
Implementation of Floating Point Multiplier

Using VHDL

Bhagyashree Hardiya
 Student, Dept. of ECE

Institute of Engineering and Science, IPS Academy

Indore (MP), India

Hardia.golchi@gmail.com

Virendra Singh Rathore

Dept of Electronics and Communication Engg.

Institute of Engineering and Science, IPS Academy

Indore (MP), India

Virendra883@gmail.com

Abstract— In this paper, multiplication of the floating point

numbers described in IEEE 754 single precision floating point

multiplier is done using VHDL .Implementation in

VHDL(VHSIC Hardware Description Language) is used

because it allow direct implementation on the hardware while in

other language we have to convert them into HDL then only can

be implemented on the hardware. In floating point

multiplication, adding of the two numbers is done with the help

of various types of adders but for multiplication some extra

shifting is needed.This floating point multiplication handles

various conditions like overflow, underflow, normalization,

rounding. In this paper we use IEEE rounding method for

perform the rounding of the resulted number.This paper

reviews the implementation of an IEEE 754 single precision

floating point multiplier developed by many researchers.

Keywords— Floating point unit, XILINX ISE 8.1i, model-sim,

Floating point arithmetic, Booth multiplier, IEEE rounding

method, serial by parallel adder.

I. INTRODUCTION

In IEEE 754 [1] Floating point is the binary representation of

the real numbers. There are many ways to represent the

number system however non-integer representation has gained

widespread use i.e. floating point. The typical floating point

number can be represented exactly is of the form:

 Significant digits × base
exponent

(1)

A. Fixed Point Representation

A fixed point number representation is a real data type for a

number that has a fixed number of digits after the decimal

point ('.'). A value of a fixed-point data type is essentially an

integer that is scaled by a specific factor determined by the

type.The scaling factor is usually a power of 10 (for human

convenience) or a power of 2 (for computational efficiency).

However, other scaling factors may be used occasionally.

B. Floating Point Representation

The term floating point refers to the fact that a

number's decimal point can "float"; that is, it can be placed

anywhere relative to the significant digits of the number. This

position is indicated as the exponent component in the internal

representation, and floating point can thus be thought of as a

computer realization of scientific notation. As an example, an

exponent of (−3) and significand of 1.5 might represent the

number 1.5 × 2^3= 0.1875.

Floating Point Format

Sign bit exponent mantissa

Floating point number wordlength[2] may be of two types :

1. Single precision floating point number consists of 32 bits

2. Double precision floating point number consists of 64

bits.

The format for single precision floating point number is

shown in figure above.

In this paper we make use of only single precision floating

point multiplier because of less complexity .The exponent is a

signed number represented using the bias method with a bias

of 127. The term biased exponent refers to the unsigned

number contained in bits 1 through 8 and unbiased exponent

means the actual power to which 2 is to be raised. The fraction

represents a number less than 1, but the significand of the

floating-point number is 1 plus the fraction part. In other

words, if e is the biased exponent and f is the value of the

fraction field, the number being represented as:

 1.f *2e–127 (2)

C. Serial by parallel Booth Multiplier

The common multiplication method is “add and shift”

algorithm. To reduce the number of partial products to be

added, Modified Booth algorithm [2] [3] is one of the most

popular algorithms. The simple serial by parallel booth

multiplier is particularly well suited for bit serial processors

implemented in FPGAs without carry chains because all of its

routing is to nearest neighbours with the exception of the

input. The serial input must be sign extended to a length equal

to the sum of the lengths of the serial input and parallel input

to avoid overflow, which means this multiplier takes more

clocks to complete than the scaling accumulator version. This

is the structure used in the venerable TTL serial by parallel

multiplier.

