
Implementation of Sha-3 for Security and Error

Detection and Correction Mechanism to Enhance

Memory Reliabilty

Asha T R

1
,

1
Mtech, DE, Dept of ECE, SJBIT

Uttharahalli main road, Kengeri, Bangalore-60,

 Karnataka, India

Hamsaveni N

2

2
Assoc Professor, Dept of ECE, SJBIT

Uttharahalli main road,

Kengeri, Bangalore-60,

 Karnataka, India

Abstract - The secure hash algorithm (SHA)-3 that is keccak is

selected in 2012 to provide security to any application that

requires hashing, pseudo-random number generation, and

integrity checking. Based on several benchmarks such as

security, performance and complexity, this algorithm is

selected. So in this paper SHA-3 algorithm is implemented to

provide security to the message.Saved hash values in memory

may suffer from multiple cell upsets(MCUs) when exposed to

radiation environment. Several error correction codes(ECCs)

are widely used to protect memory from causing data

corruption but the problem was they were capable to detect

and correct very few errors. In this paper, novel decimal

matrix code (DMC) is used to improve the memory reliability.

DMC is based on divide-symbol and it utilizes decimal

algorithm to maximize error detection capability. To

minimize area overhead error reuse technique (ERT) which

uses encoder as part of decoder is utilized.

Index Terms— Secure hash algorithm (SHA)-3, keccak, high

performance, security, decimal algorithm, error correction

codes (ECCs), memory, multiple cells upsets (MCUs) and error

reuse technique(ERT).

INTRODUCTION

Widespread hash functionsbefore 2004 were

MD4, MD5, RIPE-MD, RIPE-MD160, SHA0, SHA1 and

SHA2. Several attacks on these hash functions such as

collision attacks, second pre-image attacks and pre-image

attacks broke them and gave rise to a need of new and

highly secured hash function.[1]

 In 2007 the National Institute of Standards and

Technology (NIST) initiated a selection process to choose

a new secure cryptographic hash algorithm, i.e., secure

hash algorithm (SHA)-3 in order to increase security and

performance of hash functions. After three successive

rounds of assessments, on October 2, 2012, keccak was

chosen as the winner algorithm for this standard[1].

Based on different aspects, among five finalists

keccak was selected as the winner algorithm. Those

different aspects includes software implementations [2],

hardware application-specific integrated circuit (ASIC)

implementations [3]–[5], and field programmable gate

array(FPGA) implementations [5]–[7].

 Keccak the winner of SHA-3 competition was

expected to provide various security- constrained

applications such as the ones used for generating digital

signatures and message authentication codes. For example,

it can be used in conjunction with the efficient

implementations for the point multiplication in elliptic

curve cryptography (ECC) or in integrity-checking for

mobile ad hoc networks (MANETs) which lack physical

layer security [8]. This secure hash algorithm was found to

be utilized in integrity assurance of implantable and

wearable medical devices, Internet of nano-things , and

smart infrastructures, smart buildings, smart fabrics,

networked control systems, and wireless sensor networks

as well[9].

There are six functions in SHA-3 family. Among,

four are cryptographic hash functions, called SHA3-224,

SHA3-256, SHA3-384, and SHA3-512 and the rest two are

extendable-output functions (XOFs), called SHAKE128

and SHAKE256. Extendable-output functions are different

from hash functions. Among four cryptographic hash

functions of SHA-3, SHA3-512 was found to be more

secure with its higher output length of 512. [10]. In this

paper to provide tight security to the message or the

information, SHA3-512 (keccak f(1600)) is being used.

The soft error rate in memory cells is rapidly

increasing due to ionizing effects of atmospheric neutron,

alpha-particle, and cosmic rays [11] because of

combination of memories with an increasing number of

electronic systems as the technology is scaled down to

Nano-scale. In order to have highly reliable memory, even

though single bit upset is a major concern, in several

applications [12], multiple cell upsets (MCUs) have

become a serious reliability concern.

To protect memories against soft errors, several

error correction codes (ECCs)[13]–[16] have been widely

used for years in order to make memory cells as fault-

tolerant as possible.]. For example, to deal with MCUs in

memories, BCH codes [17], Reed–Solomon codes [18],

and PDS codes [19] were used. But it is found that these

codes require more area, power, and delay overheads

because of more complexity in their encoding and

decoding circuits. To assist with single-error correction and

double-error detection, Built-in current sensors (BICS)

International Journal of Engineering Research & Technology (IJERT)

ISSN: 2278-0181

www.ijert.orgIJERTV4IS050753

(This work is licensed under a Creative Commons Attribution 4.0 International License.)

