
Improved Compression Rate using Quad-Byte

Index Based Transformation as a Pre-Processing

to Arithmetic Coding

Jyotika Doshi

GLS Inst.of Computer Technology

Opp. Law Garden, Ellisbridge

Ahmedabad-380006, INDIA

Savita Gandhi
Dept. of Computer Science, Gujarat University

Navrangpura

Ahmedabad-380009, INDIA

Abstract—Transformation algorithms are used to increase

redundancy in data sets and achieve better compression when

conventional compression techniques applied later. Arithmetic

coding is the most widely preferred entropy encoder used in

most of the compression methods. It is nearly optimal and

compression rate cannot be further improved without

changing the data model. In this paper, we have used QBT-I

(Quad-Byte Transformation using Indexes) technique to

change the data model and introduce more redundancy in the

data. We have experimented QBT-I at a pre-processing stage

before applying arithmetic coding compression method. QBT-I

transforms most frequent 4-byte (quad-byte) integers. Most

frequent quad-bytes are arranged in sorted order of their

frequency and then divided in a group of 256 quad-bytes. Each

quad-byte in a group is encoded using two tokens: group

number and the location in a group. Group number is denoted

using variable length codeword; whereas location within a

group is denoted using 8-bit index. QBT-I can be applied on

any source; not necessarily text or image or audio. Minimum of

2.5% compression gain is observed using QBT-I at a pre-

processing as compared to compression using only arithmetic

coding. Increasing number of groups gives better compression.

Keywords—data compression, data transformation, quad-byte

transformation, arithmetic coding

I. INTRODUCTION

Data transformation transforms data from one format to
another. When data transformation is applied before applying
conventional compression, the main purpose of a data
transformation is to re-structure the data such that the
transformed file is more compressible by a second-stage
conventional compression algorithm. The intention here is to
improve the overall compression rate as compared to what
could have been achieved by using only arithmetic coding
compression algorithm.

Majority of the data compression methods transforms
data first and then apply entropy coding in the last step.
Some of such methods are: LZ algorithms [21, 25, 28, 29];
DMC (Dynamic Markov Compression) [2, 4]; PPM [15] and
their variants, context-tree weighting method [26],

Grammar—based codes [10] and JPEG-MPEG methods
used for image and video compression. Earlier-generation
image and video coding standards such as JPEG, H.263, and
MPEG-2, MPEG-4 were using Huffman coding in the
entropy coding step; whereas recent generation standards
including JPEG2000 [7, 23] and H.264 [13, 24] utilize
arithmetic coding.

Arithmetic coding [9, 12, 27] is the most widely
preferred efficient entropy coding technique providing
optimal entropy. Here, the problem is that further
improvement in compression is not possible due to its
entropy limitations. To achieve better compression, the only
possibility is to change the data model and have it more
skewed. One way to change the data model is applying data
transformation.

Authors of this paper have proposed Quad-Byte
Transformation using Index (QBT-I) method with an
intention to introduce more redundancy in the data and make
it more compressible using arithmetic coding at the second
stage [6]. Implementation of this proposal has resulted in
minimum of nearly 2.5% improvement in compression as
compared to compression using only arithmetic coding.

QBT-I transforms most frequent quad-bytes (4-byte
integers) forming various groups of 256 quad-bytes and then
encoding quad-byte using two tokens: group number and
location (8-bit index) of quad-byte within a group.

Due to two-stage process of transformation and then
compression, it is obviously going to be somewhat slower.
This slowness is acceptable since the transform truly skews
the data source to fulfil our purpose of achieving more
compression.

Another advantage of QBT-I is that it can be applied to
any type of source; may be text, binary file, image, video or
any other format.

1381

International Journal of Engineering Research & Technology (IJERT)

Vol. 3 Issue 2, February - 2014

IJ
E
R
T

IJ
E
R
T

ISSN: 2278-0181

www.ijert.orgIJERTV3IS20786

II. LITERATURE REVIEW

Most of the research work in data transformation is
intended to compress specific type of files. Transformation
techniques like DCT and wavelet are used for image files.