1 bit 8 bit 23 bits

111

International Journal of Engineering Research & Technology (IJERT)

IJ
E
R
T

IJ
E
R
T

www.ijert.org

NCETECE`14 Conference Proceedings

ISSN: 2278-0181

The general architecture of the serial/parallel multiplier is

shown in the figure above. One operand is fed to the circuit in

parallel while the other is serial. N partial products are formed

each cycle. On successive cycles, each cycle does the addition

of one column of the multiplication table of M*N PPs. The

final results are stored in the output register after N+M cycles.

While the area required is N-1 for M=N.

D. IEEE Rounding method

Four rounding modes are dictated by the IEEE 754 standard:

the round to RN mode, the round to positive infinity (RP)

mode, the round-to-minus infinity (RM) mode, and the RZ

mode. The RP mode can be implemented as the RI mode for

positive numbers and the RZ mode for negative numbers.

Similarly, the RM mode can be implemented as the RZ mode

for positive numbers and as the RI mode for negative

numbers.

To perform IEEE rounding [4] using a conventional

algorithm, we have to perform the following:

Step 1) C and S computation: Compute C and S to a precision

of 2N bits by generating the partial products and

reducing them with a partial product reduction

network.

Step 2) R term computation: Compute R by adding up C and S

using a CPA.

Step 3) Pre-round normalization: Normalize R if R.m=1by

right shifting R by 1-bit and adjusting the exponent

appropriately.

Step 4) Rounding bits computation: Compute the g and s bits.

Step 5) Rounding: Denote the higher order N bits of R as Rh.

Based on the rounding mode and rounding bits, add a

rounding one unit-in-the-last-place (ulp) to Rh when

necessary.

Step 6) Post-round normalization: If Rh.c=1 as a result of

rounding, another 1-bit normalization right shift of Rh

is needed, again with the exponent adjusted

accordingly. The term Rh is the FCR SV.

Notation

The C and S and terms have 2N bits. The lower order N-1

bits are among the bits that the hardware needs to examine for

rounding. The higher order N+1 bits are used to produce the

FCR N bit significand; the extra bit is required to account for

the 1-bit normalization right shift. For notational simplicity,

we define the binary point to be at N-1th bit of C and S. As

shown in Fig. 1, the higher order-bit N+1 integer portions of

S and C are denoted as Sf and Cf, respectively, and the lower

order-bit fractions as and, respectively.

II. LITERATURE REVIEW

Various researchers had contributed in the field of floating

point multiplier using VHDL. Some of them are as follows:

a. Paper Title: An Efficient Implementation of Floating

Point Multiplier[5]

 Publication: International Journal of Engineering

Research & Technology (IJERT)

 Author Name:Mohamed Al-Ashrafy, Ashraf Salem,

Wagdy Anis.

This paper presents a implementation of a floating point

multiplier that supports the IEEE 754-2008 binary interchange

format; the multiplier doesn‟t implement rounding and just

presents the significand multiplication result as is (48 bits);

this gives better precision if the whole 48 bits are utilized in

another unit; i.e. a floating point adder to form a MAC unit.

The design has three pipelining stages and after

implementation on a Xilinx Virtex5 FPGA it achieves 301

MFLOPs.

b. Paper Title: Pipeline Floating Point ALU Design using

VHDL[6]

 Publication: ICSE2002 Proc. 2002, Penang, Malaysia

 Author Name: Mamu Bin Ibne Reaz, Md. Shabiul Islam,

Mohd. S. Sulaiman.

In this project, pipelined floating point multiplication is

divided into three stages . Stage 1 checks whether the operand

is 0 and report the result accordingly. Stage 2 determines the

product sign, add exponents and multiply fractions. Stage3

normalize and concatenate the product.

c. Paper Title: Optimizing Floating Point Units in Hybrid

FPGAs[7]

 Publication: IEEE transactions on very large scale

integration (VLSI) systems, vol. 20, no. 7, July 2012.