Vol. 4 Issue 05, May-2015

642

were proposed in order to provide protection against MCUs

[20], [21]. But they were successful to correct only two

errors in a word.

More recently, in [22], to efficiently correct

MCUs per word with a low decoding delay, 2-D matrix

codes (MCs) are proposed in which one word is divided

into multiple rows and columns logically. By adding parity

code to each column, bits per row are protected by

Hamming code. The vertical syndrome bits are activated

when two errors are detected by Hamming. Then these two

errors can be corrected. As a result, in all cases MC is

capable of correcting only two errors. In [23], decimal

algorithm is combined with Hamming code and applied at

software level, wherein addition of integer values is used to

detect and correct soft errors. It results in a lower delay

overhead compared to other codes.

In this paper, to achieve enhanced memory

reliability, novel decimal matrix code (DMC) based on

divide-symbol is used. To detect errors it makes use of

decimal algorithm (decimal integer addition and decimal

integer subtraction). Using decimal algorithm, reliability

of memory is enhanced by maximizing the error detection

capability. Without disturbing the whole encoding and

decoding processes, the encoder-reuse technique (ERT) is

used in order to minimize area overhead of extra circuits

(encoder and decoder). This is achieved by using DMC

encoderitself be a part of the decoder.

PROPOSED METHODOLGY

A. Sha-3 (Keccak Algorithm)

Permutation f is the core of the Keccak algorithm.

This is applied repeatedly to a fixed-length state of b = r +

c bits, where r and c are bit rate and capacity respectively.

In which higher values of r represents higher speed

whereas higher values of c corresponds to higher security

level. The data or input information is first padded to get a

length multiple of r. Both absorbing and squeezing phases

are performed to obtain sufficient message length for all

five steps and standard output length respectively [1].

Keccak family possess seven possible types

among which keccak-f[r+c=1600] is chosen for the sake of

brevity. In this 1600, is the width of permutation (in

bits).For such a kind of keccak, the state consists of an

array of 5 × 5 lanes, each of length w = 64 bits is

considered. As per the standard, 24rounds [1] are

recommended for keccak-f[1600].For each of 24rounds,

there exists five internal steps shown in fig 1. For all these

steps , 0 ≤ x, y ≤ 4 and 0 ≤ z ≤ 63.

Figure1: Five internal steps involved in the Keccak algorithm.

The first step θ: It computes the parity of for

length of 5w (320, when w = 64) at a time in a 5-bit

column pattern using exclusive-or operation.Columns

involved will be nearby in a regular pattern. Precisely,

a[x][y][z]←a[x][y][z] ⊕ parity(a[x][y−1][z]) ⊕

parity(a[x][y+1][z−1]).

 Second step ρ: Here the bitwise rotation for each

of the 25 words will be done. Precisely, a[0][0] is not

rotated, and for all 0 ≤ t < 24, a[x][y][z] ←

a[x][y][z−(t+1)(t+2)/2].

Third step π: A fixed pattern a[y][2x+3y] ←

a[x][y] will be permuted for every 25 words.

Fourth step χ: Combination along rows in a

bitwise pattern will be done using a ← a ⊕ (¬b & c) where

b and c are intermediate states. Precisely, a[x][y][z] ←

a[x][y][z] ⊕ ¬a[x][y+1][z]& a[x][y+2][z].

Final step ι: Here obtained values will be xored

with RC A[0, 0] ← A[0, 0]⊕RC, where RC is the round

constant specific for each of the 24 rounds of Keccak-

f[1600].

B. Error Detection And Correction Approach

1. Schematic of Memory tolerating faults
The schematic of memory, tolerating faults using

DMC is depicted in Fig. 2. In the encoding (write) process,

message bits D are fed to DMC encoder. Horizontal H and

the vertical V redundancy bits are calculated for the

message bits. After the completion of the encoding process,

information bits and redundancy bits are stored in memory

as shown in the figure 2. If multiple cells are upset, they

are located and corrected in the decoding (read) process.

Since the DMC uses decimal algorithm, fault tolerant

capability is maximized with lower performance overhead

and the ERT minimizes the total area coverage.

