
Implementation of Discrete Haar Wavelet 

Transform using GPU Clusters for Improving 

Speedup. 
   

 
Singaravelan Neelakandan1,  

RMK College of Engineering and technology,  

Thiruvallur, Tamil Nadu. 

 

Sathish Kumar P2,  
RMK College of Engineering and technology,  

Thiruvallur, Tamil Nadu.  

 

Sidharth T3,  
RMK College of Engineering and technology,  

Thiruvallur, Tamil Nadu. 

 

 
Abstract:- The Discrete Haar Wavelet Transform has an 

extensive range of applications from signal processing to video 

and image processing. Data-intensive structure and easy of 

application make Discrete Haar Wavelet Transform suitable to 

distribute fundamental operations to multi-CPU and multi-

GPU systems. In this paper, the wavelet transform was ported 

in a compute-efficient way to CPU cluster and programmable 

GPU cluster by employing MPI and CUDA respectively. 

Experimental studies conducted as part of the parallelization 

strategies for two-dimensional Discrete Haar Wavelet 

Transform show that the total running time essential to process 

all rows and columns of an image with different size is 

significantly decreased on the GPU cluster when compared to 

the its counterparts on a single CPU, single GPU and CPU 

cluster. Besides the speedup of the GPU based transform, 

preliminary analysis also showed that the size of the image is 

an important parameter on the scalability of the GPU cluster. 

 

1. INTRODUCTION 
 

With the increasing growth of technology and driven by 

the demand for real-time, high resolution graphics, we have 

to operate a vast amount of information every time which 

often presents difficulties. The digital information must be 

stored and retrieved in an efficient and effective manner, in 

order to make it ready for instant access. Wavelet provide a 

mathematical way of encoding information in such a way 

that it is layered according to level of detail [1]. The wavelet 

transform, originally developed as a tool for the analysis of 

seismic data, has been applied in areas as diverse signal 

processing, video and image coding and data mining [1]. 

The fundamental idea is to decompose a signal into 

components with respect to this wavelet basis, and to 

reconstruct the original signal as a superposition of wavelet 

basis functions [1]. If the shape of the wavelets resembles 

that of the data, the wavelet analysis results in a sparse 

representation of the signal, making wavelets an interesting 

tool for data compression. In the theory of wavelet analysis, 

both continuous and discrete wavelet transforms (DWT) are 

defied [1]. If discrete and finite data are used such as digital 

images, it is appropriate to consider the discrete wavelet 

transform. The discrete wavelet transform is a linear and 

invertible transform that operates on a data vector whose 

length is usually an integer power of 2 [1]. The DWT and its 

inverse can be computed by an efficient filter bank algorithm 

which includes repeated high and low-pass filter and 

downsampling for forward transform or upsampling for 

inverse transform. 
 

Increasing computational complexity with the size of the 

digital image being processed and the needy of real-time 

com-pression or decompression have enhanced the 

importance of parallelized DWT for multi CPU (Central 

Processing Unit) and GPU (Graphical Processing Unit) 

systems [2-5]. Custom hard-ware and special 

implementations of the DWT have been de-veloped to meet 

these computational demands [2-5]. GPUs with 

programmable, higher floating point computing power and 

bandwidth when compared to the regular processing units 

have taken attention and widely used by researchers [2-5]. 

Wong et al. implemented the DWT on consumer level 

programmable graphics card hardware with the goal of 

speeding up JPEG2000 compression [6]. Tenllado et al. 

investigated the performance of the filter bank and lifting 

schemas of the 2D DWT on GPUs [7]. Different type of 

wavelets and size of data used in experimental studies and 

the performance gain was improved between 10 percent and 

140 percent [7]. Franco et al. described a Compute Unified 

Device Architecture (CUDA) based implementation on the 

DWT on Nvidia Tesla c870 and gained speedups of 

approximately 20x over a sequential implementation [8]. 

Laan et al. proposed a hybrid method between row-column 

and block based methods for DWT and achieved 

considerable speedups compared to optimized CPU 

implementations both for 2-D images and 3-D volume data 

by utilizing CUDA platform [9]. Galiano et al. analyzed the 
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parallel implementations of the 2-D DWT both on a shared 

memory multiprocessor and GPU plat-form [10]. 
 

