

1MVJ College of Engineering,

Near ITPB, Channasandra, Bangalore-67.

 2MVJ College of Engineering,

Near ITPB, Channasandra, Bangalore-67.

Abstract

Floating point is very important in

real applications likes automotive power

train and body control applications, imaging

such as scaling, transforms and font

generation in printing, 3D transforms, FFT

and filtering in graphics image and Digital

signal processing. This paper presents

floating point multiplication and division of

IEEE754 format. The floating point

multiplication and division which improves

the performance of the processor speed and

area. In this paper we implemented 16X16

floating point multiplier using Xilinx

ISE13.2 and modelsim simulator and

hardware implementation on Spartan3.

I Introduction

In this paper, suggested a technique for

implementing a floating point multiplier

integer to floating-point and conversion of

floating-point to integer. And further shown

How these functions can be implemented,

and verified. Here we redesign the floating-

point unit. It includes all the software

Xilinx13.2 and modelsim, hardware

implementation is SPARTAN3 needed to

generate custom verilog coded floating-point

arithmetic unit. In general, it can be assumed

that fixed-point implementations have

higher speed and lower cost, while floating-

point has higher dynamic range and no need

for scaling, which may be attractive for

more complicated algorithms.

IEEE 754 Floating Point Standard

IEEE 754 [1] floating point standard

is the most common representation today for

real numbers on computers. The IEEE has

produced a Standard to define floating-point

representation and arithmetic. Although

there are other representations, it is the most

common representation used for floating

Implementation of IEEE754 Floating Point Multiplier

A Kumutha
1
 Shobha. P

2

867

International Journal of Engineering Research & Technology (IJERT)

Vol. 3 Issue 1, January - 2014

IJ
E
R
T

IJ
E
R
T

ISSN: 2278-0181

www.ijert.orgIJERTV3IS10670

point numbers. The standard brought out by

the IEEE come to be known as IEEE 754.

The IEEE Standard for Binary Floating-

Point Arithmetic (IEEE 754) is the most

widely- used standard for floating point

computation, and is followed by many CPU

and FPU implementations. The standard

defines formats for representing floating-

point numbers including negative numbers

and denormal numbers special values i.e.

infinities and NAN’s together with a set of

floating-point operations that operate on
these values. It also specifies four rounding
modes which are round to zero, round to
nearest, round to infinity and round to even

and five exceptions including when the

exceptions occur, and what happens when

they do occur. Dealing with fixed-point

arithmetic will limit the usability of a
processor. If operations on numbers with

fractions (e.g. 10.2445), very small numbers

(e.g. 0.000004), or very large numbers (e.g.

42.243x105) are required, then a different
one representation is in order is

the floating-

 point arithmetic.

The floating point is

utilized as the binary point is not fixed, as is
the case in integer (fixed-point) arithmetic.

In order to get some of the terminology out

of the way, let us discuss a simple floating-

point number, such as -2.42x103. The '-'

symbol indicates the sign component of the

number, while the '242' indicate the

significant digits component of the number,

and finally the '3' indicates the scale factor

component of the number. It is interesting to

note that the string of significant digits is

technically termed the mantissa of the

number, while the scale factor is

appropriately called the exponent of the

number. The general form of the

representation is the following:

 (−1)S ∗ M ∗ 2E(1)

Where,

S represents the sign bit.

M represents the mantissa.

E represents the exponent.

Floating point arithmetic :

 The IEEE Standard for Binary

Floating-Point Arithmetic (IEEE 754) is the

most widely-

used standard for floating-

point computation, and is followed by many

CPU and FPU implementations.

The

standard defines formats for representing

floating-point number (including ±zero and

denormals) and special values (infinities and

NaNs) together with a set of floating-point

operations that operate on these values. It

also specifies four rounding modes and five

exceptions.

IEEE 754 specifies four formats

for representing floating-point values:

single-precision (32-bit), double-precision

(64-bit), single-extended precision (≥ 43-bit,

not commonly used) and double-extended

precision (≥ 79-bit, usually implemented

with 80 bits). Many languages specify that

868

International Journal of Engineering Research & Technology (IJERT)

Vol. 3 Issue 1, January - 2014

IJ
E
R
T

IJ
E
R
T

ISSN: 2278-0181

www.ijert.orgIJERTV3IS10670

IEEE formats and arithmetic be

implemented, although sometimes it is

optional. For example, the C programming

language, which pre-dated IEEE 754, now

allows but does not require IEEE arithmetic

(the C float typically is used for IEEE

single-precision and double uses IEEE

double-precision).

 II Methodology

 A multiplication of two floating-

point numbers is done in four steps:

 

Non-signed multiplication of mantissas: it

must take account of the integer part,

implicit in normalization. The number of

bits of the result is twice the size of the

operands.

