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Abstract  

Floating point is very important in 

real applications likes automotive power 

train and body control applications, imaging 

such as    scaling, transforms and font 

generation in printing, 3D transforms, FFT 

and filtering in graphics image and Digital 

signal processing. This paper presents 

floating point multiplication and division of 

IEEE754 format. The floating point 

multiplication and division which improves 

the performance of the processor speed and 

area. In this paper we implemented 16X16 

floating point multiplier using Xilinx 

ISE13.2 and modelsim simulator and 

hardware implementation on Spartan3. 

I Introduction  

In this paper, suggested a technique for 

implementing a floating point multiplier 

integer to floating-point and conversion of 

floating-point to integer. And further shown  

 

How these functions can be implemented, 

and verified. Here we redesign the floating-

point unit. It includes all the software 

Xilinx13.2 and modelsim, hardware 

implementation is SPARTAN3 needed to 

generate custom verilog coded floating-point 

arithmetic unit. In general, it can be assumed 

that fixed-point implementations have 

higher speed and lower cost, while floating-

point has higher dynamic range and no need 

for scaling, which may be attractive for 

more complicated algorithms. 

 

IEEE 754 Floating Point Standard  
 

IEEE 754 [1] floating point standard 

is the most common representation today for 

real numbers on computers. The IEEE has 

produced a Standard to define floating-point 

representation and arithmetic. Although 

there are other representations, it is the most 

common representation used for floating 
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point numbers. The standard brought out by 

the IEEE come to be known as IEEE 754. 

The IEEE Standard for Binary Floating-

Point Arithmetic (IEEE 754) is the most 

widely- used standard for floating point 

computation, and is followed by many CPU 

and FPU implementations. The standard 

defines formats for representing floating-

point numbers including negative numbers 

and denormal numbers special values i.e. 

infinities and NAN’s together with a set of 

floating-point operations that operate on 
these values. It also specifies four rounding 
modes which are round to zero, round to 
nearest, round to infinity and round to even 

and five exceptions including when the 

exceptions occur, and what happens when 

they do occur. Dealing with fixed-point 

arithmetic will limit the usability of a 
processor. If operations on numbers with 

fractions (e.g. 10.2445), very small numbers 

(e.g. 0.000004), or very large numbers (e.g. 

42.243x105) are required, then a different 
one representation is in order is

 
the floating-

 point arithmetic.
 

The floating point is 

utilized as the binary point is not fixed, as is 
the case in integer (fixed-point) arithmetic. 

In order to get some of the terminology out 

of the way, let us discuss a simple floating-

point number, such as -2.42x103. The '-' 

symbol indicates the sign component of the 

number, while the '242' indicate the 

significant digits component of the number, 

and finally the '3' indicates the scale factor 

component of the number. It is interesting to 

note that the string of significant digits is 

technically termed the mantissa of the 

number, while the scale factor is 

appropriately called the exponent of the 

number. The general form of the 

representation is the following: 

                  (−1)S ∗ M ∗ 2E(1)  

Where, 

S represents the sign bit. 

M represents the mantissa.  

E represents the exponent. 

Floating point arithmetic : 
 

 The IEEE Standard for Binary 

Floating-Point Arithmetic (IEEE 754) is the 

most widely-
 

used standard for floating-

point computation, and is followed by many 

CPU and FPU implementations.
 

The 

standard defines formats for representing 

floating-point number (including ±zero and 

denormals) and special values (infinities and 

NaNs) together with a set of floating-point 

operations that operate on these values. It 

also specifies four rounding modes and five 

exceptions. 
 
IEEE 754 specifies four formats 

for representing floating-point values: 

single-precision (32-bit), double-precision 

(64-bit), single-extended precision (≥ 43-bit, 

not commonly used) and double-extended 

precision (≥ 79-bit, usually implemented 

with 80 bits). Many languages specify that 
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IEEE formats and arithmetic be 

implemented, although sometimes it is 

optional. For example, the C programming 

language, which pre-dated IEEE 754, now 

allows but does not require IEEE arithmetic 

(the C float typically is used for IEEE 

single-precision and double uses IEEE 

double-precision). 

 II Methodology
 

 A multiplication of two floating-

point numbers is done in four steps:

 

 

Non-signed multiplication of mantissas: it 

must take account of the integer part, 

implicit in normalization. The number of 

bits of the result is twice the size of the 

operands.

  

 

Normalization of the result: the exponent 

can be modified accordingly.

 

 

Addition of the exponents, taking into 

account the bias.

 

 

Calculation of the sign

 

 
Example:

  
 



 

Let's suppose a multiplication of 2 floating-

point numbers A and

 

B, where A=-18.0 and 

B=9.5.

 


 

Binary representation of the operands:

 
     A = -10010.0      B = +1001.1.

 


  

Normalized representation of the        

operands:

 
         A = -1.001x24 B = +1.0011x23.

 


 

  IEEE representation of the operands:

 

    A=1100000110100000000000000000000 

   B=01000001000110000000000000000000 

 
Multiplication of the Mantissas: 
 
We must extract the mantissas, adding an1 

as most significant bit, for normalization 

           100100000000000000000000 

           100110000000000000000000 

 The result of the multiplication 

is:0x558000000000 

 Only the most significant bits are useful: 

after normalization (elimination of the 

most significant 1), we get the 23-bit 

mantissa of the result. This 

normalization can lead to a correction of 

the result's exponent 

 In our case, we get: 

010101011000000000000000000000

000000000000000 

 Addition of the Exponents:
 

 Exponent of the result is equal to the 

sum of the operands exponents. A 1

 

can be 

added if needed by the

 

normalization of the 

mantissas

 

multiplication (this is not the 

case in our example).

 

 


 

As the exponent fields (Ea and Eb) are 

biased, the bias must be removed in 

order to do the addition. And then, we 

must to add again the bias,    to get the 

value to be entered into the exponent 

field of the result (Er):
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               Er = (Ea-127) + (Eb-127) + 127 

                    = Ea + Eb – 127 

 
 In our example, we have: what is actually 7, 

the exponent of the result 

Ea 10000011 Eb 10000010 -127 10000001 

Er 10000110 

 
Calculation of the sign of the result: 
 

 The sign of the result (Sr) is given by the 
exclusive-or of the operands signs (Sa and 
Sb): 
              Sr = Sa XOR Sb 
 

 In our example, we get: 
 
              Sr = 1 XOR 0 = 1 
              i.e. a negative sign 
 

 Composition of the result: 
 

The setting of the 3 intermediate 

results (sign, exponent and mantissa) gives 

us the final result of our multiplication: 

   1 10000110 01010110000000000000000 

AxB = 18.0x-9.5 = -1.0101011x2134-127 = 

-10101011.0 = -171.010 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
III Result and discussion: 
 

 
 
   Fig 1: Synthesis Table for Floating point 
              multiplier using IEEE 754. 
 
 
RTL schematic : 
 

 
 
    Fig 2: RTL schematic of floating point  
               Multiplier. 
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Simulation Result :
 

 

 
     Fig 3: Simulation results of Floating 

                         point Multiplier. 
 

  IV Conclusion 
 

 Floating point multiplier is designed 

and implemented using Xilinx
 
in this paper. 

The designed multiplier conforms to IEEE 

754 single precision floating point standard.
 In future work will be implement for 

scientific calculation.
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