International Journal of Engineering Research & Technology (IJERT)

ISSN: 2278-0181

www.ijert.orgIJERTV4IS050753

(This work is licensed under a Creative Commons Attribution 4.0 International License.)

Vol. 4 Issue 05, May-2015

643

Figure 2: Schematic of memory tolerating faults using DMC.

2. DMC Encoder

The first operation that will be carried out in the

encoder is the division of message into symbols and

arrangement of them to a matrix form ie if N bit is the

message, that will be divided into k symbols each of m bits

(N = k × m). Divided symbols are arranged ink1 × k2 2-D

matrix form (k = k1 × k2), where k1 represents number of

rows and k2 number of columns respectively. The second

operation performed in the encoder is calculation of

horizontal (H) and vertical (V) redundancy bits. Horizontal

redundancy bits are obtained by performing decimal

integer addition on selected symbols for every row. Here,

each symbol is treated as decimal integer. Vertical

redundancy bits are calculating by performing binary xor

operationto the bits in the same column. Since the symbol

division and matrix formation is done logically but not

physically, DMC enforce for the change of physical

structure of the memory.

To explain the DMC scheme, 32-bits are taken as an

example ieD0 to D31 are information bits. These 32-bits

are divided into eight symbols each of 4-bits. k1 and k2

values are chosen as 2 and 4 respectively. H0–H19 are

horizontal check or redundancy bits; V0 through V15 are

vertical redundancy bits. However,maximum correction

capability (i.e., the maximum size of MCUs can be

corrected) and the usage of number of redundant bits

varieswith the variation in the values ofk and m. So,

adjusting the values ofk and m must be done carefully to

maximize the correction capability and also to minimize

the number of redundant bits.

 For example, in the considered case of data bits 32, ifk

= 2×2 and m = 8, only single error bit can be corrected and

the usage of redundant bits will be 40. Whereas fork = 4 ×

4 and m = 2, 3-bits of error can be corrected with the

reduced redundancy bits of 32. Instead, when k = 2 × 4 and

m = 4 is chosen, the correction capability can be

maximized up to 16 bits with the redundancy of 36. In this

paper, to prioritize the enhancement of the reliability of

memory, the first consideration is taken onerror correction

capability, so k = 2 × 4 and m = 4 are utilized to construct

DMC.

Figure 3:Structure of 32-bit DMC encoder that uses multibit adders and

XOR gates

The encoder computing redundant bits using multibit

adders and XOR gates is shown in Fig. 3. In this figure,

H19 − H0 represents horizontal redundant bits, while V15

− V0 represents vertical redundant bits, and the remaining

bits U31 − U0 are the information bits that are directly

taken from D31 to D0.

3. DMC Decoder

The decoding process is required to correct the

corrupted information. For an example, first the received

horizontal redundant bits H4H3H2H1H0' and vertical

redundancy bits V 0' –V 3' are calculated to

theinformation bitsD' that are read to the decoder. Then, the

horizontal syndrome bits ∆H4H3H2H1H0 and the vertical

syndrome bits S3 − S0 are calculated as follows:

∆H4H3H2H1H0 = H4H3H2H1H0' − H4H3H2H1H0

 S0 = V0'⊕V0

Where “−“ represents decimal integer subtraction.

In the same way complete horizontal and vertical syndrome

bits are calculated for the remaining received message.

If∆H4H3H2H1H0 and S3 − S0 are zero, the stored

codeword has original information bits in symbol 0 ie no

error has been occurred. Else if∆H4H3H2H1H0 and S3 −

S0 are nonzero, presence of error in the corresponding

symbol will be ensured. Then the induced errors in symbol

0 are detected and located, and finally errors can be

corrected by

D0correct= D0 ⊕S0.

International Journal of Engineering Research & Technology (IJERT)

ISSN: 2278-0181

www.ijert.orgIJERTV4IS050753

(This work is licensed under a Creative Commons Attribution 4.0 International License.)

Vol. 4 Issue 05, May-2015

644

Fig 4:Structure of 32-bitDMC decoder using ERT.

