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Abstract— The task of representing the higher dimensional 

data into lower dimension while preserving the relative 

information, previously was done by principle component 

analysis, factor analysis, or feature selection. However if original 

lower dimensional data is embedded in high dimensional space, 

then approach based on manifold learning and graph theory 

allow to learn underlying geometry of data. One of such 

technique is Diffusion Maps. It preserves the local proximity 

between the data points by first constructing a representation 

for underlying manifold. In this paper, binary classification 

problem using Diffusion Map to embed the data with various 

kernel representations is targeted. Results show that specific 

kernels are well suited for Diffusion Map applications on some 

feature sets and in general some kernels are outperform the 

standard Gaussian and Polynomial kernels, on several of the 

higher dimensional data sets. 

Keywords—diffusion maps, dimension rectuction, 

diffusion kernels 

I.  INTRODUCTION 

 

The trade-off between computational complexity 

and the resolution gained with either more features or pixels 

is basic and most important problem high dimensional data 

analysis. Hence, very first step in analyzing data is to find its 

lower dimensional representation and the concise description 

of its underlying geometry and density. To achieve this, 

generally the global dimension reduction techniques such as 

principle component analysis, multidimensional scaling is 

used. These techniques work well with well-behaved 

maximally variant data. But if the data is not locally 

correlated, then these techniques do not provide informative 

embedded data. Alternatively, graph based manifold learning 

techniques generally preserves the neighborhood structure. 

They generally preserve the neighborhood structure. Such 

techniques are Diffusion Maps [1] and [2], Local linear 

Embedding [3], Laplacian Eigenmaps [4], Hessian 

Eigenmaps [5], and Local Tangent Space Alignment [6]. 

 In this paper we consider the manifold learning 

technique Diffusion Maps of Coifman et al. [1], [2] and 

analyze the neighborhood preserving effects of kernel 

selection on the resulting manifold for publicly available data 

sets. These effects are studied by looking at the classification 

results for each binary target data set in various embeddings. 

II. DIFFUSION MAPS 

A. Overview 

Eigenvectors of random walk on the given dataset, 

giving lower dimension Euclidean space embedding of 

complex data, defines the Diffusion Maps. This embedding 

can be used for the manifold learning, dimensionality 

reduction, geometric analysis of complex datasets and fast 

simulation of stochastic dynamical systems. 

By constructing a graph representation for 

underlying manifold Diffusion map preserves the local 

proximity between data points. The vertices, or nodes of this 

graph, represent the data points, and the edges connecting the 

vertices, represent the similarities between adjacent nodes. 

The probability for the random walk on the graph can be 

interpreted from the normalized edge weights. Diffusion 

maps transform data from higher dimensional space to lower 

dimensional space such as Euclidean space and hence the 

Euclidean distance between the points approximates the 

diffusion distance in the original feature space. The geometric 

structure of underlying data determines the dimension of 

diffusion space and accuracy of approximation of the 

diffusion distance into Euclidean distance. 

B. Connectivity between data point 

      The random walk on the dataset is represented in the 

figure 1. The process tends to jump to the nearest point rather 

than farthest point. This means probability of random walk 

going to nearby point is more than probability of jumping to 

far away point.  This fact helps to establish relation between 

feature space and probability. The connectivity between 

points x and y is defined as probability of jumping between 

them and it is given as 

 

Connectivity (x, y) = p(x, y)                   (1) 

 

      The connectivity is defined in terms of normalized 

likelihood kernel function, k and the relation is defined as 

bellow. 

Connectivity (x, y)  k(x, y)        (2) 
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This kernel function, within certain neighborhood 

defines local measure of similarity. Kernel function goes to 

zero outside the neighborhood. The neighborhood is nothing 

but the area within which similarity measurement can be 

assumed to be accurate. Its size depends on the kernel 

parameters. For example, consider the popular Gaussian 

kernel, 

 
 

             (3) 

 

All the elements of y for which  with 

, define the neighborhood of x. Here in the above 

kernel equation by choosing the values of  the size of 

neighborhood can be defined. Generally based on the data 
type, the size of neighborhood is chosen, for example, for 
sparse data, a large neighborhood is chosen and for intricate, 
nonlinear, lower dimensional structures, a small neighborhood 
is appropriate. The diffusion kernel satisfies the following 
properties: 

1. k is symmetric: k(x, y) = k(y, x)  

2. k is positivity preserving:  

 

       The row –normalized matrix P is diffusion matrix with 

entries . Each element of P matrix shows 

the connectivity between the two data points,  and . This 

matrix provide the probabilities for a single step taken from i 

to j. Consider a  diffusion matrix, 

 

 
 

     Each element,  is the probability of jumping between 

data points i and j.  Similarly,  gives sum all paths of 

length t from point i to point j. 

 

C. Diffusion Process 

The data set are observed at different scales, as the value of t, 

in , increases. The diffusion is a process, where the global 

connectivity of a data-set is provided by integrating local 

connectivity.  

The data points are highly dense and connected 

along the geometrical structure. Hence the probability of 

following underlying geometrical structure increases as value 

of t increases. The path, diffusion process follows is made up 

of small-high probability jumps, rather than the long, low-

probability jumps. 