In this study, Haar wavelet which is the oldest wavelet 

introduced by Hungarian mathematician Alfred Haar has 

been used to investigate the compatibility of the parallelized 

implementations of the transformation on a GPU-equipped 

compute nodes. Images with various resolutions have been 

chosen to analyze the relationship between the size of the 

data and number of compute nodes. The rest of the paper is 

organized as follows. Section 2 summarizes the background 

to Discrete Haar Wavelet Transform. In Section 3 we 

provide an introduction to Message Passing Interface (MPI) 

and CUDA. The details of the CUDA based parallelization 

approach is given in Section 4. Experimental studies are 

analyzed in Section 5. Finally, conclusions and future works 

are given in Section 6. 

 

2. DISCRETE HAAR WAVELET TRANSFORM 
 

The basic idea of the wavelet transform is to 
approximate a complex function as a superposition of 
simpler functions, which are obtained from one prototype 
function called basic wavelet by conveniently scaling and 
translating it [1, 6-10]. Haar wavelet or Haar basis is the 
simplest and the oldest type of wavelet. Like all wavelet 
transforms, Haar wavelet trans-form decomposes the 
information of a discrete signal into ap-proximation and 
detail sub-signals whose lengths are half of  
the transformed signal [6-10]. Given a 1-D discrete 

signal with samples, where is a 

power of 2, to obtain a approximation and detail bands by 

utilizing wavelet transform, a low-pass filter and a high-

pass filter bank denoted as and respectively are applied to 

the and  

 

 
filtered bands are downscaled by a factor of 2 [6-10]. Then 
we continue with approximation signal and repeat the 
same fil-tering procedures, we get a second approximation 
and detail signals. The recursive process continued times 
where is called the number of levels is presented 
graphically in Fig. 1. 

 
 

Fig. 1. Forward (a) and inverse (b) wavelet transform 

 

The transformation of an image is a 2-D generalization 

of the 1-D wavelet [6-10]. It applies the 1-D wavelet 

transform for each row [6-10]. Next, these transformed 

rows are treated as if they were creating an image and 1-D 

transform is applied to every column of the image [6-10]. 

The resulting values are all de-tail coefficients and a single 

overall approximation coefficients. By using these filters 

in one stage, an image is decomposed into four bands each 

at half of the original resolution [6-10]. The approximation 

band shows the general trend of pixel values and detail 

bands show the vertical-horizontal changes in the images. 

If these details are very small then they can be set to zero 

with-out significantly changing the image. The number of 

zero valued transformed pixels is an important measure to 

success of the compression of the original image or signal 

[6-10]. 
 

The lower left band is the LH sub-band that is obtained 

by applying low-pass filtering to the rows and high-pass 

filtering to the columns [6-10]. The lower right sub-band 

is the HH sub-band and obtained by applying high-pass 

filtering rows and the columns of the image [6-10]. The top 

right sub-band is the HL sub-band and obtained by 

applying high-pass filter to rows and low-pass filter to the 

columns of image [6-10]. The top left sub-band is the LL 

sub-band which is obtained by applying low pass filter to 

rows and columns of the image [6-10]. LL sub-band of the 

image corresponds to the approximate coefficients and if 

wavelet transform will be employed another time, this 

approximate coefficients used. In the Fig 2., mentioned 

approximation sub-band which is used for subsequent 

wavelet transform and detail sub-bands are illustrated in 

the image processed by one-level Discrete Haar Wavelet 

Transform. 
 

3. MPI and CUDA 
 

Numerous programming languages and libraries that 

differ in their view of the address space available to the 

programmer have been developed for explicit parallelism. 

Message-passing programming paradigm that is 

standardized with the library Message Passing Interface or 

MPI as it is commonly known is one of the most widely 

used approach for parallel computers [11, 12]. The key 

attribute that characterizes message-passing programming 

paradigm is the partitioned address space associated 

directly with a particular process [11, 12]. Non-shared 

address space was accessed by a particular process and if 

more than one process are needed to perform 

computations, required part of data must be transferred by 

a send-receive call between  
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Fig. 2. Approximation and details sub-bands in the image 

 
processes [11, 12]. For these send-receive operations, MPI 
con-tains a large library of functions that can be called from 
some other programming languages and macro and type 
definitions [11, 12]. 
 

