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Abstract - The secure hash algorithm (SHA)-3 that is keccak is 

selected in 2012 to provide security to any application that 

requires hashing, pseudo-random number generation, and 

integrity checking. Based on several benchmarks such as 

security, performance and complexity, this algorithm is 

selected. So in this paper SHA-3 algorithm is implemented to 

provide security to the message.Saved hash values in memory 

may suffer from multiple cell upsets(MCUs) when exposed to 

radiation environment. Several error correction codes(ECCs) 

are widely used to protect memory from causing data 

corruption but the problem was they were capable to detect 

and correct very few errors. In this paper, novel decimal 

matrix code (DMC) is used to improve the memory reliability. 

DMC is based on divide-symbol and it utilizes decimal 

algorithm to maximize error detection capability. To 

minimize area overhead error reuse technique (ERT) which 

uses encoder as part of decoder is utilized.  

 

Index Terms— Secure hash algorithm (SHA)-3, keccak, high 

performance, security, decimal algorithm, error correction 

codes (ECCs), memory, multiple cells upsets (MCUs) and error 

reuse technique(ERT). 
 

INTRODUCTION 
 

Widespread hash functionsbefore 2004 were 

MD4, MD5, RIPE-MD, RIPE-MD160, SHA0, SHA1 and 

SHA2. Several attacks on these hash functions such as 

collision attacks, second pre-image attacks and pre-image 

attacks broke them and gave rise to a need of new and 

highly secured  hash function.[1] 

 In 2007 the National Institute of Standards and 

Technology (NIST) initiated a selection process to choose 

a new secure cryptographic hash algorithm, i.e., secure 

hash algorithm (SHA)-3 in order to increase security and 

performance of hash functions. After three successive 

rounds of assessments, on October 2, 2012, keccak was 

chosen as the winner algorithm for this standard[1]. 

Based on different aspects, among five finalists 

keccak was selected as the winner algorithm. Those 

different aspects includes software implementations [2], 

hardware application-specific integrated circuit (ASIC) 

implementations [3]–[5], and field programmable gate 

array(FPGA)  implementations [5]–[7]. 

 

 

 Keccak the winner of SHA-3 competition was 

expected to provide various security- constrained 

applications such as the ones used for generating digital 

signatures and message authentication codes. For example, 

it can be used in conjunction with the efficient 

implementations for the point multiplication in elliptic 

curve cryptography (ECC) or in integrity-checking for 

mobile ad hoc networks (MANETs) which lack physical 

layer security [8]. This secure hash algorithm was found to 

be utilized in integrity assurance of implantable and 

wearable medical devices, Internet of nano-things , and 

smart infrastructures, smart buildings, smart fabrics, 

networked control systems, and wireless sensor networks 

as well[9]. 

There are six functions in SHA-3 family. Among, 

four are cryptographic hash functions, called SHA3-224, 

SHA3-256, SHA3-384, and SHA3-512 and the rest two are 

extendable-output functions (XOFs), called SHAKE128 

and SHAKE256. Extendable-output functions are different 

from hash functions. Among four cryptographic hash 

functions of SHA-3, SHA3-512 was found to be more 

secure with its higher output length of 512. [10]. In this 

paper to provide tight security to the message or the 

information, SHA3-512 (keccak f(1600)) is being used. 

The soft error rate in memory cells is rapidly 

increasing due to ionizing effects of atmospheric neutron, 

alpha-particle, and cosmic rays [11] because of 

combination of  memories with an increasing number of 

electronic systems as the technology is scaled down to 

Nano-scale. In order to have highly reliable memory, even 

though single bit upset is a major concern, in several 

applications [12], multiple cell upsets (MCUs) have 

become a serious reliability concern. 

To protect memories against soft errors, several 

error correction codes (ECCs)[13]–[16] have been widely 

used for years in order to make memory cells as fault-

tolerant as possible. ]. For example, to deal with MCUs in 

memories, BCH codes [17], Reed–Solomon codes [18], 

and PDS codes [19] were used. But it is found that these 

codes require more area, power, and delay overheads 

because of more complexity in their encoding and 

decoding circuits. To assist with single-error correction and 

double-error detection, Built-in current sensors (BICS) 
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were proposed in order to provide protection against MCUs 

[20], [21]. But they were successful to correct only two 

errors in a word. 

More recently, in [22], to efficiently correct 

MCUs per word with a low decoding delay, 2-D matrix 

codes (MCs) are proposed in which one word is divided 

into multiple rows and columns logically. By adding parity 

code to each column, bits per row are protected by 

Hamming code.  The vertical syndrome bits are activated 

when two errors are detected by Hamming. Then these two 

errors can be corrected. As a result, in all cases MC is 

capable of correcting only two errors. In [23], decimal 

algorithm is combined with Hamming code and applied at 

software level, wherein addition of integer values is used to 

detect and correct soft errors. It results in a lower delay 

overhead compared to other codes. 

