
Implementation of Discrete Haar Wavelet

Transform using GPU Clusters for Improving

Speedup.

Singaravelan Neelakandan1,

RMK College of Engineering and technology,

Thiruvallur, Tamil Nadu.

Sathish Kumar P2,
RMK College of Engineering and technology,

Thiruvallur, Tamil Nadu.

Sidharth T3,
RMK College of Engineering and technology,

Thiruvallur, Tamil Nadu.

Abstract:- The Discrete Haar Wavelet Transform has an

extensive range of applications from signal processing to video

and image processing. Data-intensive structure and easy of

application make Discrete Haar Wavelet Transform suitable to

distribute fundamental operations to multi-CPU and multi-

GPU systems. In this paper, the wavelet transform was ported

in a compute-efficient way to CPU cluster and programmable

GPU cluster by employing MPI and CUDA respectively.

Experimental studies conducted as part of the parallelization

strategies for two-dimensional Discrete Haar Wavelet

Transform show that the total running time essential to process

all rows and columns of an image with different size is

significantly decreased on the GPU cluster when compared to

the its counterparts on a single CPU, single GPU and CPU

cluster. Besides the speedup of the GPU based transform,

preliminary analysis also showed that the size of the image is

an important parameter on the scalability of the GPU cluster.

1. INTRODUCTION

With the increasing growth of technology and driven by

the demand for real-time, high resolution graphics, we have

to operate a vast amount of information every time which

often presents difficulties. The digital information must be

stored and retrieved in an efficient and effective manner, in

order to make it ready for instant access. Wavelet provide a

mathematical way of encoding information in such a way

that it is layered according to level of detail [1]. The wavelet

transform, originally developed as a tool for the analysis of

seismic data, has been applied in areas as diverse signal

processing, video and image coding and data mining [1].

The fundamental idea is to decompose a signal into

components with respect to this wavelet basis, and to

reconstruct the original signal as a superposition of wavelet

basis functions [1]. If the shape of the wavelets resembles

that of the data, the wavelet analysis results in a sparse

representation of the signal, making wavelets an interesting

tool for data compression. In the theory of wavelet analysis,

both continuous and discrete wavelet transforms (DWT) are

defied [1]. If discrete and finite data are used such as digital

images, it is appropriate to consider the discrete wavelet

transform. The discrete wavelet transform is a linear and

invertible transform that operates on a data vector whose

length is usually an integer power of 2 [1]. The DWT and its

inverse can be computed by an efficient filter bank algorithm

which includes repeated high and low-pass filter and

downsampling for forward transform or upsampling for

inverse transform.

Increasing computational complexity with the size of the

digital image being processed and the needy of real-time

com-pression or decompression have enhanced the

importance of parallelized DWT for multi CPU (Central

Processing Unit) and GPU (Graphical Processing Unit)

systems [2-5]. Custom hard-ware and special

implementations of the DWT have been de-veloped to meet

these computational demands [2-5]. GPUs with

programmable, higher floating point computing power and

bandwidth when compared to the regular processing units

have taken attention and widely used by researchers [2-5].

Wong et al. implemented the DWT on consumer level

programmable graphics card hardware with the goal of

speeding up JPEG2000 compression [6]. Tenllado et al.

investigated the performance of the filter bank and lifting

schemas of the 2D DWT on GPUs [7]. Different type of

wavelets and size of data used in experimental studies and

the performance gain was improved between 10 percent and

140 percent [7]. Franco et al. described a Compute Unified

Device Architecture (CUDA) based implementation on the

DWT on Nvidia Tesla c870 and gained speedups of

approximately 20x over a sequential implementation [8].

Laan et al. proposed a hybrid method between row-column

and block based methods for DWT and achieved

considerable speedups compared to optimized CPU

implementations both for 2-D images and 3-D volume data

by utilizing CUDA platform [9]. Galiano et al. analyzed the

International Journal of Engineering Research & Technology (IJERT)

ISSN: 2278-0181http://www.ijert.org

IJERTV5IS120267

Vol. 5 Issue 12, December-2016

(This work is licensed under a Creative Commons Attribution 4.0 International License.)