Burrows Wheeler Transform (BWT) [3, 16] performs
block encoding. Even though it is intended for text source
only, it can be used for any source. For each block, BWT
requires rotation-sorting-indexing. It is very time consuming
and requires better data structures for efficient pattern
matching. It gives better compression only when it is
combined ad-hoc compression techniques Run Length
Encoding (RLE) and Move-To-Front (MTF) encoding and
then entropy coding.

Star family transformation techniques are intended to
compress text files. Star Transform [11], Length Index
Preserving Transform (LIPT) [1, 17], and StarNT [22] are
some such techniques shown in Table 1.

TABLE I. STAR FAMILY TRANSFORMATION TECHNIQUES

 Star encoding LIPT StarNT

Source Type Text Text Text

Dictionary 22 sub-dict 22 sub-dict single

Size of token to be

encoded

word upto 22

letters

word upto 22

letters

Word

comparison time per

token

O(Sub-Dict-size) O(Sub-Dict-size) O(Dict- size)

Code length variable length:

word-size

variable length:

<*, word length,

index>

variable length:

index with max.

3-letters

Redundancy using * index, length index, length

Compression methods

that can be applied

later

RLE, LZW,

Huffman,

Arithmetic coding

Huffman or Arithmetic Coding

Drawback Applicable to text source only

 Requires pattern matching

Dictionary Based Encoding (IDBE) [20], Enhance

Intelligent Dictionary Based Encoding (EIDBE) [18] and
Improved Intelligent Dictionary Based Encoding (IIDBE)
[19] are the transformation methods used for text files as
shown in Table 2. They transform words using their index
position in the dictionary.

TABLE II. DICTIONARY BASED ENCODING TECHNIQUES

 IDBE EIDBE IIDBE

Source Type Text Text Text

Dictionary single 22 sub-dict 22 sub-dict

Size of token to

be encoded

Word word word

comparison time

per token

O(Dict-size) O(sub-dict-size) O(sub-dict-size)

Code length variable length: <1-

byte codeword

length, codeword>

variable length: <1-

byte word length,

codeword>

variable length: <1-

byte codeword

length, codeword>

Redundancy

using

(index, length)

index using ASCII

characters 33-250,

length 1-4 using

ASCII characters

251-254

(index, length) index

using ASCII

characters 33-231,

length 1-22 using

ASCII characters

232-253

(index, length)

index using

characters (A-Z, a-z)

as in StarNT, length

1-22 using ASCII

characters 232-253

Compression

methods that can

be applied later

Pre-processing to BWT, Later MTF and RLE and entropy

encoding

Drawback Applicable to text source only

 Requires pattern matching

 Compression-time more as used as a pre-processing

to BWT

Methods BPE (Byte Pair Encoding) [8], digram encoding

and ISSDC (Iterative Semi-Static Digram Coding) [14] are

also intended for text files, but can be applied to any type of

source. They will benefit more only when applied to small-

alphabet source like text files.

TABLE III. DIGRAM BASED ENCODING TECHNIQUES

 Digram encoding ISSDC BPE

Source Type Any Any Any

Dictionary semi-static semi-static ---

Size of token to

be encoded

Digram (2 bytes)

Matching string or integer comparision

comparison

time per token

O(Dict-size) O(Dict-size) O(1): 2-byte
comparison

Code length fixed, depends on dictionary size 1 byte

Redundancy

using

index index substitution

Compression

methods that

can be applied

later

Huffman or Arithmetic coding

Drawback benefits only with
small- alphabet

source

repetitive, benefits
only with small

sized source file

and small alphabet
source

repetitive,
benefits only

when source

have some
unused symbols,

i.e. for small

alphabet source

Many of the present day transformation techniques, along

with transforming data, may introduce some compression

also. Additionally they retain enough context and

redundancy for later applied compression algorithms to be

beneficial.

III. RESEARCH SCOPE

Star family and dictionary based methods are applicable
to text source only and string matching is time consuming.

BWT can be applied to any source even though it is
designed for text files. It is very slow due to the need of
rotations, sorting and mapping. It gives good compression
only when later applied sequence of MTF, RTF and entropy
encoding.

All these methods require better data structures and
pattern matching algorithms for efficiency.