In this paper, to achieve enhanced memory 

reliability, novel decimal matrix code (DMC) based on 

divide-symbol is used. To detect errors it makes use of 

decimal algorithm (decimal integer addition and decimal 

integer subtraction).  Using decimal algorithm, reliability 

of memory is enhanced by maximizing the error detection 

capability.  Without disturbing the whole encoding and 

decoding processes, the encoder-reuse technique (ERT) is 

used in order to minimize area overhead of extra circuits 

(encoder and decoder). This is achieved by using DMC 

encoderitself be a part of the decoder. 

 

PROPOSED METHODOLGY 

 
A. Sha-3 (Keccak Algorithm) 

Permutation f is the core of the Keccak algorithm. 

This is applied repeatedly to a fixed-length state of b = r + 

c bits, where r and c are bit rate and capacity respectively. 

In which higher values of r represents higher speed 

whereas higher values of c corresponds to higher security 

level. The data or input information is first padded to get a 

length multiple of r. Both absorbing and squeezing phases 

are performed to obtain sufficient message length for all 

five steps and standard output length respectively [1].  

Keccak family possess seven possible types 

among which keccak-f[r+c=1600] is chosen for the sake of 

brevity.  In this 1600, is the width of permutation (in 

bits).For such a kind of keccak, the state consists of an 

array of  5 × 5 lanes, each of length w = 64 bits is 

considered. As per the standard, 24rounds [1] are 

recommended for keccak-f[1600].For each of 24rounds, 

there exists five internal steps shown in fig 1.  For all these 

steps , 0 ≤ x, y ≤ 4 and 0 ≤ z ≤ 63.   

 

 
Figure1: Five internal steps involved in the Keccak algorithm. 

 

The first step θ: It computes the parity of for 

length of 5w (320, when w = 64) at a time in a 5-bit 

column pattern using exclusive-or operation.Columns 

involved will be nearby in a regular pattern. Precisely, 

a[x][y][z]←a[x][y][z] ⊕ parity(a[x][y−1][z]) ⊕ 

parity(a[x][y+1][z−1]). 

 Second step ρ: Here the bitwise rotation for each 

of the 25 words will be done. Precisely, a[0][0] is not 

rotated, and for all 0 ≤ t < 24, a[x][y][z] ← 

a[x][y][z−(t+1)(t+2)/2].  

Third step π: A fixed pattern a[y][2x+3y] ← 

a[x][y] will be permuted for every 25 words. 

Fourth step χ:  Combination along rows in a 

bitwise pattern will be done using a ← a ⊕ (¬b & c) where 

b and c are intermediate states. Precisely, a[x][y][z] ← 

a[x][y][z] ⊕ ¬a[x][y+1][z]& a[x][y+2][z]. 

Final step ι:  Here obtained values will be xored 

with RC A[0, 0] ← A[0, 0]⊕RC, where RC is the round 

constant specific for each of the 24 rounds of Keccak-

f[1600]. 

 

B. Error Detection And Correction Approach 

1. Schematic of  Memory tolerating faults 
The schematic of memory, tolerating faults using 

DMC is depicted in Fig. 2. In the encoding (write) process, 

message bits D are fed to DMC encoder. Horizontal H and 

the vertical V redundancy bits are calculated for the 

message bits. After the completion of the encoding process, 

information bits and redundancy bits are stored in memory 

as shown in the figure 2. If multiple cells are upset, they 

are located and corrected in the decoding (read) process. 

Since the DMC uses decimal algorithm, fault tolerant 

capability is maximized with lower performance overhead 

and the ERT minimizes the total area coverage.  
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Figure 2: Schematic of memory tolerating faults using DMC. 

 

2. DMC Encoder 

The first operation that will be carried out in the 

encoder is the division of message into symbols and 

arrangement of them to a matrix form ie if N bit is the 

message, that will be divided into k symbols each of m bits 

(N = k × m). Divided symbols are arranged ink1 × k2 2-D 

matrix form (k = k1 × k2), where k1 represents number of 

rows and k2 number of columns respectively. The second 

operation performed in the encoder is calculation of 

horizontal (H) and vertical (V) redundancy bits. Horizontal 

redundancy bits are obtained by performing decimal 

integer addition on selected symbols for every row. Here, 

each symbol is treated as decimal integer. Vertical 

redundancy bits are calculating by performing binary xor 

operationto the bits in the same column. Since the symbol 

division and matrix formation is done logically but not 

physically, DMC enforce for the change of physical 

structure of the memory. 

To explain the DMC scheme, 32-bits are taken as an 

example ieD0 to D31 are information bits. These 32-bits 

are divided into eight symbols each of 4-bits. k1 and k2 

values are chosen as 2 and 4 respectively. H0–H19 are 

horizontal check or redundancy bits; V0 through V15 are 

vertical redundancy bits. However,maximum correction 

capability (i.e., the maximum size of MCUs can be 

corrected) and the usage of number of redundant bits 

varieswith the variation in the values ofk and m. So, 

adjusting the values ofk and m must be done carefully to 

maximize the correction capability and also to minimize 

the number of redundant bits. 