Published by :

www.ijert.org 334

parallel implementations of the 2-D DWT both on a shared

memory multiprocessor and GPU plat-form [10].

In this study, Haar wavelet which is the oldest wavelet

introduced by Hungarian mathematician Alfred Haar has

been used to investigate the compatibility of the parallelized

implementations of the transformation on a GPU-equipped

compute nodes. Images with various resolutions have been

chosen to analyze the relationship between the size of the

data and number of compute nodes. The rest of the paper is

organized as follows. Section 2 summarizes the background

to Discrete Haar Wavelet Transform. In Section 3 we

provide an introduction to Message Passing Interface (MPI)

and CUDA. The details of the CUDA based parallelization

approach is given in Section 4. Experimental studies are

analyzed in Section 5. Finally, conclusions and future works

are given in Section 6.

2. DISCRETE HAAR WAVELET TRANSFORM

The basic idea of the wavelet transform is to
approximate a complex function as a superposition of
simpler functions, which are obtained from one prototype
function called basic wavelet by conveniently scaling and
translating it [1, 6-10]. Haar wavelet or Haar basis is the
simplest and the oldest type of wavelet. Like all wavelet
transforms, Haar wavelet trans-form decomposes the
information of a discrete signal into ap-proximation and
detail sub-signals whose lengths are half of
the transformed signal [6-10]. Given a 1-D discrete

signal with samples, where is a

power of 2, to obtain a approximation and detail bands by

utilizing wavelet transform, a low-pass filter and a high-

pass filter bank denoted as and respectively are applied to

the and

filtered bands are downscaled by a factor of 2 [6-10]. Then
we continue with approximation signal and repeat the
same fil-tering procedures, we get a second approximation
and detail signals. The recursive process continued times
where is called the number of levels is presented
graphically in Fig. 1.

Fig. 1. Forward (a) and inverse (b) wavelet transform

The transformation of an image is a 2-D generalization

of the 1-D wavelet [6-10]. It applies the 1-D wavelet

transform for each row [6-10]. Next, these transformed

rows are treated as if they were creating an image and 1-D

transform is applied to every column of the image [6-10].

The resulting values are all de-tail coefficients and a single

overall approximation coefficients. By using these filters

in one stage, an image is decomposed into four bands each

at half of the original resolution [6-10]. The approximation

band shows the general trend of pixel values and detail

bands show the vertical-horizontal changes in the images.

If these details are very small then they can be set to zero

with-out significantly changing the image. The number of

zero valued transformed pixels is an important measure to

success of the compression of the original image or signal

[6-10].

The lower left band is the LH sub-band that is obtained

by applying low-pass filtering to the rows and high-pass

filtering to the columns [6-10]. The lower right sub-band

is the HH sub-band and obtained by applying high-pass

filtering rows and the columns of the image [6-10]. The top

right sub-band is the HL sub-band and obtained by

applying high-pass filter to rows and low-pass filter to the

columns of image [6-10]. The top left sub-band is the LL

sub-band which is obtained by applying low pass filter to

rows and columns of the image [6-10]. LL sub-band of the

image corresponds to the approximate coefficients and if

wavelet transform will be employed another time, this

approximate coefficients used. In the Fig 2., mentioned

approximation sub-band which is used for subsequent

wavelet transform and detail sub-bands are illustrated in

the image processed by one-level Discrete Haar Wavelet

Transform.

3. MPI and CUDA

Numerous programming languages and libraries that

differ in their view of the address space available to the

programmer have been developed for explicit parallelism.

Message-passing programming paradigm that is

standardized with the library Message Passing Interface or

MPI as it is commonly known is one of the most widely

used approach for parallel computers [11, 12]. The key

attribute that characterizes message-passing programming

paradigm is the partitioned address space associated

directly with a particular process [11, 12]. Non-shared

address space was accessed by a particular process and if

more than one process are needed to perform

computations, required part of data must be transferred by

a send-receive call between

International Journal of Engineering Research & Technology (IJERT)

ISSN: 2278-0181http://www.ijert.org

IJERTV5IS120267

Vol. 5 Issue 12, December-2016

(This work is licensed under a Creative Commons Attribution 4.0 International License.)