Digram based encoding can be applied to any type of
source, but they will be beneficial only for small-alphabet
source files like text. Here the advantage is of integer
comparison leading to speed in transformation.

We saw a research scope in transforming quad-bytes
instead of digrams. Our assumption is that it will result in a

1382

International Journal of Engineering Research & Technology (IJERT)

Vol. 3 Issue 2, February - 2014

IJ
E
R
T

IJ
E
R
T

ISSN: 2278-0181

www.ijert.orgIJERTV3IS20786

reduced file size and take less transformation time as
compared to digram based transformation.

As arithmetic coding is the most widely used entropy
encoding method used with almost all compression
methods, we intend to apply quad-byte transformation that
can be applied to any type source data and introduce
redundancy to skew the distribution for getting better
compression using arithmetic coding later.

We have already proposed Quad-Byte Transformation
using Index (QBT-I) in paper [6]. In this paper, we have
shown experimental results that proved our assumption true.

IV. BRIEF INTRODUCTION TO QBT-I

QBT-I transforms most frequent quad-bytes.. It first
prepares the dictionary of quad-bytes sorted in decreasing
order of their occurrence. The dictionary is then logically
divided into groups of 256 quad-bytes. Number of groups
may be specified by a user. If number of groups is nGrp, then
it can encode (256 x nGrp) quad-bytes.

Each quad-byte found in the dictionary is encoded using
two tokens; group number and the location of quad-byte
within a group. Group number is denoted using variable
length prefix codeword and location is denoted using 8-bit
index. Redundancy is introduced with 8-bit index. More the
number of groups; more is the redundancy and better is the
compression assumed to be achieved using arithmetic coding
later.

For decoder, it requires to know whether it is reading
transformed quad-byte or not. Encoder uses group codeword
0 to denote untransformed quad-byte. Minimum-length
codeword 0 is chosen considering that most of the quad-
bytes will not be available in the dictionary. Quad-bytes
found in dictionary are encoded using variable length prefix
code starting with bit 1 to denote group number and its index
position within a group.

Thus, a quad-byte integer is transformed using two
components <variable-length prefix code for group number,
8-bit index code>.

Here, prefix codes are 0, 10, 110, 1110, 11110,....,all 1s.
Prefix codes are 0 and 1 for nGrp=1; 0, 10, 11 for nGrp=2; 0,
10, 110, 111 for nGrp=3 and so n. Thus, prefix codes denotes
the group: code starting with 0 implies no transformation,
with as many 1s as the number of groups implies the last
group and otherwise it implies group number 1 to nGrp-1.

8-bit index codeword introduces redundancy in the
dataset. To exploit redundancy at the time of arithmetic
coding, we have kept group code and index code in separate
files.

Use of variable length code leads to more reduction the
size of transformed file. Most frequent codes reside in the
initial groups and are assigned shorter prefix code.

Shortest prefix code 0 is used for untransformed integers
assuming smaller dictionary size. Smaller dictionary sizes
helps to speed up the search process.

V. ALGORITHM

Algorithm uses two output files: transformed data file
and code file.

The transformed data file contains the index codewords
(for transformed quad-bytes only). Purpose of storing index
codewords separately is to introduce redundancy in the data
for better compression.

Prefix codes denoting group codeword are copied in the
code file.

The number of bytes in a source file may not be in

multiple of size 4, so initial nExtrabytes (= filesize modulo

4) bytes are not processed and output as they are.

Transformation is applied to remaining bytes.

The structure of code file is as follows:

 Byte 1: nExtrabytes (2 bits) and nGrp (6 bits,
maximum 64 groups)

 Byte 2 to nExtrabytes+1: unprocessed initial extra
bytes from source file

 Next 2 bytes: Dictionary size d = number of most
frequent integers to be stored

 Next 4*d bytes: quad-bytes in descending order of
frequency

 Remaining bytes: prefix codes of transformed and
untransformed integers

A. QBT-I Encoder:

1. Setup:

a. Find source file size, Accept nGrp

b. nExtrabytes = filesize module 4

c. Combine nExtrabytes (2 bits) and nGrp (6 bits) in a byte

and write in the code file

d. Read nExtrabytes bytes from source file and write to

code file

2. Pass I (Dictionary building)

a. Scan source file and compute frequency of quad-bytes

b. Sort integers in descending order of the frequency.

c. Output dictionary information in code file

 Dictionary size = minimum (256 x nGrp, number of

integers with frequency > 0)

 Write dictionary size (using 2-bytes) and those many

most frequent quad-bytes in the code file. Keep the

dictionary stored in memory for later use in pass II.

