
Implementation of Higher Order FFT Processor Using FPGA

Suresh Kumar Dunna
1
, B Vijaya Bhaskar

2
, R Suryaprakash

3

1
M.Tech 2

nd
year, VLSI System Design, Dept of ECE, St.Theressa Inst. of Engg and Tech , Garividi, Vijayanagaram, AP, India.

2
HOD, Dept of ECE, St.Theressa Institute of Engineering & Technology , Garividi, Vijayanagaram, AP. India.

3
Assistant Professor, Dept of ECE, St.Theressa Institute of Engineering & Technology , Garividi, Vijayanagaram AP. India.

Abstract — In this paper, our objective is to detail know-how

and techniques that can help the designer of electronic circuits

to develop and to optimize their own IP in a reasonable

time. For this reason, we propose to optimize existing FFT

algorithms for low-cost FPGA implementations. For that, we

have used short length structures to obtain higher length

transforms. Indeed, we can obtain a VLSI structure by using

log4(N) 4-point FFTs to construct N-point FFT rather than

(N/8) logs (N) 8-point FFTs. Furthermore, two techniques are

used to yield with VLSI architecture. Firstly, the radix-4 FFT

is modified to process one sample per clock cycle. Secondly,

the memory is shared and divided into 4 parts to reduce the

consumed resources and to improve the overall latency.

(Abstract)

Keywords-FPGA,8-pointFFT,4-pointFFT,spatial distribution,

temporal distribution

1. INTRODUCTION

The Discrete Fourier Transform (DFT) is one of the most
important tools used in Digital Signal Processing applications.
It has been widely implemented in digital communication
systems such as Radars, Ultra Wide Band (UWB) receivers
and many other applications. Computing this operation has
a high computational requirement and needs a large number
of operations (N2 complex multiplications and N. (N -1)
com­plex additions).This makes computing and
implementation very difficult to realize. To reduce the number
of operations a fast algorithm has been introduced by
Cooley-Tukey[1] and called Fast Fourier Transform (FFT).
The latter, reduces complexity from O(N2) to O(NlogN).
Other researchers, propose numerous tech­niques such as
radix-4 [2], split radix [3] to avoid radix-2structure in order
to reduce the complexity of FFT algorithm. These
architectures are either based on the Decimation-in­Time
(DIT) or on the Decimation-in-Frequency(DIP). Several
designs based on these architectures were proposed in order to
implement these algorithms. On the other hand, there is a
growing interest in Field Programmable Gate Arrays (FPGAs)
because of their potential to substantially accelerate
computational intensive algorithms such as FFTs.
Unfortunately, high order FFT are almost implemented into
high cost FPGAs. For example, it is not possible to instantiate
S12-point FFT with the Xilinx IP core to implement it in
Spartan 3 family.

To meet with this challenge, we present in this paper a
VLSI architecture to allow the implementation of high
order FFT into low cost FPGAs. The remainder of this paper
is organized as follows. In section II, definition and two
kinds of distributions (spatial and temporal) are introduced.
Section III is devoted to the proposed low area architecture.
We detail the principle and the structure of 64-point FFT
which may be generalized to higher orders. Then,
techniques to save area are illustrated. Section IV presents the
experimental results and comparisons with IP core and
prior works quoted in the literature. Finally, we summarize
and conclude this paper in section V.

2. BACKGROUND

2.1 Definition

For a given sequence x of n samples, the DFT frequency
components X (k) may be defined.

1

0

.)()(
N

n

kn

NWnxkX (1)

Where N

j

N eW

2

is the twiddle factor, n and k are

respectively the time and frequency indexes,

,10 Nk 10 Nn and N is the DFT length.

Let us consider tTskTMN .,. and

,.mMln where TM , are integer and

1...1,0, Mls and .1...1,0, Tmt Applying these

considerations in (1), we obtain (2).

1

0

1

0

..