Nowadays, GPU devices evolved into a highly parallel, 

multithreaded, many core processor with high memory 

band-width has gained popularity as a main computation 

device for several applications such as physics simulations, 

neural network training, image processing and even 

biological sequence alignment [13, 14]. With their G80 

series of graphics processors, NVidia introduced a 

programming environment called CUDA. CUDA is a 

general purpose parallel computing platform and allows the 

GPU to be programmed with a high-level programming 

language [13, 14]. With the extension of C language of 

CUDA, programmer defines special functions called kernels 

which are directly executed N times in parallel by N 

different CUDA threads [13, 14]. These threads are 

organized in thread blocks and the collection of blocks of a 

kernel is called grid. In execution time, each block of the 

grid is distributed to the Streaming Multiprocessors (SMs) 

which are arithmetic-logic units of the GPU [13, 14]. This 

scalable programming model is illustrated for different 

number of SMs in the Fig. 3. 

 
  

 
 

Implementation of the 2-D Discrete Haar Wavelet 

Trans-form on CPU cluster is relatively easy when 

compared to the implementation on GPU cluster. The entire 

image is equally di-vided into sub-parts and then these sub-

parts directly distributed to the compute nodes in the CPU 

cluster to process them simul-taneously. However, in GPU 

cluster a second level parallelism should be taken into 

account to more effectively utilize the com-pute power of 

the GPU devices. After related part of the image transferred 

from host to the global memory of the GPU, suitable kernels 

should be invoked to perform the desired transform. 
 

In the proposed GPU parallel implementation of the 2-D 
Discrete Haar Wavelet Transform, two different kernels 
have been used to transform columns and rows of an image 
or part of an image. When processing the rows of the stored 
data, and represent the number of the columns and number 
of rows in the transferred image or part of image and shows 
the level of  

 
    

    

    

   

    

    

    

 

 

 
 

 

 

transform, blocks with threads employed in a 
synchronization manner that each thread in the block waits 
after taking half of the sum and difference of two subsequent 
pixels until all threads in the block complete their tasks. A 
similar work flow for processing columns of the data is used 
in the parallelized implementation. All columns of the 
appropriate part of the image are transformed by utilizing 
blocks with threads. The relationship between rows, 
columns and level of transform to build correct block and 
thread hierarchy is given in the Fig. 4 below. 

Fig. 4. Thread structure of the row (a) and column (b) kernels 

 

Minimizing data transfer between host and device is one 

of the most important performance consideration in CUDA 

programming. For GPU based parallelization of the 2-D 

Discrete Haar Wavelet, the entire image in the case of using 

single GPU or equally divided part of the image in the case 

of using GPU cluster was copied one time from the host to 

4. IMPLEMENTATION OF THE DISCRETE HAAR 

WAVELET ON DISTRIBUTED SYSTEMS

Fig. 3. Executed blocks by streaming multiprocessors

GPU with 4 SMs 

SM 0 SM 1 SM 1 SM 2 

Block 0 Block 1 Block 2 Block 3 

GPU with 4 SMs 

SM 0 SM 1 SM 1 SM 2 

Block 0 Block 1 Block 2 Block 3 

Block 4 Block 5 Block 6 Block 7 
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the device memory. After completing transformation, 

processed image was copied back from the device to host 

memory. If GPU cluster was used to process image, each 

GPU node including the master node that organizes the 

distribution and assembly operations performs a similar 

copy task as described for the single GPU application.  

 

The basic operations dedicated to sending parts of the raw 
im-age and receiving them with the integration of MPI and 
setting up a correct thread block by utilizing level of 
transform and size of image are summarized in the 
Algorithm 1. 

 

5.  EXPERIMENTAL STUDIES 
 

We have evaluated serial and parallel implementations 

of the 2-D Discrete Haar Wavelet Transform in a cluster 

with 4 compute nodes. Each compute node powered by 

Asus Geforce GTX 780 Direct CU II Nvidia graphics card 

which has 2304 CUDA cores and 3 GB of global memory 

has been equipped with Intel i5 4670 processor with 4 

cores running at frequencies between 3.4 GHz and up to 

3.8 GHz in turbo mode, 2GB RAM and connected with a 

standard Gigabit Ethernet. We per-formed the timing tests 

using images of different sizes 512x512, 1024x1024 and 

2048x2048. For each image with different sizes, three-

level 2-D Discrete Haar Wavelet Transform has been 

applied 10 different times. The elapsed time between start 

and finish of the transform that includes the data transfer 

over-head on GPU applications was recorded in terms of 

milliseconds and average values of 10 different runs was 

given in Table 1. 

