)

Extendibility 0.544(↑) 0.365(↓) 0.662(↑)

Effectiveness 1.450(↓) 0.646(↑) 1.000(↓)

International Journal of Engineering Research & Technology (IJERT)

ISSN: 2278-0181

Published by, www.ijert.org

ESDST - 2017 Conference Proceedings

Volume 5, Issue 05

Special Issue - 2017

3

Fig. 2. Shows External Quality Attributes of JChart2D before Refactoring

and after Refactoring.

Fig. 3. Shows External Quality Attributes of GhanttProject before

Refactoring and after Refactoring.

VI. CONCLUSION

 In this paper, we notice the impact of refactoring of

refactoring on external and internal quality attributes. It

shows that reusability and functionality of all three shows an

postive impact. But other external attributes like

extendibility, understandability and flexibility shows negative

impact on software after refactoring. So conclude from the

experiment that group of refactoring techniques have postive

and negative impact on software.

 In future work, we can detect more bad smells and

then apply more refactoring techniques to software to refactor

these smells in a code. Then, after refactoring analyze the

impact on quality.We can also check impact of refactoring on

other quality attributes like testability.

REFERENCES

[1] M. Alshayeb, “Empirical Investigation of Refactoring Effect on

Software Quality”, Information and Software Technology,

ELSEVIER, 2009.

[2] W. Opdyke, “Refactoring Object-Oriented Frameworks”, PhD thesis,

University of Illinois at Urbana-Champaign, 1992.

[3] A. Rani and H. Kaur, “Refactoring Methods and Tools”, International

Journal of Advanced Research in Computer Science and Software

Engineering, vol.2, No. 12, 2012.

[4] D. Jonsson, “Detecting Code Smells in Educational Software: an in-

depth study by David Jonsson”, March 2013.

[5] D. Roberts, “Practical Analysis for Refactoring”, PhD thesis,

Department of Computer Science, University of Illinois at Urbana-

Champaign, 1999.

[6] S. Kaur and S. Singh, “Spotting and Elimination Type Checking Code

Smells using Eclipse Plug-in: JDeodorant”, International Journal of

Computer Science and Communication Engineering, v.5, No.1, 2016.

[7] EMF Metrics Plugin, URL – Retrieved from

http://sourceforge.net/projects/metrics/.

[8] PMD, URL--Retrieved from http://pmd.sourceforge.net/eclipse/.

[9] ISO/IEC9126,”Software product evaluation- Quality characteristics

and guidelines for their use”, 9126 Standard, Information technology,

1991.

[10] J. Bansiya and C.G. Davis, “A Hierarchical Model for Object-

Oriented Design Quality Assessment,” IEEE Transactions on

Software Engineering, vol. 28, no. 1, pp. 4-17, 2002.

[11] JDeodorant, URL - Retrieved from

https://marketplace.eclipse.org/content/jdeodorant.

[12] K.O. Elish and M. Alshayeb, ” A Classification of Refactoring

Methods Based on Software Quality Attributes”, Arabian Journal for

Science and Engineering, Springer, 2011.

[13] K.O. Elishand M. Alshayeb, “Investigating the Effect of Refactoring

on Software Testing Effort”, 16th Asia-Pacific Software Engineering

Conference,IEEE, 2009.

[14] S. Kaur and S. Kaur, “Review on Identification and Refactoring of

Bad Smells using Eclipse”, International Journal for Technological

Research in engineering, v.2, Issue 7, March 2015.

[15] N. Tsantalis, M. Fokaefs and E. Stroulia, “JDeodorant: Identification

and Application of Extract Class Refactoring”, ICSE ‘11, USA, 2011.

[16] M. Fowler, K. Back, J. Brant, W.Opdyke and D.Roberts.

“Refactoring: Improving the Design of Existing Code”, Addison-

Wesley, New York, 1999.

[17] M. Mantyla,“Bad Smells in Software – a Taxonomy and an Empirical

Study”, Master Thesis, Department of Computer Science, Helsinki

University of Technology, 2003.

[18] A. Chatzigeorgiouand A. Manakos, “Investigating the Evolution of

Bad Smells in Object-Oriented Code”, International Conference on

the Quality of Information and Communications Technology, IEEE,

2010.

[19] N. Tsantalis and A.Chatzigeorgiou, “Identification of move method

refactoring opportunities”, IEEE Transactions on Software

Engineering, pp.347–367, 2009.

[20] N. Kumari and A. Saha, ”Effect of Refactoring on Software Quality

“, Academy and Industry Research Collaboration Center, v.4, pp.37-

46, 2014.

[21] S.H. Kannangara and W.H.J.I Wijayanaka, “An Empirical

Evaluation of Impact of Refactoring on Internal and External

Measures of Code Quality”, International Journal of Software

Engineering and Applications, v.6, No.1, 2015

[22] A. Sharma and S.K. Dubey, “Comparison of Software Quality

Metrics for Object-Oriented System”, International Journal of

Computer Science & Management Studies (IJCSMS), ISSN (Online):

2231 –5268, vol. 12, 2012.

International Journal of Engineering Research & Technology (IJERT)

ISSN: 2278-0181

Published by, www.ijert.org

ESDST - 2017 Conference Proceedings

Volume 5, Issue 05

Special Issue - 2017

4

