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Abstract— Radar tracking systems are very common and 

necessary parts of any aviation and/or defense system. However, 

target tracking problem is more difficult if the target is 

maneuvering. Kalman filter has a poor behavior to track 

maneuvering targets. In this paper, a Proposed Tracking Filter 

(PTF) is used [24] able to track targets with highly 

maneuverability. A complete proposed multiple tracking 

algorithm and a graphical user interface (GUI) software are 

developed using LabVIEW®. For performance evaluation, the 

tracking algorithm has been tested in tracking three simulated 

maneuverable targets. Once the algorithm is validated in 

LabVIEW®, it can be easily realized in an embedded hardware 

for real time multiple target tracking applications. 

Keywords—Multiple Target Tracking, Kalman Filter, PHD 

Filter, Maneuvering Targets, Labview® 

I.  INTRODUCTION 

Tracking maneuvering targets is required in a wide 

range of civilian applications such as intelligent 

transportation system, air traffic control and surveillance. 

Therefore, researchers have concerned about this issue during 

the past several decades [1]. Surveillance systems are 

employing one or more sensors together with computer 

subsystems to interpret the environment. Typically sensor 

systems such as infrared (IR), sonar, and radar sensor reports 

measurement form diverse sources. The target tracking 

objective is to collect sensor data from field of view (FOV) 

containing one or more potential targets of interest and then 

partition sensor data into set of observation, or tracks that are 

produced by same object (or target),once tracks are formed 

and confirmed ,the number of target of interest can be 

estimated and quantities, such as target velocity  future 

predicted position and target classification characteristics ,can 

be computed from each track [2]. 

Multiple target tracking (MTT) algorithm is applied in 

many surveillance radar applications. Fig. 1 [2] shows the 

basic elements of a typically MTT system. This system has 

been formulated in the early papers by Wax [3] and Sittler [4], 

but these papers were written before the widespread 

application of the Kalman filtering techniques [5]. Bar-

Shalom [6] and Singer [7,8] can be credited of modern MTT 

schemes that combine the data association techniques and 

Kalman filtering theory. Starting with Farina and Studer [9], a 

number of books, including [10-18], have been written to 

address the numerous problems involved in tracking multiple 

targets with one or more sensors [19]. 

 

 

 

 

 

Fig. 1. Basic elements of MTT system [2] 

Gating is a necessary part of target tracking in clutter. The 

purpose of gating is to reduce computational expenses by 

eliminating from consideration measurements which are far 

from the predicted measurement location. Gating is performed 

for each track at each scan by defining an area of surveillance 

space which is called the gate [20]. All measurements 

positioned in the gate are selected and used for the track 

update while measurements not positioned in the gate are 

ignored for the purpose of the track update. The gate is usually 

formed in such a way that the probability of a target-originated 

measurement falling within the gate, provided that the target 

exists and is detected, is given by a gating probability (PG) 

which can be evaluated from the available track statistics. 

Since the size or volume of the gate is dependent on the 

tracking accuracy, it therefore varies from scan to scan and 

from track to track, and the standard validation gate is 

ellipsoid [21]. 

Several classical data association methods exist. The 

simplest is probably the nearest-neighbor (NN) approach. In 

[22], this approach is referred to as the nearest neighbor 

standard filter (NNSF) and uses only the closest observation to 

any given state to perform the measurement update step.  

Another MTT data association method is the probability 

data association (PDA) [25]. It estimates the states by a sum 

overall the association hypothesis weighted by the 

probabilities from the likelihood. An extension of this method 

is the joint probability data association (JPDA) [26, 27] 

algorithm, the first developed by Fortmann et al [28]. Another 

major approach is the multiple hypothesis tracking (MHT) [2, 

29] and the first develop by Reid [30] which calculates every 

possible update hypothesis. Also, the Fuzzy data association 

(FDA) [28] is formulated using the extended Kalman filter 

and FDA is accomplished using the fuzzy logic algorithm. 
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The measurements which correlate to a given track is 

processed by a filter to update the track parameter for these 

tracks that didn't receive correlating observations, the previous 

predicted estimates are treated as the filtered estimates. Then, 

the predictions are made to the time when the next data scan is 

to be received [24]. 

In Section 2 of this paper, both conventional and proposed 

adaptive estimation/prediction filters are presented. The 

proposed MTT algorithm flowchart is explained in Section 3. 