 
Table 1. Average running times of transform 
 

  Compute Environment  

Image Size      

 CPU GPU CPU Clust.  
GPU 
Clust. 

      

512x512 3.9705 0.4392 1.2392  0.2866 

1024x1024 23.4592 1.3566 9.4674  0.5162 

2048x2048 99.6000 4.9992 34.9194  1.4145 

 

From the results given in the Table 1, it’s clear that 

GPU cluster has significantly decreased the running time 

needed to generate a transformed image which is 8 times 

smaller than the original image. While the size of the 

image is increased by a factor of 4, the demanding tasks 

on sequential pixel values are more efficiently handled by 

the massively parallel processing power of the GPUs. For 

a more detailed investigation on the performance gain of 

the parallelized implementation of the sequential 

algorithm, speedup and efficiency are two remark-able 

performance metrics in the literature. Speedup is the ratio 

of sequential execution time to parallel execution time and 

efficiency is the ratio of the speedup to number of 

compute nodes or 

 

Table 2. Speedup compared to other compute 

environments 
 

 Compute Environment 
Image 
Size    

 CPU GPU 
CPU 
Clust. 

    
512x512 13.8538 1.5324 4.3238 

1024x1024 45.4376 2.6281 18.3406 
2048x2048 70.4136 3.5343 34.9194 

 

 
processors. The gained speedup compared to a single 
threaded CPU, standalone GPU and CPU cluster by using 
GPU cluster is shown in the Table 2.  

Analyzing the speedup and efficiency values gained by 

uti-lizing the GPU cluster, an individual comparison being 

made on a single GPU should be more convenient. In Table 

3, this specialized comparison is summarized. While the 

speedup and efficiency values for 512x512 and 1024x1024 

sized images lags behind the optimal values which are 4 for 

speedup and 1 for efficiency, our distributed 2-D Discrete 

Haar Wavelet Trans-form is very close to ideal speedup and 

efficiency with the val-ues 3.5343 and 0.8836 respectively 

for 2048x2048 sized image. This type of changing on the 

mentioned metrics gives important information about the 

usability of the GPU clusters. Distribut-ing equally divided 

data chunks to parallel computing nodes is not enough to 

decrease the running time substantially. If a sin-gle GPU is 

capable of handing the entire data which will be distributed 

among GPU nodes in the cluster to process its ele-ments 

simultaneously, using more than one GPU node to trans-

form this data could not improve the running performance 

as expected. The communication overhead between cluster 

nodes and necessary data transfers on GPUs deteriorate the 

speedup and efficiency values for the cluster if a single GPU 

node is al-ready sufficient for the data being transformed. In 

addition to this, some adjustments should be done on the 

GPU which in-cludes the data being transferred between the 

host and device, accessing patterns of the transferred data 

and a good balance between multiprocessors of the GPU to 

maximize the hardware utilization. 
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Table 3. Speedup and efficiency compared to a single 

GPU 
 

 

Compute 

Environment   
Image 
Size   Speedup Efficiency 

 GPU GPU Clust.   

     

512x512 
0.439
2 0.2866 1.5324 0.3831 

1024x1024 
1.356
6 0.5162 2.6281 0.6570 

2048x2048 
4.999
2 1.4145 3.5343 0.8836 

 

 

6.  CONCLUSION 
 

In this paper, we analyzed the parallel implementation of 

the 2-D Discrete Haar Wavelet Transform with different size 

of images on different types of computer architectures. From 

the comparison results, it is clear that using a GPU cluster 

for solving appropriate parts of the problems which have 

certain intrinsic parallelism characteristics and require 

considerable quantity of processing power has greatly 

improved the running time when compared with the 

implementations on single CPU, single GPU and CPU 

cluster. Another important conclusion in this study is that if 

the ratio of arithmetic operations to other operations 

including data transfers to or from GPU memory, 

communication between compute nodes and read-write re- 

quest is low or single GPU is proficient of executing the 

whole data as is done in a GPU cluster, parallelized 

implementations on both CPU and GPU clusters could not 

offer promising results in terms of running time and 

speedup. Future work involves a more detailed analysis of 

the parallelization strategy on different image processing 

techniques in order to fully exploit all the computing 

resources delivered by the clusters. 
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