Published by :

www.ijert.org 335

LL HL

LH HH

Fig. 2. Approximation and details sub-bands in the image

processes [11, 12]. For these send-receive operations, MPI
con-tains a large library of functions that can be called from
some other programming languages and macro and type
definitions [11, 12].

Nowadays, GPU devices evolved into a highly parallel,

multithreaded, many core processor with high memory

band-width has gained popularity as a main computation

device for several applications such as physics simulations,

neural network training, image processing and even

biological sequence alignment [13, 14]. With their G80

series of graphics processors, NVidia introduced a

programming environment called CUDA. CUDA is a

general purpose parallel computing platform and allows the

GPU to be programmed with a high-level programming

language [13, 14]. With the extension of C language of

CUDA, programmer defines special functions called kernels

which are directly executed N times in parallel by N

different CUDA threads [13, 14]. These threads are

organized in thread blocks and the collection of blocks of a

kernel is called grid. In execution time, each block of the

grid is distributed to the Streaming Multiprocessors (SMs)

which are arithmetic-logic units of the GPU [13, 14]. This

scalable programming model is illustrated for different

number of SMs in the Fig. 3.

Implementation of the 2-D Discrete Haar Wavelet

Trans-form on CPU cluster is relatively easy when

compared to the implementation on GPU cluster. The entire

image is equally di-vided into sub-parts and then these sub-

parts directly distributed to the compute nodes in the CPU

cluster to process them simul-taneously. However, in GPU

cluster a second level parallelism should be taken into

account to more effectively utilize the com-pute power of

the GPU devices. After related part of the image transferred

from host to the global memory of the GPU, suitable kernels

should be invoked to perform the desired transform.

In the proposed GPU parallel implementation of the 2-D
Discrete Haar Wavelet Transform, two different kernels
have been used to transform columns and rows of an image
or part of an image. When processing the rows of the stored
data, and represent the number of the columns and number
of rows in the transferred image or part of image and shows
the level of

transform, blocks with threads employed in a
synchronization manner that each thread in the block waits
after taking half of the sum and difference of two subsequent
pixels until all threads in the block complete their tasks. A
similar work flow for processing columns of the data is used
in the parallelized implementation. All columns of the
appropriate part of the image are transformed by utilizing
blocks with threads. The relationship between rows,
columns and level of transform to build correct block and
thread hierarchy is given in the Fig. 4 below.

Fig. 4. Thread structure of the row (a) and column (b) kernels

Minimizing data transfer between host and device is one

of the most important performance consideration in CUDA

programming. For GPU based parallelization of the 2-D

Discrete Haar Wavelet, the entire image in the case of using

single GPU or equally divided part of the image in the case

of using GPU cluster was copied one time from the host to

4. IMPLEMENTATION OF THE DISCRETE HAAR

WAVELET ON DISTRIBUTED SYSTEMS

Fig. 3. Executed blocks by streaming multiprocessors

GPU with 4 SMs

SM 0 SM 1 SM 1 SM 2

Block 0 Block 1 Block 2 Block 3

GPU with 4 SMs

SM 0 SM 1 SM 1 SM 2

Block 0 Block 1 Block 2 Block 3

Block 4 Block 5 Block 6 Block 7

International Journal of Engineering Research & Technology (IJERT)

ISSN: 2278-0181http://www.ijert.org

IJERTV5IS120267

Vol. 5 Issue 12, December-2016

(This work is licensed under a Creative Commons Attribution 4.0 International License.)

Published by :

www.ijert.org 336

the device memory. After completing transformation,

processed image was copied back from the device to host

memory. If GPU cluster was used to process image, each

GPU node including the master node that organizes the

distribution and assembly operations performs a similar

copy task as described for the single GPU application.

The basic operations dedicated to sending parts of the raw
im-age and receiving them with the integration of MPI and
setting up a correct thread block by utilizing level of
transform and size of image are summarized in the
Algorithm 1.