Then, the algorithm performance analysis and evaluation are 

investigated in Section 4. Finally, the proposed algorithm 

implementation in LabVIEW® is explained in Section 5 

followed by a conclusion. 

II. CONVENTIONAL AND PROPOSED PREDICTION FILTERS 

In this section, the extended Kalman filter (EKF) 

and probability hypothesis density (PHD) filter are presented 

as conventional estimation/prediction filter used for multiple 

target tracking. Another proposed tracking filter is presented 

in Subsection 2.3. 

A. Extended Kalman filter (EKF) 

To approximate a nonlinear system to a linear one, a 

first (or second) order series expansion is used. By least 

minimum mean square error (LMMSE) estimation and the 

approximation of the nonlinear dynamic and/or measurement 

equations, the extended Kalman filter (EKF) is derived. 

Consider the system with dynamics: 

 
kkk
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                                    (1) (1) 

and the measurement is: 
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where both the process and the measurement noises are 

mutually independent zero-mean white noise such that: 
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Let us consider the initial state as an approximate conditional 

mean: 
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with an approximate zero-mean estimation error and the 

mean-square error (MSE) matrix (not the associated 

covariance matrix) Pk|k as kk|
x̂ is not the exact conditional 

mean. The third-order moments of the estimation error is 

assumed to be approximately zero as in the case of zero-mean 

white Gaussian random variable. 

Using the vector Taylor series expansion of xk+1, we get: 
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where ei is the ith nx-dimensional Cartesian basis vector, 
kx

f is 

the Jacobian of the vector f given by: 
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i
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f is the Hessian of the ith component of f given by: 
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The higher order terms will be neglected. By 

calculating the expectation of Equation (6) conditioned on Zk 

and assuming that the first-order term in Equation (6) is 

approximately zero, the predicted state to time k+1 from time 

k will be: 
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Subtracting Equation (9) from Equation (6), the state 

prediction error is derived: 
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The state prediction covariance (the MSE matrix) is 

obtained by multiplying Equation (10) by its transpose and 

calculating the expectation conditioned on Zk: 
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Similarly, the predicted measurement is given by: 
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where ei is the ith ny-dimensional Cartesian basis vector. The 

measurement prediction covariance (also called the 

innovation covariance or residual covariance) is: 
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kx

h is the Jacobian of h given by: 
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and the Hessian of its ith component is: 
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The EKF inherent approximations may lead to unbounded 

estimation errors; i.e., divergence of the filter. Also, 

neglecting higher orders and evaluating the Jacobian and the 

Hessian at the estimated and predicted state – rather than the 

actual state – may cause errors.  Consequently, a consistency 

test is very important to evaluate the performance of the EKF. 

One method to compensate for errors is implemented by 

adding an artificial process pseudo-noise for compensation for 
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errors in the state prediction.  In practice, if the initial errors 

and the noises are not too large, the EKF performs well [31]. 

B. Probability hypothesis density (PHD) filter 

The probability hypothesis density (PHD) filtering 

approach is an attractive alternative to tracking unknown 

numbers of targets and their states in the presence of data 

association uncertainty, clutter, noise, and miss-detection. 

 

The PHD filter operates on the single-target state space 

and avoids the combinatorial problem that arises from data 

association. These salient features render the PHD filter 

extremely attractive. However, the PHD recursion involves 

multiple integrals that have no closed form solutions in 

general. 

The PHD represents the expectation, the integral of which 

in any region of the state space S is the expected number of 

objects in S. 

The PHD is estimated instead of the multiple target 

posterior distribution as it is much less computationally 

expensive to do so. The time required for calculating joint 

multi-target likelihoods grows exponentially with the number 

of targets and is thus not very practical for sequential target 

estimation as this may need to be undertaken in real time. 

The PHD is defined as the density, Dt|t (xt |Z1:t ), whose 

integral: 
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On any region S of the state space is the expected number 

of targets in S. The estimated object states can be detected as 

peaks of this distribution.  

The derivation for the PHD equations is provided by 

Mahler [36], the prediction and update equations are given 

by: 
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   xzgPDzt |,  ,       (22) 

In the prediction equation, bt is the PHD for spontaneous 

birth of a new target at time t, PS is the probability of target 

survival and ft|t-1(xt|xt-1) is the single target motion distribution. 