The DMC decoder involving syndrome calculator,

error locator, and error corrector as its sub-modules is

represented in Fig. 4. Each sub-module performs a specific

task in the decoding process.From the figure it can be

observed that the redundancy bits must be recomputed

from the received information bits D' then those

redundancy bits are compared with the original redundancy

bits in order to obtain syndrome ∆H and S. Non zero value

of ∆Hensures the presence of error in that corresponding

symbol. This operation is done in the error locator. Then by

performing xor operation to the located symbol with

corresponding syndrome vertical bits, corrupted bits are

corrected in the error corrector.

RESULTS

Using keccak algorithm that is SHA-3, security to

the message is provided by generating hash values. 64bits

taken as input information and hash size of 512 is

generated as shown in figure 5. It is found that the

recognition of input message from the hash value is highly

impossible even after several random trials. This proves

that the security provided to the information via SHA-3 is

very high.

Fig 5: Hash output of size 512 for message signalof 64bits.

 Error detection and correction approach that is

implemented using decimal matrix code used decimal

algorithm to efficiently detect and correct errors upto 16

bits in a data of 32bits as shown in figure 6. Number of

redundancy bits used to locate and correct 16 bits of error

are 36. Among, 20 were horizontal parity and 16 were

vertical parity. Encoder reuse technique is used which

reduced the area overhead by utilizing encoder as a part of

decoder.

Fig 6: 16bits error correction in 32bit message.

CONCLUSION

Keccak was chosen as the best hashing algorithm,

not just for its very strong overall security and

performance, but because it offers exceptional performance

in areas where other secure hash algorithms such as

SHA=0 and SHA-1 are failed to perform as itcompletely

relies on different architectural principles from those of

SHA-0 and SHA-1 for its security. Keccak has a large

security margin, good general performance, and a flexible

design. And to overcome the MCUs in memory, novel per-

word DMC is used. This protection code utilized decimal

algorithm to detect errors, so that more errors were detected

and corrected. The results obtained from the

implementation have shown that the utilized scheme has a

superior level of protection against large MCUs in

memory.

The only drawback of the utilized DMC is that the

number of redundant bits used is found to be larger in order

to maintain higher reliability of memory. To overcome this,

a reasonable combination of k and m must be chosen to

maximize memory reliability. Therefore, the future work

can be conducted for the reduction of the redundant bits

and the maintenance of the reliability of the utilized

technique.

REFERENCES

 [1] Keccak Hash Function, NIST (National Institute of Standards and

Technology), (2014, Mar.) [Online]. Available:

http://csrc.nist.gov/groups/ ST/hash/sha-3

[2] D.-J. Bernstein and T. Lange. (2012). The new SHA-3 software
shootout. e-Print [Online]. Available:

http://eprint.iacr.org/2012/004.pdf

[3] S. Tillich, M. Feldhofer, M. Kirschbaum, T. Plos, J.-M. Schmidt, and
A. Szekely, “Uniform evaluation of hardware implementations of

the round-two SHA-3 candidates,” in Proc. Conf. SHA-3 Candidate,

pp. 1–16, 2010.
[4] X. Guo, S. Huang, L. Nazhandali, and P. Schaumont, “Fair and

comprehensive performance evaluation of 14 second round SHA-3

ASIC implementations,” in Proc. Conf. SHA-3 Candidate, pp. 1–13,
Aug. 2010.

[5] M. Kneˆzevi´c et al., “Fair and consistent hardware evaluation of

fourteen round two SHA-3 candidates,” IEEE Trans. Very Large
Scale Integr.(VLSI) Syst., vol. 20, no. 5, pp. 827–840, May 2012.

International Journal of Engineering Research & Technology (IJERT)

ISSN: 2278-0181

www.ijert.orgIJERTV4IS050753

(This work is licensed under a Creative Commons Attribution 4.0 International License.)

Vol. 4 Issue 05, May-2015

645

[6] E. Homsirikamol, M. Rogawski, and K. Gaj, “Throughput vs. area

trade-offs in high-speed architectures of five round 3 SHA-3

candidates implemented using Xilinx and Altera FPGAs,” in Proc.

Workshop Cryptograph. Hardw. Embedded Syst., 2011, pp. 491–

506.
[7] K. Latif, M. Rao, A. Aziz, and A. Mahboob, “Efficient hardware

implementations and hardware performance evaluation of SHA-3

finalists,” in Proc. Conf. SHA-3 Candidate, pp. 1–14, Mar. 2012.
[8] E. M. Shakshuki, N. Kang, and T. R. Sheltami, “EAACK–A secure

intrusion detection system for MANETs,” IEEE Trans. Ind.