.).().(
M

l

T

m

tTsmMl

TMWmMlxtTsX (2)

It can be found that (2) is equivalent to

1

0

1

0

..

.).().(
M

l

T

m

tTsmMl

TMWmMlxtTsX (3)

and finally, (3) can be rewritten

International Journal of Engineering Research & Technology (IJERT)

Vol. 1 Issue 6, August - 2012
ISSN: 2278-0181

1www.ijert.org

1

0

..

.

1

0

.).().(
T

m

sm

T

sl

TM

M

l

tl

M WmMlxWWtTsX (4)

Equation (4) means that it is possible to realize N-point
FFT by first decomposing into one M-point and one T-
point FFT where N = M.T, and then combining them. To
illustrate this by example, we take the 64-point as a case
study after that we can make generalization to a higher order.
To perform 64-point FFT we may choose M = T = 8. Then
equation (4) is

7

0

.

8

.

64

7

0

.

8 .8).8(
m

smsl

l

tl WmlxWWtsX (5)

Equation (5) means that is possible to express the 64-
point FFT by two-dimensional structure of 8-point FFT. The
processing element of higher order FFT according to
equation (5) is the 8-point. Hence, the performance of high
length depends in 8-point performance. The choice of 8-point
FFT structure becomes crucial. In this work, the 8-point FFT
architecture used is the Split Radix DIT because of its
lower number of arithmetic operations.

2.2 Spatial distribution

One possible realization of the 64-point FFT is presented in
the Signal Flow Graph (SFG) of Fig. 1. It can be observed that
computing 64-point FFT is composed on five levels. The first
level is composed of two serial to parallel blocks used to store
real and imaginary part of data presented in a serial way. The
second floor is composed of 8 blocks of 8-point FFT Split
Radix DIT. The third block contains 49 complex multipliers
used to compute non trivial complex multiplication. The fourth
is similar to the second one. the last level is composed of
two parallel to serial blocks gives data in a serial way. At
the 64th clock cycle all input data are ready to be
proceeded. After 5 clock cycles, the 8-point FFT outputs
are available and multiplication can be started. Block
multiplier needs 2 clock cycles to perform the 49 complex
multiplica­tions. The 64-point FFT outputs are available 5
clock cycles after the last stage of 8-point FFT
transformation. Hence, the main advantage of this
architecture is the high speed and low-latency. However,
the implementation of this architecture on FPGA needs
high memory, high number of complex multipliers and
complex adders. Therefore, this ar­chitecture is not suitable
for low cost FPGA such as Spartan 3 family.

2.3 Temporal distribution

Another possible realization of the 64-point FFT is

illustrated in Fig. 2. According to this structure, the first stage

is realized by one block of 8-point FFT rather than 8 as in Fig.

1. Similarly, the third stage is performed by only one block of

8-point FFT rather than 8. Consequently, the control unit in

Fig. 2 plays an important role to synchronize all the

treatments. This architecture performs FFT in a pipeline way.

First, input data comes in a serial manner. To perform the

computation input data have to be parallelized. This is realized

by S2P blocks which are implemented by means of delay

registers. On the other side, the control unit manages the

input data addresses. The first 8-point input data has the

address in the format 8j, j E {O, 1, ... 7}. On the 56th

clock cycle these data have been proceeded to the first

stage of 8-point FFT. After 5 clock cycles, the 8-point

FFT outputs are available and multiplication can be started.

Similarly, on the 57th clock cycle, data indexed 8j + 1 will be

transformed by the first 8-point FFT and after 7 clock

cycles, results data will be available at the multiplier

output. And so one until the last result of multiplier

output which will be available at the 71
st
 clock cycle.

These results are stored on the fly on 64-complex data

memory. Likewise, the second 8-point FFT stage will proceed

the stored data to compute 64-point FFT.

Fig. 1. Signal Flow Graph of the spatial distribution FFT architecture.