5. EXPERIMENTAL STUDIES

We have evaluated serial and parallel implementations

of the 2-D Discrete Haar Wavelet Transform in a cluster

with 4 compute nodes. Each compute node powered by

Asus Geforce GTX 780 Direct CU II Nvidia graphics card

which has 2304 CUDA cores and 3 GB of global memory

has been equipped with Intel i5 4670 processor with 4

cores running at frequencies between 3.4 GHz and up to

3.8 GHz in turbo mode, 2GB RAM and connected with a

standard Gigabit Ethernet. We per-formed the timing tests

using images of different sizes 512x512, 1024x1024 and

2048x2048. For each image with different sizes, three-

level 2-D Discrete Haar Wavelet Transform has been

applied 10 different times. The elapsed time between start

and finish of the transform that includes the data transfer

over-head on GPU applications was recorded in terms of

milliseconds and average values of 10 different runs was

given in Table 1.

Table 1. Average running times of transform

 Compute Environment

Image Size

 CPU GPU CPU Clust.
GPU
Clust.

512x512 3.9705 0.4392 1.2392 0.2866

1024x1024 23.4592 1.3566 9.4674 0.5162

2048x2048 99.6000 4.9992 34.9194 1.4145

From the results given in the Table 1, it’s clear that

GPU cluster has significantly decreased the running time

needed to generate a transformed image which is 8 times

smaller than the original image. While the size of the

image is increased by a factor of 4, the demanding tasks

on sequential pixel values are more efficiently handled by

the massively parallel processing power of the GPUs. For

a more detailed investigation on the performance gain of

the parallelized implementation of the sequential

algorithm, speedup and efficiency are two remark-able

performance metrics in the literature. Speedup is the ratio

of sequential execution time to parallel execution time and

efficiency is the ratio of the speedup to number of

compute nodes or

Table 2. Speedup compared to other compute

environments

 Compute Environment
Image
Size

 CPU GPU
CPU
Clust.

512x512 13.8538 1.5324 4.3238

1024x1024 45.4376 2.6281 18.3406
2048x2048 70.4136 3.5343 34.9194

processors. The gained speedup compared to a single
threaded CPU, standalone GPU and CPU cluster by using
GPU cluster is shown in the Table 2.

Analyzing the speedup and efficiency values gained by

uti-lizing the GPU cluster, an individual comparison being

made on a single GPU should be more convenient. In Table

3, this specialized comparison is summarized. While the

speedup and efficiency values for 512x512 and 1024x1024

sized images lags behind the optimal values which are 4 for

speedup and 1 for efficiency, our distributed 2-D Discrete

Haar Wavelet Trans-form is very close to ideal speedup and

efficiency with the val-ues 3.5343 and 0.8836 respectively

for 2048x2048 sized image. This type of changing on the

mentioned metrics gives important information about the

usability of the GPU clusters. Distribut-ing equally divided

data chunks to parallel computing nodes is not enough to

decrease the running time substantially. If a sin-gle GPU is

capable of handing the entire data which will be distributed

among GPU nodes in the cluster to process its ele-ments

simultaneously, using more than one GPU node to trans-

form this data could not improve the running performance

as expected. The communication overhead between cluster

nodes and necessary data transfers on GPUs deteriorate the

speedup and efficiency values for the cluster if a single GPU

node is al-ready sufficient for the data being transformed. In

addition to this, some adjustments should be done on the

GPU which in-cludes the data being transferred between the

host and device, accessing patterns of the transferred data

and a good balance between multiprocessors of the GPU to

maximize the hardware utilization.

International Journal of Engineering Research & Technology (IJERT)

ISSN: 2278-0181http://www.ijert.org

IJERTV5IS120267

Vol. 5 Issue 12, December-2016

(This work is licensed under a Creative Commons Attribution 4.0 International License.)

Published by :

www.ijert.org 337

Table 3. Speedup and efficiency compared to a single

GPU

Compute

Environment
Image
Size Speedup Efficiency

 GPU GPU Clust.