 

D. Diffusion Distance 

           The diffusion distance depends on the number of short, 

high-probability paths. The diffusion distance is small if there 

are t high probability paths between two points and vice-

versa. The diffusion matric D, provide measure of 

connectivity between two points, as similarity between them 

in the observation space. The diffusion matric is robust to 

noise perturbation and it sums up all the possible paths of 

length t. the relation between diffusion matric and diffusion 

matrix is given by, 

 

                      =  

            The term  gives probability of jumping from x 

to u (for any u in the data set) in t time units, and sums the 

probabilities of all possible paths of length t between x and u. 

As explained in the previous section, this term has large 

values for paths along the underlying geometric structure of 

the data. In order for the diffusion distance to remain small, 

the path probabilities between x, u and u, y must be roughly 

equal.  

 

E. Diffusion Map 

In the previous section, a metric, the diffusion 

distance is defined which capable of approximating distances 

along this structure. The diffusion distance calculation is 

expensive process; hence data points are mapped into 

Euclidean space according to diffusion metric. In the 

Euclidean space, diffusion distance becomes Euclidean 

distance. A diffusion map, which maps coordinates between 

data and diffusion space, aims to re-organize data according 

to the diffusion metric. The diffusion map preserves a data 

set’s intrinsic geometry, and since the mapping measures 

distances on a lower-dimensional structure. To find that 

fewer coordinates needed to represent data points in the new 

space examine the mapping. 

 

            (8) 

 

For this map, the Euclidean distance between two mapped 

points, Yi and Yj, is 

 
 

                       =     =  
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Which is the diffusion distance between data points Xi and Xj 

. This provides the re-organization according to diffusion 

distance. Note that no dimensionality reduction has been 

achieved yet, and the dimension of the mapped data is still 

the sample size, N. Dimensionality reduction is done by 

neglecting certain dimensions in the diffusion space. Take the 

normalized diffusion matrix, 

 
where D is the diagonal matrix consisting of the row sums of 

K. The diffusion distances in (8) can be expressed in terms of 

the eigenvectors and -values of P as 

 

                       (9) 

 

       where  indicates the i-th element of the first eigen 

vector of P. Again, the Euclidean distance between mapped 

points and is the diffusion distance. The set of orthogonal 

left eigenvectors of P form a basis for the diffusion space, and 

the associated eigenvalues indicate the importance of each 

dimension. Dimensionality reduction is achieved by retaining 

the m dimensions associated with the dominant eigenvectors, 

which ensures that  approximates the diffusion 

distance, , best. Therefore, the diffusion map that 

optimally preserves the intrinsic geometry of the data is (9). 
 

III. KERNEL FUNCTION 

 

      The kernel function captures a specific feature of data set, 

and also constitutes of local geometry. Hence its choice 

should be based on the type of application. The list of kernel 

functions used in this paper is given bellow:  
 

Finally, complete content and organizational editing before 
formatting. Please take note of the following items when 
proofreading spelling and grammar: 

 Laplacian Kernel: 

 

 
 

 Gaussian Kernel: 

 

 
 

 Rayleigh Kernel: 

 

 
 

 Polynomial Kernel: 

 

 
 

 

 

IV. EXPERIMENTS 

A. Experimental Setup 

In the experiment, the effect of different kernel functions, on 

the total diffusion process and hence on dimension reduction 

is observed and studied.  Each database is divided into ten 

groups that are as equal as possible, 10-fold cross validation. 

Out of ten groups nine groups are used for training and one 

group for testing purpose. This procedure is repeated until all 

groups have represented as testing set. 

        The average performance overall 10-folds is presented 

as the probability of classification (PC), or sensitivity, and the 

probability of false alarm (PFA), or specificity. This is done 

to demonstrate the trade-off between correctly classifying 

true cases versus incorrectly classifying false cases. Each 

kernel uses the same groups for each data set so that the 

possibility of poor individual performance due to the 

distribution of the draw is eliminated. In addition, each 

experiment is done ten times and the results are averaged 

over these runs. 

B. Data set 

The experiment discussed above tests the kernels and their 

embeddings for classification enhancement on the resulting 

Diffusion Maps over eight publically available data sets [8]: 

 Pima Indian: Pima Indian Diabetes 

 Sonar1: Connectionist Bench Sonar  

 WDBC: Wisconsin Diagnostic Breast cancer 

 WPBC: Wisconsin Prognostic Breast Cancer   

 Heart: Heart Disease Data Set, Cleveland 

The classification is done using linear support vector 

machine [10]. Let M m-dimensional training inputs  (i 

= 1, . . . , M) belong to Class 1 or 2 and the associated 

labels be  = 1 for Class 1 and −1 for Class 2. If these 

data are linearly separable, the decision function is given 

by: 

 

  M,……=forib+xwy i

T

i 1,1≥      (10) 

   Where W is an m-dimensional vector, b is a bias term[11]. 

 

V. RESULTS AND CONCLUSION  

 

          The experimental results for the kernel effects on the 

resultant diffusion maps are shown below in Table 2 through 

Table 9. As the experiments demonstrate, the choice of kernel 

effects the resultant diffusion map. Overall, the Laplacian and 

Rayleigh kernels outperformed the standard Polynomial and 

Gaussian kernels on all of these databases, with a few 

exceptions such as the Pima Indian. BC datasets. It appears 

that the Laplacian and Rayleigh kernels perform best on the 

higher dimensional non-Gaussian datasets and the standard 

kernels work well with lower-dimensional data. Therefore, 

for enhanced target recognition capability and an acceptable 

PFA the Rayleigh kernel appears the appropriate choice to 

best capture the embedding distribution to enhance the 

diffusion map process. 
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