In the data update equation, g is the single target likelihood 

function, PD is the probability of detection, t is the Poisson 

parameter specifying the expected number of false alarms and 

ct is the probability distribution over the state space of clutter 

points. 

C. Proposed tracking filter 

The proposed tracking filter [23] addresses the 

general problem of trying to estimate the state  of a 

discrete-time process that is governed by the linear stochastic 

difference equation (23) but with resetting the covariance 

matrix P to its initial value P0 when the difference between 

noisy measurement and the target state 0 exceeds a certain 

value. else, the Kalman filter is applied. 

 

               k = Ak – 1 + Buk + wk – 1    (23) 

with a measurement  that is 

                          zk = Hk + vk 
         

(24) 

The random variables wk and vk represent the process and 

measurement noise, respectively. They are assumed to be 

independent of each other, white, and with normal probability 

distributions. 

P (w)~ N(0,Q) (25) 

P(v)~ N(0,R) (26) 

The nn matrix A in the difference equation (23) relates 

the state at the previous time step k-1 to the state at the 

current step k. The n x l matrix B relates the optional control 

input  to the state x. The mn matrix H in   the 

measurement equation (24) relates the state to the 

measurement zk. 

The equations of linear Kalman filter are in consistence of 

time update and measurement update. The nm matrix K in 

(27) is chosen to be the gain 

 
(27) 

where  

P(k/k-1)……is the covariance matrix 

R….. is the variance matrix of the measured data  

H…… is the measurement matrix which is given by 

 
and from the state of the previous scan with the data of 

the actual scan, the future state of the next scan is given by: 

 (28) 

 

The value  (called error) is the difference 

between noisy measurement and the target state. This error 

value is checked every scan and compared to certain 

threshold th defined as: 

 
(29) 

where th is the checking threshold. If the case is true, the 

matrix P will be initialized to its initial value P=P0 to 

compensate the deviation in the matrix values in case of 

maneuvering targets, which is proportional to the error 

between the predicted and actual target’s position. Elsewhere, 

the P matrix is computed as in Kalman filter equation as 

follow 

 
(30

) 

where I is the identity matrix. 

The estimated stated of the target is given by 

 (31) 

where A….is the state transition matrix of CT model 

which we will use and it is given by   
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w…. is constant = 0.2. 

T…. is time of one rotation of antenna. 

The error covariance matrix is given by 

 (33) 

III. PROPOSED MULTI-TARGET TRACKING ALGORITHM 

FLOWCHART 

 

 

Fig. 2. The flowchart of the proposed MTT algorithm 

First of all, a bank of the proposed tracking algorithm is 

implemented; a filter is associated to each track. Number of 

filters in the bank (or number of targets to be tracked, 

simultaneously) depends on the processor speed; i.e. a faster 

algorithm will provide more targets to be tracked. As shown in 

Fig. 2, either the target scenario is loaded from the simulator 

or the target data are fed from the radar signal processor. 

Then, the initiation of a tentative target track with track 

quality initial value set at 1 is performed. Next to target 

initiation, the gating will be formed around the target 

according to gating equations. In the next scan, according to 

the measurement which falls within the gate, nearest-neighbor 

approach chooses only one measurement to update the 

trajectory of the target and the track quality is increased. A 

track quality value “3” means that the track is stable and true. 

If there is no measurement inside the gate, the track is updated 

by the predicted position calculated from the previous scan. 

Besides, the track score is decreased by 1. When the track 

quality reaches the “0” value, the track is automatically 

terminated/deleted. Estimation/prediction is calculated using 

the Proposed Tracking Filter [23]. The total number of scans 

from the beginning of the program till stopping the program is 

exit. At the beginning, the program has ability to zoom-in a 

specified region using the cursor on panel. Data are updated 

and/or loaded at each north pulse. 

 

IV. PERFORMANCE ANALYSIS AND EVALUATION 

In order to examine the MTT algorithm, this section 

introduces different scenarios for the tracking program. The 

first one uses three parallel targets. Then, the second scenario 

uses two crossing targets and one parallel to one of them. 

Finally, the third scenario uses three attacks moving each one 

has its own maneuver. 

 

Fig. 3. First scenario 

 

Fig. 4. Second scenario 

 

Fig. 5. Third scenario 
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V. PROPOSED ALGORITHM IMPLEMENTATION USING 

LABVIEW® 

This section shows the implementation of the 

tracking algorithm using LabVIEW®. Target position is 

retrieved coarsely by the position of mouse click and refined 

by choosing the nearest target location to the mouse position. 