(One may use data structure like array or binary

search tree (BST). BST is more efficient while

searching.)

3. Pass II (Transformation: Rescanning the source from the

beginning after extra bytes)

a. Let prefix array contain binary numbers 10, 110,

1110,… for nGrp groups.

b. Read integer.

c. Search in dictionary.

d. If found at location k in dictionary,

 Output index = (k modulo 256) in transformed data file

 Determine prefix code:

1383

International Journal of Engineering Research & Technology (IJERT)

Vol. 3 Issue 2, February - 2014

IJ
E
R
T

IJ
E
R
T

ISSN: 2278-0181

www.ijert.orgIJERTV3IS20786

 Grp = k/256

 If Grp is the last group, i.e. value of Grp is same as

nGrp-1, then write last prefix (i.e. nGrp times 1) to

prefix code file

 If Grp is not the last group, write bits of prefix[Grp] to

prefix code file

e. If not found in dictionary, output integer data in the

transformed data file as it is and write prefix bit 0 in

prefix code file.

f. Repeat steps from b onwards till all integers are scanned.

B. QBT-I Decoder:

1. Setup

a. Read nExtrabytes and nGrp from code file

b. Read nExtrabytes bytes from code file and write in

output file

2. Dictionary building

a. Read Dictionary size and corresponding number of

integers from code file.

b. Store most frequent integers in dictionary (in memory)

in the order of their arrival. For dictionary, one may use

data structures like array or Binary Search Tree.

3. Inverse Transformation:

a. Fetch prefix code from code file (bits are extracted till

either 0 is found or nGrp bits are extracted)

b. If prefix code is 0 (i.e. untransformed data), read 4-bytes

integer from transformed data file and write in the output

file.

c. If prefix is not 0, it means transformed data file contains

8-bit index for actual data.

 Determine the group where the actual data belongs:

 If prefix is all 1s (i.e. lastPrefix), Grp = nGrp-1

(i.e. last group)

 Otherwise, search for prefix in prefix array. If it

is found at location k, then Grp = k. (To avoid

searching array, count number of leading 1s and

then subtract 1 to determine Grp)

 Determine location of the data in dictionary:

 Read 1 byte index from transformed data file

 Location of data in dictionary = Grp*256 +

index

 Write quad-byte from location in dictionary to

output file.

4. Repeat step 3 till end of code file.

EXPERIMENTAL RESULTS AND ANALYSIS

Programs for QBT-I and arithmetic coding are written in
C language and compiled using Visual C++ 2008 compiler.

Experiment is performed on computer with Intel(R)
Core(TM)2 Duo T6600 2.20 GHz processor with 4GB
RAM.

QBT-I is experimented with number of groups varying
from 1 to 4. Experimental results are recorded using average
of five runs on each test files. Most of the test files are
selected from Calgary corpus, Canterbury corpus, ACT web
site. Test files are selected to include all different file types
and various file sizes as shown in Table 4.

We have used AC-nShft implementation of arithmetic
coding with multi-bit processing [5]. It is faster than
conventional implementation of arithmetic coding.

Our prime motive is to improve compression using data
transformation techniques as a pre-processing stage for
applying arithmetic coding. So, execution time is not
considered that important.

Table 4 presents transformed file size (bytes) after
applying QBT-I with number of groups varying from 1 to 4.
With QBT-I, it is observed that as number of groups
increases, resulting transformed file size decreases. Larger
number of groups may increase the size of code file due to
the use of longer prefix codes; but at the same time, it also
increases the number of transformed integers which results in
smaller file size. Additionally it introduces more redundancy
in data set.