 For example, in the considered case of data bits 32, ifk 

= 2×2 and m = 8, only single error bit can be corrected and 

the usage of   redundant bits will be 40. Whereas fork = 4 × 

4 and m = 2, 3-bits of error can be corrected with the 

reduced redundancy bits of 32. Instead, when k = 2 × 4 and 

m = 4 is chosen, the correction capability can be 

maximized up to 16 bits with the redundancy of 36. In this 

paper, to prioritize the enhancement of the reliability of 

memory, the first consideration is taken onerror correction 

capability, so k = 2 × 4 and m = 4 are utilized to construct 

DMC.  

 

 
Figure 3:Structure of 32-bit DMC encoder that uses multibit adders and 

XOR gates 

 

The encoder computing redundant bits using multibit 

adders and XOR gates is shown in Fig. 3. In this figure, 

H19 − H0 represents horizontal redundant bits, while V15 

− V0 represents vertical redundant bits, and the remaining 

bits U31 − U0 are the information bits that are directly 

taken from D31 to D0. 

 

3. DMC Decoder 

The decoding process is required to correct the 

corrupted information. For an example, first the received 

horizontal redundant bits H4H3H2H1H0' and vertical 

redundancy bits V 0' –V 3' are calculated   to 

theinformation bitsD' that are read to the decoder. Then, the 

horizontal syndrome bits ∆H4H3H2H1H0 and the vertical 

syndrome bits S3 − S0 are calculated as follows: 

 

∆H4H3H2H1H0 = H4H3H2H1H0' − H4H3H2H1H0  

 S0 = V0'⊕V0  

 

Where “−“ represents decimal integer subtraction. 

In the same way complete horizontal and vertical syndrome 

bits are calculated for the remaining received message. 

If∆H4H3H2H1H0 and S3 − S0 are zero, the stored 

codeword has original information bits in symbol 0 ie no 

error has been occurred. Else if∆H4H3H2H1H0 and S3 − 

S0 are nonzero, presence of error in the corresponding 

symbol will be ensured. Then the induced errors in symbol 

0 are detected and located, and finally errors can be 

corrected by 

  

D0correct= D0 ⊕S0. 
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Fig 4:Structure of 32-bitDMC decoder using ERT. 

 

The DMC decoder involving syndrome calculator, 

error locator, and error corrector as its sub-modules is 

represented in Fig. 4. Each sub-module performs a specific 

task in the decoding process.From the figure it can be 

observed that the redundancy bits must be recomputed 

from the received information bits D' then those 

redundancy bits are compared with the original redundancy 

bits in order to obtain syndrome ∆H and S. Non zero value 

of ∆Hensures the presence of error in that corresponding 

symbol. This operation is done in the error locator. Then by 

performing xor operation to the located symbol with 

corresponding syndrome vertical bits, corrupted bits are 

corrected in the error corrector. 

 

RESULTS 
 

Using keccak algorithm that is SHA-3, security to 

the message is provided by generating hash values. 64bits 

taken as input information and hash size of 512 is 

generated as shown in figure 5. It is found that the 

recognition of input message from the hash value is highly 

impossible even after several random trials. This proves 

that the security provided to the information via SHA-3 is 

very high. 

 

 
 

Fig 5: Hash output of size 512 for message signalof 64bits. 

 

 Error detection and correction approach that is 

implemented using decimal matrix code used decimal 

algorithm to efficiently detect and correct errors upto 16 

bits in a data of 32bits as shown in figure 6. Number of 

redundancy bits used to locate and correct 16 bits of error 

are 36. Among, 20 were horizontal parity and 16 were 

vertical parity. Encoder reuse technique is used which 

reduced the area overhead by utilizing encoder as a part of 

decoder. 

 

 
 

Fig 6: 16bits error correction in 32bit message. 

  
CONCLUSION 

 

Keccak was chosen as the best hashing algorithm, 

not just for its very strong overall security and 

performance, but because it offers exceptional performance 

in areas where other secure hash algorithms such as 

SHA=0 and SHA-1 are failed to perform as itcompletely 

relies on different architectural principles from those of 

SHA-0 and SHA-1 for its security. Keccak has a large 

security margin, good general performance, and a flexible 

design. And to overcome the MCUs in memory, novel per-

word DMC is used. This protection code utilized decimal 

algorithm to detect errors, so that more errors were detected 

and corrected. The results obtained from the 

implementation have shown that the utilized scheme has a 

superior level of protection against large MCUs in 

memory. 

The only drawback of the utilized DMC is that the 

number of redundant bits used is found to be larger in order 

to maintain higher reliability of memory. To overcome this, 

a reasonable combination of k and m must be chosen to 

maximize memory reliability. Therefore, the future work 

can be conducted for the reduction of the redundant bits 

and the maintenance of the reliability of the utilized 

technique. 
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