LabVIEW® modules are used to implement the tracking 

algorithm written by MATLAB®. 

As the tracking algorithm is too large to show in one 

figure, it has been divided into several sub-modules with a 

specific function each with a well-defined input and output. 

Each sub-module will be explained in detail in the following 

sub-sections. 

A. Monitoring 

In order to implement a digital radar display working in 

raster scan displays, a digital circuit to perform the scan 

conversion implemented, shown in Fig.5, which writes the 

image (in digital form) in video memory. 

 

Fig. 6. Block diagram of digital scan converter circuit 

The video memory will hold all the signals which are 

entered by Acquisition/Write section to display on the 

monitor. The memory consists of logical zeros and ones; each 

cell corresponds to one pixel of the display. The pixels are 

arranged into rows and columns which are converted to 

Cartesian coordinates (X and Y axis) from polar information 

(range, azimuth). The read/display section contains circuitry 

which reads the data from memory and produces PPI display 

on CRT by scanning the memory cells (zeros or ones). The 

conversion circuit is implemented by LabVIEW® and its 

block diagram is shown in Fig. 6. 

 

 

Fig. 7. LabVIEW® conversion section 

In Fig.7, the block diagram of displaying section is 

shown. It is responsible for displaying the measurements and 

targets, gates of each target, targets ID, grid and circles and 

the colors. 

 

 
Fig. 8. Block diagram of LabVIEW® displaying section 

The radar display front panel, shown in fig.8, is designed 

to be 1024*1024 pixels and the center is at the pixel 

(512,512). It consists of four range markers shown as linearly 

separated circles and at the top right corner the gate is found. 

 

 

Fig. 9. Radar display in LabVIEW® 

B. Getting cursor/mouse position 

When click action is done over target in the radar display, 

operators may not click over the target accurately. So, nearby 

pixels are searched around the mouse click in a small area 

and if target exists it will initiate a track and this code is 

inserted in the first step of the sequence and this is done by 

the code in Fig. 10. 

 

 
Fig. 10. Property node of mouse (up) and first click check around area 

(down) 
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C. Tracking algorithm implementation 

This section shows the implementation of the whole 

tracking algorithm using Proposed Tracking Filter for 

prediction and the NN approach for association. The source 

code is written in math script and takes its input from 

simulation scenario data and its output is monitored on the 

display. 

 

Fig. 11. Block diagram of tracking algorithm 

 

In this sub-module, shown in Fig. 11, the initial gate 

checks whether the target is found in the next scan or not. If it 

exists, the track is updated and track quality is increased by 

one. Otherwise, the track is ended and its quality remains at 

zero waiting another click to begin tracking upon request of 

the user. 

Fig.12. shows how to act if there is no data associated to 

the target track. The predicted position that is calculated from 

the previous step is used together with the gate according to 

the distance between the target position in the last two scans, 

and the NN data association approach is used. Prediction is 

calculated using proposed tracking Filter. The track quality is 

increased till it reaches 3 and, then, it is fixed at this value. If 

a measurement update is not received within any scan the 

track quality is decreased by one, and the program takes the 

predicted position to update the track. 

 

 
Fig. 12. Block diagram in case of no data in the gate 

The track can be forced to end now by click over End 

track now, this action forces track quality value to zero and 

the prediction data is reset to zero which leads to end the 

track. By the same way it is able to force all the targets tracks 

to end by clicking over End all tracks as in Fig.13. 

 

Fig. 13. End all tracks 

In Fig.14, the GUI for the tracking program is shown, 

three target data, north led, zooming option, antenna rotation, 

end tracks, and stop the program is shown. 

 

 

Fig. 14. Radar tracking GUI 

VI. CONCLUSION 

A proposed multiple target tracking algorithm has 

been derived. The proposed algorithm performance was 

analyzed and tested in tracking various scenarios. Beside less 

computational complexity, the algorithm succeeded to track 

all various simulated scenarios. A LabVIEW® program is 

implemented to track multiple targets in real time. The 

multiple tracking program is based on the creation of a bank 

of adaptive filter, each is associated for an individual track. A 

graphical user interface has been created in a user-friendly 

way to provide the user a full control on the radar monitor 

and tracking option. This tracking program – as implemented 

using NI LabVIEW® – could be easily downloaded on an 

embedded system for any radar. 
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