Table 5 shows the size of compressed files as a result of
compression (i) using only arithmetic coding (AC) and (ii)
using AC after applying data transformation with QBT-I at
pre-processing stage.

Fig. 1. Overall Compression Rate (%) using only AC, using AC after

QBT-I with varying nGrp

As seen in Table 5 and Figure 1, increasing number of
groups in QBT-I gives better compression; from 19.20% to
19.49% for nGrp=1 to 4. Minimum of 2.5% compression
gain is observed using QBT-I over using only arithmetic
coding.

Figure 2 presents the compressed file size of 18
individual test files using AC only and applying QBT-I
transformation as preprocessing to AC. Here QBT-I is
applied with only 256 most frequent quad-bytes in the
dictionary; i.e. nGrp=1.

Fig. 2. Compressed File Size using only AC, using AC after QBT-I with

nGrp=1

1384

International Journal of Engineering Research & Technology (IJERT)

Vol. 3 Issue 2, February - 2014

IJ
E
R
T

IJ
E
R
T

ISSN: 2278-0181

www.ijert.orgIJERTV3IS20786

VI. FINDING MOST FREQUENT QUAD-BYTES

Possible values of quad-byte are from 0 to 4GB. To store
the frequencies of all possible quad-bytes, use of array data
structure needs memory of 4GB integers. Here, we have used
binary search tree to accommodate initial 4096 distinct quad-
bytes and used nGrp*256 most frequent quad-bytes.

VII. CONCLUSION

With QBT-I data transformation applied before
arithmetic coding, our purpose of achieving better data
compression is achieved. Using QBT-I at a pre-processing
stage of arithmetic coding, more than 2.5% overall data
compression is achieved over compression using only
arithmetic coding.

TABLE IV. TRANSFORMED FILE SIZE (BYTES) AFTER APPLYING QBT-I

No. File name

Corpus and Description

Source

Size

(Bytes)

File Size (Bytes)

After Applying QBT-I Data Transformation

nGrp=1 nGrp=2 nGrp=3 nGrp=4

1 act2may2.xls ACT: excel file 1348036 1019293 1020582 687486 685917

2 calbook2.txt Calgary: troff format 610856 528536 496279 353580 351240

3 cal-obj2 Calgary: object file, Mac

executable

246814 232428 231727 185236 184686

4 cal-pic Calgary: CCITT fax file,

bitmap image

513216 188699 200260 95375 95151

5 cycle.doc Own: word doc with images,

text,drawing

1483264 1013909 1031846 799990 798697

6 every.wav ACT: sound file 6994092 7211412 7210525 6858272 6858198

7 family1.jpg Own: photograph 198372 204187 204000 200671 200568

8 frymire.tif ACT: graphics file 3706306 2401825 2369254 1852155 1846827

9 kennedy.xls Canterbury: excel 1029744 605851 573195 390123 390488

10 lena3.tif ACT: graphics file 786568 807800 805860 777784 777719

11 linux.pdf Own: pdf file, large 8091180 8277780 8280338 7342506 7342367

12 linuxfil.ppt Own: power-point with text,

drawing

246272 180380 182313 154276 154101

13 monarch.tif ACT: graphics file 1179784 1199573 1193682 1115984 1114711

14 pine.bin ACT: executable 1566200 1361793 1343690 1141274 1138803

15 profile.pdf Own: pdf file with text,

photos

2498785 2558049 2558631 2525449 2525331

16 sadvchar.pps Own: ppt show 1797632 1825283 1826270 1782983 1782868

17 shriji.jpg Own: image file 4493896 4616222 4615417 4560971 4560877

18 world95.txt ACT: text file 3005020 2677540 2576469 1865242 1856176

Total Size 39796037 36910560 36720338 32689357 32664725

1385

International Journal of Engineering Research & Technology (IJERT)

Vol. 3 Issue 2, February - 2014

IJ
E
R
T

IJ
E
R
T

ISSN: 2278-0181

www.ijert.orgIJERTV3IS20786

TABLE V. COMPRESSED FILE SIZE (BYTES) USING ONLY AC AND USING QBT-I BEFORE AC

No. File name Source Compressed File Size (Bytes)