Electron., vol. 60, no. 3, pp. 1089–1098, Mar. 2013.
[9] M. Mozaffari-Kermani, M. Zhang, A. Raghunathan, and N. K. Jha,

“Emerging frontiers in embedded security,” in Proc. Conf. VLSI

Design, Jan. 2013, pp. 203–208.
[10] Penny Pritzker, Patrick D. Gallagher andCharles H. Romine “ Federal

Information Processing Standards Publication 202 May 2014”.

[11] D. Radaelli, H. Puchner, S. Wong, and S. Daniel, “Investigation of
multi-bit upsets in a 150 nm technology SRAM device,” IEEE

Trans.Nucl. Sci., vol. 52, no. 6, pp. 2433–2437, Dec. 2005.

[12] E. Ibe, H. Taniguchi, Y. Yahagi, K. Shimbo, and T. Toba, “Impact of
scaling on neutron induced soft error in SRAMs from an 250 nm to a

22 nm design rule,” IEEE Trans. Electron Devices, vol. 57, no. 7,

pp. 1527–1538, Jul. 2010.
[13] C. Argyrides and D. K. Pradhan, “Improved decoding algorithm for

high reliable reed muller coding,” in Proc. IEEE Int. Syst. On Chip

Conf., Sep. 2007, pp. 95–98.
[14] A. Sanchez-Macian, P. Reviriego, and J. A. Maestro, “Hamming

SEC-DAED and extended hamming SEC-DED-TAED codes
through selective shortening and bit placement,” IEEE Trans. Device

Mater. Rel., to be published.

[15] S. Liu, P. Reviriego, and J. A. Maestro, “Efficient majority logic fault
detection with difference-set codes for memory applications,”

IEEETrans. Very Large Scale Integr. (VLSI) Syst., vol. 20, no. 1, pp.

148–156, Jan. 2012.
[16] M. Zhu, L. Y. Xiao, L. L. Song, Y. J. Zhang, and H. W. Luo, “New

mix codes for multiple bit upsets mitigation in fault-secure

memories,” Microelectron. J., vol. 42, no. 3, pp. 553–561, Mar.
2011.

[17] R. Naseer and J. Draper, “Parallel double error correcting code

design to mitigate multi-bit upsets in SRAMs,” in Proc. 34th Eur.
Solid-StateCircuits, Sep. 2008, pp. 222–225.

[18] G. Neuberger, D. L. Kastensmidt, and R. Reis, “An automatic

technique for optimizing Reed-Solomon codes to improve fault
tolerance in memories,” IEEE Design Test Compute., vol. 22, no. 1,

pp. 50–58, Jan.–Feb. 2005.

[19] P. Reviriego, M. Flanagan, and J. A. Maestro, “A (64,45) triple error
correction code for memory applications,” IEEE Trans. Device

Mater.Rel., vol. 12, no. 1, pp. 101–106, Mar. 2012.

[20] P. Reviriego and J. A. Maestro, “Efficient error detection codes for
multiple-bit upset correction in SRAMs with BICS,” ACM Trans.

DesignAutom. Electron. Syst., vol. 14, no. 1, pp. 18:1–18:10, Jan.

2009.
[21] C. Argyrides, R. Chipana, F. Vargas, and D. K. Pradhan, “Reliability

analysis of H-tree random access memories implemented with built

in current sensors and parity codes for multiple bit upset correction,”
IEEE Trans. Rel., vol. 60, no. 3, pp. 528–537, Sep. 2011.

[22] C. Argyrides, D. K. Pradhan, and T. Kocak, “Matrix codes for

reliable and cost efficient memory chips,” IEEE Trans. Very Large
Scale Integr.(VLSI) Syst., vol. 19, no. 3, pp. 420–428, Mar. 2011.

[23] C. A. Argyrides, C. A. Lisboa, D. K. Pradhan, and L. Carro, “Single

element correction in sorting algorithms with minimum delay
overhead,” in Proc. IEEE Latin Amer. Test Workshop, Mar. 2009,

pp. 652–657.

International Journal of Engineering Research & Technology (IJERT)

ISSN: 2278-0181

www.ijert.orgIJERTV4IS050753

(This work is licensed under a Creative Commons Attribution 4.0 International License.)

Vol. 4 Issue 05, May-2015

646