Fig 2. Signal Flow Graph of the temporal distribution FFT architecture

2.4 Compromise analysis

Some concluding remarks related to this section have to be
drawn. Firstly, decomposing a high length FFT to 8-point
FFTs may be done in a spatial or in temporal distribution.
In terms of throughput, the two distributions present one

International Journal of Engineering Research & Technology (IJERT)

Vol. 1 Issue 6, August - 2012
ISSN: 2278-0181

2www.ijert.org

complex output per clock cycle since data have to be serialized
by P2S component. On the other hand, the latency which
represents the elapsed time to get the first result is the
same. In fact, for a given N = 8

n
 where n is the number

of stages, the latency in both architectures may be
expressed as L(N) = N + 7log8(N – 2). The main difference
between the two distributions is the consumed area.
Obviously, the second architecture consumes averagely 7
times less area than the first one. The number of 8-point
FFT blocks pass from 16 to 2 and the number of non­trivial
multiplier pass from 49 to 7. Furthermore, the complex data
memory used in Fig.2 may be avoided by storing the multiplier

Outputs on S2P register. Indeed, since input data at
address 8j, 8j+l,.. Are proceeded one can use these addresses
to store the multiplier outputs.

Definitively, the major drawback of the decomposition
of high length FFT on 8-point FFTs is related to the
hardware consumed resources of the 8-point FFT.
Synthesis results of the split radix DIT description of 8-
point FFT show that the percentage of occupied slices in
Spartan3E XC3S500 is about 30%. Therefore, to design a
higher order FFT, the FPGA resources will be
overflowed. Another drawback is about the limitation of the
number of input with exclusively 8-point FFT elements since
N = 8

n
. To overcome this problem we replace the 8-point

FFT by a 4-point FFT using radix-4 algorithm. This choice is
reinforced by the synthesis results of radix 4 in terms of slice
occupation which is about 2%.

3. LOW AREA ARCHITECURE

3.1 Definition

The N-point FFT equation can be split into three stages
according to next equation.

1

0

1

0

1

0

))((),,()(
L

l

M

m

K

k

sMqMKpkMmMKl

NWkmlxMKpMqsX

 (6)

For N = 64, one possible solution consists on constructing
the 64-point FFT according to the temporal distribution by
using 8-point, 4-point FFT and 2-point FFTs. The obtained
design is not highly structured and inhomogeneous. The second
solution consists in constructing the 64-point FFT by three
stages of 4-point FFT. For L = M = K = 4, 64-point FFT
equation can be written as

3

0

3

0

3

0

)416)(416(

64),,()164(
l m k

sqpkmlWkmlxpqsX

 (7)

3.2 Optimizations

Using the radix-4 processing element, we can represent
the64-point FFT according to SFG in Fig. 3. The 64-point
FFT is composed of a control unit, three blocks 4-point FFT
units, two blocks multipliers units with two phase
generator units and a complex 64-point memory unit. The
control unit, indeed of managing the FFf4, multipliers and

memorizing unit, it is used also to generate addresses of
the inputs and the outputs of each block.

3.2.1 Radix-4 modification: Outputs of such algorithm are

presented in next equations

 A C

)3()1()2()0()0(xxxxX

 B D

))3()1(()2()0()1(xxjxxX

)3()1()2()0()2(xxxxX

)3()1()2()0()3(jxjxxxX (8)

The SFG of the radix-4 structure is illustrated in Fig. 4.
It is shown that radix-4 algorithm is composed of 8
complex additions/subtractions.

In order to reduce the number of complex multipliers,

after each 4-point FFT and to keep the pipeline way in
computation of the design we modify the 4-point FFT
architecture.

Fig 3. Signal Flow Graph of the proposed low area 64-point FFT
architecture.