 

Normalization of the result: the exponent

can be modified accordingly.

 

Addition of the exponents, taking into

account the bias.

 

Calculation of the sign

Example:



Let's suppose a multiplication of 2 floating-

point numbers A and

B, where A=-18.0 and

B=9.5.



Binary representation of the operands:

 A = -10010.0 B = +1001.1.



Normalized representation of the

operands:

 A = -1.001x24 B = +1.0011x23.



 IEEE representation of the operands:

 A=1100000110100000000000000000000

 B=01000001000110000000000000000000

Multiplication of the Mantissas:

We must extract the mantissas, adding an1

as most significant bit, for normalization

 100100000000000000000000

 100110000000000000000000

 The result of the multiplication

is:0x558000000000

 Only the most significant bits are useful:

after normalization (elimination of the

most significant 1), we get the 23-bit

mantissa of the result. This

normalization can lead to a correction of

the result's exponent

 In our case, we get:

010101011000000000000000000000

000000000000000

 Addition of the Exponents:

 Exponent of the result is equal to the

sum of the operands exponents. A 1

can be

added if needed by the

normalization of the

mantissas

multiplication (this is not the

case in our example).



As the exponent fields (Ea and Eb) are

biased, the bias must be removed in

order to do the addition. And then, we

must to add again the bias, to get the

value to be entered into the exponent

field of the result (Er):

869

International Journal of Engineering Research & Technology (IJERT)

Vol. 3 Issue 1, January - 2014

IJ
E
R
T

IJ
E
R
T

ISSN: 2278-0181

www.ijert.orgIJERTV3IS10670

 Er = (Ea-127) + (Eb-127) + 127

 = Ea + Eb – 127

 In our example, we have: what is actually 7,

the exponent of the result

Ea 10000011 Eb 10000010 -127 10000001

Er 10000110

Calculation of the sign of the result:

 The sign of the result (Sr) is given by the
exclusive-or of the operands signs (Sa and
Sb):
 Sr = Sa XOR Sb

 In our example, we get:

 Sr = 1 XOR 0 = 1
 i.e. a negative sign

 Composition of the result:

The setting of the 3 intermediate

results (sign, exponent and mantissa) gives

us the final result of our multiplication:

 1 10000110 01010110000000000000000

AxB = 18.0x-9.5 = -1.0101011x2134-127 =

-10101011.0 = -171.010

III Result and discussion:

 Fig 1: Synthesis Table for Floating point
 multiplier using IEEE 754.

RTL schematic :

 Fig 2: RTL schematic of floating point
 Multiplier.

870

International Journal of Engineering Research & Technology (IJERT)

Vol. 3 Issue 1, January - 2014

IJ
E
R
T

IJ
E
R
T

ISSN: 2278-0181

www.ijert.orgIJERTV3IS10670

Simulation Result :

 Fig 3: Simulation results of Floating

 point Multiplier.

 IV Conclusion

 Floating point multiplier is designed

and implemented using Xilinx

in this paper.

The designed multiplier conforms to IEEE

754 single precision floating point standard.
 In future work will be implement for

scientific calculation.

V Reference

[1] Design

and implementation of efficient

 32 bit floating point multiplier using

Verilog, “International journal of

Engineering and computer science”,

ISSN: 2319-7242 Volume 2 Issue 6 June

2013, Page No.

2098-2101.

[2]

The VLSI

Implementation of A Square

Root Algorithm,

Proc. of IEEE

Symposium on Computer Arithmetic,

IEEE Computer Society, Press, 1985.

Page No. 159-165.

[3] IEEE Floating Point Representation of Real

Number, Fundamentals of Computer

 Science.

[4] P. Karlstrom, A. Ehliar, “High Performance

Low Latency Floating Point Multiplier”,

November 2006.

[5] IEEE standard for binary-floating point

arithmetic, ANSI/IEEE Std 754-1985, The

Institute of Electrical and Electronic

Engineers Inc., New York, August 1985.

[6] An ANSI/ IEEE

Standard for Radix-

 Independent Floating Point Arithmetic,

 On microprocessor of IEEE computers,

 October, 1987.

[7] P. Karlstrom,

A. Ehliar, High Performance

 Low Latency Floating Point Multiplier,

 November 2006.

[8] John. P. Hayes, ‘Computer Architecture

 and Organization’, McGraw Hill, 1998.

871

International Journal of Engineering Research & Technology (IJERT)

Vol. 3 Issue 1, January - 2014

IJ
E
R
T

IJ
E
R
T

ISSN: 2278-0181

www.ijert.orgIJERTV3IS10670