Size

(Bytes)

using only

AC

Applying AC (Arithmetic Coding)

after data transformation using QBT-I

 nGrp=1 nGrp=2 nGrp=3 nGrp=4

1 act2may2.xls 1348036 789951 670903 669755 667583 666612

2 calbook2.txt 610856 367017 357514 351368 347377 344817

3 cal-obj2 246814 194255 184946 184534 184083 183521

4 cal-pic 513216 108508 81292 84761 84657 84705

5 cycle.doc 1483264 891974 776520 782263 780583 779452

6 every.wav 6994092 6716811 6735354 6739310 6741340 6741060

7 family1.jpg 198372 197239 197905 197934 197877 197837

8 frymire.tif 3706306 2200585 1833394 1806508 1794159 1788738

9 kennedy.xls 1029744 478038 372619 371831 369205 369167

10 lena3.tif 786568 762416 761667 761177 761338 761442

11 linux.pdf 8091180 7200113 7198297 7202927 7203486 7203460

12 linuxfil.ppt 246272 175407 151576 152064 151819 151758

13 monarch.tif 1179784 1105900 1099243 1095444 1093428 1092356

14 pine.bin 1566200 1265047 1146782 1137193 1132226 1130004

15 profile.pdf 2498785 2490848 2483069 2480761 2484303 2484867

16 sadvchar.pps 1797632 1771055 1760557 1761645 1761713 1761710

17 shriji.jpg 4493896 4481092 4477193 4478571 4479594 4479663

18 world95.txt 3005020 1925940 1866426 1842754 1829326 1820744

 Total Size 39796037 33122196 32155257 32100800 32064097 32041913

Overall Compression Rate 16.77 19.2 19.337 19.429 19.485

Overall Bits Per Symbol 6.658 6.464 6.453 6.446 6.441

1386

International Journal of Engineering Research & Technology (IJERT)

Vol. 3 Issue 2, February - 2014

IJ
E
R
T

IJ
E
R
T

ISSN: 2278-0181

www.ijert.orgIJERTV3IS20786

REFERENCES

[1] F. D. Awan, N. Zhang, N. Motgi, R. T. Iqbal, A. Mukherjee. ―LIPT: A
reversible lossless text transform to improve compression performance‖,

Proceedings of the IEEE Data Compression Conference (DCC’2001),

pp. 481, March 27–29, 2001
[2] T.C. Bell, A. Moffat, ―A Note on the DMC Data Compression Scheme‖,

Computer Journal, vol. 32(1), pp.16-20, 1989

[3] M. Burrows,D. J. Wheeler. ‖A block-sorting lossless data compression
algorithm‖, Digital Systems Research Center, Research Report 124,

Digital Equipment Corporation, Palo Alto, California, May 10, 1994

[4] G.V. Cormack, R.N. Horspool, ―Data Compressing Using Dynamic
Markov Modeling‖, Computer Journal, vol. 30(6), pp.541-550, 1987

[5] Jyotika Doshi and Savita Gandhi, ―Computing Number of Bits to be

processed using Shift and Log in Arithmetic Coding‖, International
Journal of Computer Applications 62(15):14-20, January 2013,

Published by Foundation of Computer Science, New York, USA.

BibTeX
[6] Jyotika Doshi, Savita Gandhi, ―Quad-Byte Transformation as a Pre-

processing to Arithmetic Coding‖, International Journal of Engineering

Research & Technology (IJERT), Vol.2 Issue 12, December 2013, e-
ISSN: 2278-0181

[7] M. Dyer,D. Taubman, S. Nooshabadi, ―Improved throughput arithmetic

coder for JPEG2000‖, Proc. Int. Conf. Image Process., Singapore, pp.
2817–2820, Oct. 2004

[8] Philip Gage, "A New Algorithm For Data Compression", The C Users

Journal, vol. 12(2)2, pp. 23–38, February 1994
[9] P. G. Howard, J. S. Vitter, "Arithmetic coding for data compression",