Usually, the radix-4 is computed as multi-inputs multi-
outputs system. This structure requires 4 multipliers in one
clock cycle. It is true that this structure presents a high
speed design, but almost a P2S block is used to serialize data.
For these reasons, we rectify the architecture in order to have
one multiplier per clock cycle. So, the resulting design have
one complex input and give one complex output per clock
cycle as represented in Fig. 4. Intermediate signals A, B, C

International Journal of Engineering Research & Technology (IJERT)

Vol. 1 Issue 6, August - 2012
ISSN: 2278-0181

3www.ijert.org

and D used in the diagram are indicated to understand the
parallel computing.

3.2.2 Sharing memory: For each output of the 4-point

sFFT block the phase generator generates the

correspondent twiddle factor and the multiplier unit

performs the complex multiplication and stores the result

on 64 complex data memory. This last will be reused and

shared between all the blocks as it is shown on Fig. 3.
Usually, computing 64-point FFT based on 4-point FFT

needs 3 complex memories. In our architecture we use only
one complex 64-point. Moreover, this memory is divided
into four small 16-point complex memories in order to
improve the latency. Indeed, the problem behind this consists
in using one shared memory with only one writer port. This
is impossible since a part of data already saved in the
memory are not used. Furthermore, if we use a dual port
memory, this will be synthesized as BRAM blocks which
are oversize and available in limited number in low cost
FPGAs.

 Fig.4 Radix-4 butterfly diagram

4 EXPERIMENTAL RESULTS

4.1 Synthesis results

Fig 5.TOP LEVEL

4.2 Implementation results

Fig 6.implementation results of higher order FFT

5 CONCLUSION

Techniques to implement high order FFT into low cost
FPGAs were presented and validated. After a
comprehensive and a comparative study of existing high
order FFTs, an optimized architecture of 64-point FFT
was proposed. The transition between 64-point and 256-point
was exploited. Higher order FFTs could be obtained with the
same manner. Our future work for the FPGA
implementation will be devoted to the optimization of the
block multiplier and the use of the method proposed in
[7]to replace embedded multipliers.

REFERENCES

[1] Yousri Ouerhani, Maher Jridi and A. Alfalou,implementation
techniques of higher order FFT into low cost FPGA Equipe Vision,
Laboratoire L@bISEN, CS 42807, 29228 Brest Cedex 2, Francee-
mail: {yousri.ouerhani.maher.jridi and ayman.al-falou}@isen.fr

[2] W. Cooley and 1. Tukey, An algorithm for the machine calculation
of Complex Fourier series, Math. Comput., vol. 19, pp. 297-301,
April 1965.

[3] A. Y. Oppenheim, R. W. Schafer, and J. R. Buck,Discrete-Time
Signal Processing, 2nd ed. Englewood Cliffs, NJ: Prentice-Hall,
1998.

[4] H. Sorensen, M. Heindeman, and C. Burrus, On computing the
split­radix FFT, IEEE Trans. Acoustics, Speech, Signal Process,
vo1.34, pp. 152-156, 1986.

[5] K. Maharatna, E. Grass, and Ulrich Jagldhold, A 64-Point Fourier
Transform Chip for High-Speed Wireless LAN Application Using
OFDM, IEEE 1. Solid-State Circuits, vol. 39, pp. 484-493, March
2004.

[6] Xilinx Product Specification, High perfomance 64-point Complex
FFTIIF Y.7.0 June 2009 [online]. Available on:
http://www.xilinx.com/ipcenter.

[7] M. Jridi and A. Alfalou, A Low-Power. High-Speed DCT architecture
for image compression: principle and implementation, in Proc.
VLSI Syst. in Chip Conf (VLSI-SoC), pp. 304-309, Sept 2010.

[8] M. Jridi and A. Alfalou, Direct Digital Frequency Synthetizer with
CORDIC Algorithm and Taylor Series Approximation for Digital
Re­ceivers, Euro Journal of Scientific Research, vol. 30, No. 4, pp.
542-553, 2009.

International Journal of Engineering Research & Technology (IJERT)

Vol. 1 Issue 6, August - 2012
ISSN: 2278-0181

4www.ijert.org