 Author Name: ChiWai Yu, Alastair M. Smith, Wayne

Luk, Fellow, IEEE, Philip H. W. Leong, Senior

Member, IEEE, and Steven J. E. Wilton, Senior

Member, IEEE

This paper proposes a novel methodology to determine

optimized coarse-grained FPUs in hybrid FPGAs, based on

common subgraph extraction. The effect of merging different

coarse-grained types into larger FPUs is also studied.

We observe that:

1) The speed of the system is the highest for

implementations involving only floating point adders and

floating point multiplier.

 2) Higher density subgraphs produce greater reductionon

area.

112

International Journal of Engineering Research & Technology (IJERT)

IJ
E
R
T

IJ
E
R
T

www.ijert.org

NCETECE`14 Conference Proceedings

ISSN: 2278-0181

 3) They provide the best area-delay product.

 4) Merging of FPUs can improve the speed of hybrid

FPGAs, but results in consuming more area.

III. RESULT

In this paper, all modules are verified in bottom-up approach

by simulation through separate test-benches and then test

complete design as whole. The results of operation are

manually computed and then compared with the simulation

results. The generated outputs are in binary form. All binary

values are converted back to the decimal format.

IV.CONCLUSION

In this paper, we have seen that the multipliers play an

important role in today’s digital signal processing and various

other applications [8]. With advances in technology, many

researchers have tried and are trying to design multipliers

which offer either of the following design targets – high

speed, low power consumption, regularity of layout and hence

less area or even combination of them in one multiplier thus

making them suitable for various high speed, low power and

compact VLSI implementation. By using serial by parallel

Booth multiplier we see that in parallel multipliers number of

partial products to be added is the main parameter that

determines the performance of the multiplier. To reduce the

number of partial products to be added, Modified Booth

algorithm is one of the most popular algorithms. Rounding of

the resulted number provide a precision multiplication of the

numbers by using IEEE rounding method.

 V.REFERENCES

[1] IEEE 754-2008, IEEE Standard for Floating-Point

Arithmetic, 2008.

[2] L. Song, K.K. Parhi, “Efficient Finite Field Serial/Parallel

Multiplication”, Proc. of International Conf. On

Application Specific Systems, Architectures and

Processors, pp. 72-82, Chicago,USA, 1996.

[3] P. E. Madrid, B. Millar, and E. E. Swartzlander,

“Modified Booth algorithm for high radix fixed- point

multiplication,” IEEE Trans. VLSI Syst., vol. 1 , no. 2,

pp. 164-167, June 1993

[4] Nhon T. Quach, Member, IEEE, Naofumi Takagi, Senior

Member, IEEE, and Michael J. Flynn, Fellow, IEEE”

Systematic IEEE Rounding Method for High-Speed

Floating-Point Multipliers” IEEE transactions on very

large scale integration (VLSI) systems, vol. 12, no. 5,

may 2004.

[5] Mohamed Al-Ashrafy, Ashraf Salem, Wagdy Anis, “An

Efficient Implementation of Floating Point Multiplier”,

International Journal of Engineering Research &

Technology (IJERT)

[6] Mamu Bin Ibne Reaz, MEEE, Md. Shabiul Islam, MEEE,

Mohd. S. Sulaiman, MEEE Faculty of Engineering,

Multimedia University, 63 100 Cybejaya, Selangor,

Malaysia “Pipeline Floating Point ALU Design using

VHDL “ICSE2002 Proc. 2002, Penang, Malaysia.

[7] C. W. Yu, A. M. Smith, W. Luk, P. H. W. Leong, and S.

J. E. Wilton, “Optimizing coarse-grained units in

floating point hybrid FPGA,” inProc. ICFPT, 2008, pp.

57–64.

[8] John G. Proakis and Dimitris G. Manolakis (1996),

“Digital Signal Processing: Principles, Algorithms and

Applications”, Third Edition.

113

International Journal of Engineering Research & Technology (IJERT)

IJ
E
R
T

IJ
E
R
T

www.ijert.org

NCETECE`14 Conference Proceedings

ISSN: 2278-0181