512x512
0.439
2 0.2866 1.5324 0.3831

1024x1024
1.356
6 0.5162 2.6281 0.6570

2048x2048
4.999
2 1.4145 3.5343 0.8836

6. CONCLUSION

In this paper, we analyzed the parallel implementation of

the 2-D Discrete Haar Wavelet Transform with different size

of images on different types of computer architectures. From

the comparison results, it is clear that using a GPU cluster

for solving appropriate parts of the problems which have

certain intrinsic parallelism characteristics and require

considerable quantity of processing power has greatly

improved the running time when compared with the

implementations on single CPU, single GPU and CPU

cluster. Another important conclusion in this study is that if

the ratio of arithmetic operations to other operations

including data transfers to or from GPU memory,

communication between compute nodes and read-write re-

quest is low or single GPU is proficient of executing the

whole data as is done in a GPU cluster, parallelized

implementations on both CPU and GPU clusters could not

offer promising results in terms of running time and

speedup. Future work involves a more detailed analysis of

the parallelization strategy on different image processing

techniques in order to fully exploit all the computing

resources delivered by the clusters.

7. REFERENCES

[1] K.H. Talukder, K. Harada, ”Haar wavelet based approach for image

compression and quality assessment of com-pressed image”, IJAM,

vol. 36, no. 1, pp: 1:9, 2007.

[2] T. Wong, C. Leung, P. Heng, J. Wang, ”Discrete wavelet transform
on consumer level graphics hardware”, IEEE T Multimedia, vol. 9,

no. 3, pp: 668-673, 2007.

[3] C. Tenllado, J. Setoain, M. Prieto, L. Pinuel, F. Tirado, ”Parallel
implementation of the 2D discrete wavelet trans-form on graphics
processing units: filter bank versus lift-ing”, IEEE T Parall Distr, vol.
19, no. 3, pp: 299-310, 2008.

[4] J. Franco, G. Bernabe, J. Fernandez, M.E. Acacio, ”A parallel

implementation of the 2D wavelet transform us-ing CUDA”, 17th
Euromicro International Conference on Parallel, Distributed and
Network-based Processing, Weimar, 2009, pp: 111-118.

[5] W.J. van der Laan, A.C. Jalba, J.B.T.M. Roerdink, ”Ac-celerating

wavelet lifting on graphics hardware using CUDA”, IEEE T Parall
Distr, vol. 22, no. 1, pp:132-146, 2011.

[6] V. Galiano, O. Lopez, M.P. Malumbres, H. Migallon, ”Parallel

strategies for 2D discrete wavelet transform in shared memory
systems and GPUs”, J Supercomput, vol. 64, no. 1, pp: 4-16, 2013.

[7] Z. Yang, Y. Zhu, Y. Pu, ”Parallel image processing based on

CUDA”, International Conference on Computer Sci-ence and
Software Engineering, Wuhan, Hubei, 2008, pp: 198-201.

[8] F. Zheng, X. Xu, Y. Yang, S. He, Y. Zhang, ”Accelerat-ing

biological sequence alignment algorithm on gpu with CUDA”,

International Conference on Computational and Information

Sciences (ICCIS), Chengdu, 2011, pp: 18-21.

[9] J. Barnat, P. Bauch, L. Brim, M. Ceska, ”Employing mul-tiple
CUDA devices to accelerate LTL model checking”,

16th International Conference on Parallel and Distributed Systems,
Shanghai, 2010, pp: 259-266.

[10] J. Zhang, S. You, L. Gruenwald, ”Tiny GPU cluster for big spatial

data: a preliminary performance evaluation”,
35th International Conference on Distributed Computing Systems

Workshops, Columbus, Ohio, 2015, pp: 142-147.

[11] A. Grama, G. Karypis, V. Kumar, A. Gupta, ”Introduction to parallel
computing”, Addison Wesley, Harlow, England, 2003.

[12] P. Pacheco, ”An Introduction to parallel Programming”, Morgan

Kaufmann, Burlington, USA, 2011.

[13] D.B. Kirk, W.W. Hwu, ”Programming massively parallel
processors: A Hands-on Approach”, Morgan Kaufmann, Burlington,
USA, 2010.

[14] J. Sanders, E. Kandrot, ”CUDA by example: an introduc-tion to

general-purpose GPU programming”, Pearson Ed-ucation, Boston,
USA, 2011.

International Journal of Engineering Research & Technology (IJERT)

ISSN: 2278-0181http://www.ijert.org

IJERTV5IS120267

Vol. 5 Issue 12, December-2016

(This work is licensed under a Creative Commons Attribution 4.0 International License.)

Published by :

www.ijert.org 338