Proc. IEEE. , vol.82: pp.857-865, 1994

[10] J. C. Kieffer, E. H. Yang, ―Grammar-based codes: A new class of
universal lossless source codes‖, IEEE Trans. Inform. Theory, vol. 46,

pp. 737–754, 2000

[11] H. Kruse, A. Mukherjee. ―Preprocessing Text to Improve Compression

Ratios‖,Proc. Data Compression Conference, pp. 556, 1998

[12] G. Langdon, "An introduction to arithmetic coding", IBM Journal

Research and Development, vol. 28, pp. 135-149, 1984
[13] Detlev Marpe, Heiko Schwarz, Thomas Wiegand, ―Context-Based

Adaptive Binary Arithmetic Coding in the H.264/AVC Video

Compression Standard‖, IEEE Trans. On Circuits and Systems for
Video Technology, vol. 13(7), pp. 620-636, July 2003

[14] Altan Mesut, Aydin Carus, ―ISSDC: Digram Coding Based Lossless

Dtaa Compression Algorithm‖, Computing and Informatics, Vol. 29,
pp.741–754, 2010

[15] Moffat, ―Implementing the PPM Data Compression Scheme‖, IEEE

Transactions on Communications, vol.38, pp.1917-1921, 1990
[16] M. Nelson, "Data Compressin with the Burrows-Wheeler Transform",

Dr. Dobb's Journal, pp. 46-50, Sept 1996 available at

http://marknelson.us/1996/09/01/bwt/
[17] Radescu R., "Lossless Text Compression Using the LIPT Transform",

Proceedings of the 7th International Conference Communications 2008

(COMM2008), ISBN 978-606-521-008-0., pp. 59-62, Bucharest,
Romania, 5-7 June 2008

[18] Senthil S, Robert L, ―Text Preprocessing using Enhanced Intelligent
Dictionary Based Encoding (EIDBE)‖, Proceedings of Third

International Conference on Electronics Computer Technology, pp.451-

455, Apr 2011
[19] Senthil S, Robert L, "IIDBE: A Lossless Text Transform for Better

Compression", International Journal of Wisdom Based Computing, vol.

1(2), August 2011
[20] Shajeemohan B.S, Govindan V.K, "Compression scheme for faster and

secure data transmission over networks", IEEE Proceedings of the

International conference on Mobile business, 2005
[21] Storer J. A., Szymanski T. G., "Data Compression via Textual

Substitution", Journal of ACM Vol. 29(4), pp. 928-951, Oct 1982

[22] W. Sun, A. Mukherjee, N. Zhang, ―A Dictionary-based Multi-Corpora
Text compression System‖, Proceedings of the 2003 IEEE Data

Compression Conference, March 2003

[23] S. Taubman and M. W. Marcellin, "JPEG2000: Image Compression
Fundamentals", Standards and Practice. Norwell, MA: Kluwer

Academic, 2002

[24] T. Wiegand, G. Sullivan, G. Bjontegaard, A. Luthra, ―Overview of the
H.264/AVC video coding standard‖, IEEE Trans. Circuits Syst.Video

Technol., vol. 13(7), pp. 560–576, Jul 2003

[25] T. Welch, ―A Technique for High-Performance Data Compression‖,
IEEE Computer, vol. 17(6), pp. 8-19, June 1984

[26] M. J. Willems, Y. M. Shtarkov, T. J. Tjalkens, ―The context-tree

weighting method: Basic properties‖, IEEE Trans. Inform. Theory,
vol.41, pp. 653–664, May 1995

[27] H. Witten, R. M. Neal, J. G. Cleary, ―Arithmetic coding for data

compression‖, Commun. ACM, vol. 30(6), pp. 520–540, 1987
[28] J. Ziv, A. Lempel, "Compression of individual sequences via variable

rate coding", IEEE Transactions on Information Theory, IT-24(5),

pp.530-536, 1978

[29] J. Ziv, A. Lempel. ―A Universal Algorithm for Sequential Data

Compression‖, IEEE Trans. Information Theory, IT-23, pp.337-343,

1977

1387

International Journal of Engineering Research & Technology (IJERT)

Vol. 3 Issue 2, February - 2014

IJ
E
R
T

IJ
E
R
T

ISSN: 2278-0181

www.ijert.orgIJERTV3IS20786

