
Improved Method for Nearest Neighbor Search

using Keywords

B. Saravanan
PG Scholar, Department of Computer Engineering,

P.S.R Engineering College, Sivakasi

Abstract:- Spatial query is a special type of database query

supported by geo databases and spatial databases. The

queries differ from non-spatial SQL queries. Today, many

modern applications call for novel forms of queries that

aim to find objects satisfying both a spatial predicate, and a

predicate on their associated texts. For example, instead of

considering all the restaurants, a nearest neighbor query

would instead ask for the restaurant that is the closest

among those whose menus contain “steak, spaghetti,

brandy” all at the same time. Currently the best solution to

such queries is based on the IR2-tree, which, as shown in

this paper, has a few deficiencies that seriously impact its

efficiency. Motivated by this, we develop a new access

method called the spatial inverted index that extends the

conventional inverted index to cope with multidimensional

data, and comes with algorithms that can answer nearest

neighbor queries with keywords in real time. As verified by

experiments, the proposed techniques outperform the IR2-

tree in query response time significantly, often by a factor

of orders of magnitude.

Index Terms— Information retrieval, spatial index, keyword

search

1. INTRODUCTION

A spatial database manages multidimensional objects (such

as points, rectangles, etc.), and provides fast access to those

objects based on different selection criteria. The

importance of spatial databases is reflected by the

convenience of modeling entities of reality in a geometric

manner. For example, locations of restaurants, hotels,

hospitals and so on are often represented as points in a

map, while larger extents such as parks, lakes, and

landscapes often as a combination of rectangles. Many

functionalities of a spatial database are useful in various

ways in specific contexts. For instance, in a geography

information system, range search can be deployed to find

all restaurants in a certain area, while nearest neighbor

retrieval can discover the restaurant closest to a given

address.

Nearest neighbor search (NNS), also known as proximity

search, similarity search or closest point search, is

an optimization problem for finding closest points.

A search algorithm is an algorithm for finding an item

with specified properties among a collection of items.

 A spatial index is a type of extended index that allows

you to index a spatial column. A spatial column is a table

column that contains data of a spatial data type, such

as geometry

 The IR2-tree, however, also inherits a drawback of

signature files: false hits. That is, a signature file, due to its

conservative nature, may still direct the search to some

objects, even though they do not have all the keywords.

The penalty thus caused is the need to verify an object

whose satisfying a query or not cannot be resolved using

only its signature, but requires loading its full text

description, which is expensive due to the resulting random

accesses. It is noteworthy that the false hit problem is not

specific only to signature files, but also exists in other

methods for approximate set membership tests with

compact storage. Therefore, the problem cannot be

remedied by simply replacing signature file with any of

those methods.

Fig. 1. (a) Shows the locations of points and

 (b) Gives their associated texts.

2. PROBLEM DEFINITION

Let P be a set of multidimensional points. As our goal is to

combine keyword search with the existing location-finding

services on facilities such as hospitals, restaurants, hotels,

etc., we will focus on dimensionality 2, but our technique

can be extended to arbitrary dimen-sionalites with no

technical obstacle. We will assume that the points in P have

integer coordinates, such that each coordinate ranges in [0,

t], where t is a large integer. This is not as restrictive as it

may seem, because even if one would like to insist on real-

valued coordinates, the set of different coordinates

representable under a space limit is still finite and

enumerable; therefore, we could as well convert everything

to integers with proper scaling.

 Each point p ∈ P is associated with a set of words, which

is denoted as Wp and termed the document of p. For

example, if p stands for a restaurant, Wp can be its menu,

or if p is a hotel,

Wp can be the description of its services and facilities, or if

International Journal of Engineering Research & Technology (IJERT)

ISSN: 2278-0181

Published by, www.ijert.org

RACMS-2014 Conference Proceedings

Volume 3, Issue 33

Special Issue - 2015

1

p is a hospital, Wp can be the list of its out-patient

specialties. It is clear that Wp may potentially contain

numerous words.

Traditional nearest neighbor search returns the data point

closest to a query point. Following [12], we ex-tend the

problem to include predicates on objects’ texts. Formally,

in our context, a nearest neighbor (NN) query specifies a

point q and a set Wq of keywords (we refer to Wq as the

document of the query). It returns the point in Pq that is the

nearest to q, where Pq is defined as

Pq = {p ∈ P | Wq ⊆ Wp} (1)

In other words, Pq is the set of objects in P whose

documents contain all the keywords in Wq . In the case

where Pq is empty, the query returns nothing. The prob-lem

definition can be generalized to k nearest neighbor (kNN)

search, which finds the k points in Pq closest to q; if Pq has

less than k points, the entire Pq should be returned.

For example, assume that P consists of 8 points whose

locations are as shown in Figure 1a (the black dots), and

their documents are given in Figure 1b. Consider a query

point q at the white dot of Figure 1a with the set of

keywords Wq = {c, d}. Nearest neighbor search finds p6,

noticing that all points closer to q than p6 are missing either

the query keyword c or d. If k = 2 nearest neighbors are

wanted, p8 is also returned in addition. The result is still

{p6, p8} even if k increases to 3 or higher, because only 2

objects have the keywords c and d at the same time.

We consider that the dataset does not fit in memory, and

needs to be indexed by efficient access methods in order to

minimize the number of I/Os in answering a query.

3. RELATED WORK

Section 3.1 reviews the information retrieval R-tree which

is the state of the art for answering the nearest neighbor

queries defined in Section 2. Section 3.2 explains an

alternative solution based on the inverted index. Finally,

Section 3.3 discusses other relevant work in spatial

keyword search.

3.1 The IR2-tree

As mentioned before, the IR2-tree combines the R-tree

with signature files. Next, we will review what is signature

file, before explaining the details of IR2-trees. Our

discussion assumes the knowledge of R-trees and the best-

first algorithm [14] for NN search, both of which are well-

known techniques in spatial databases.

Signature file in general refers to a hashing-based

framework, whose instantiation in is known as

superimposed coding (SC), which is shown to be more

effective than other instantiations [11]. It is designed to

perform membership tests: determine whether a query word

w exists in a set W of words. SC is conservative, in the

sense that if it says “no”, then w is definitely not in W . If,

on the other hand, SC returns “yes”, the true answer can be

either way, in which case the whole W must be scanned to

avoid a false hit.

In the context of [12], SC works in the same way as the

classic technique of bloom filter. In preprocessing, it builds

a bit signature of length l from W by hashing each word in

W to a string of l bits, and then taking the disjunction of all

bit strings. To illustrate, denote by h(w) the bit string of a

word w. First, all the l bits of h(w) are initialized to 0.

Then, SC repeats the following m times: randomly choose

a bit and set it to 1. Very importantly, randomization must

use w as its seed to ensure that the same w always ends up

with an identical h(w). Furthermore, the m choices are

mutually independent, and may even happen to be the same

bit. The concrete values of l and m affect the space cost and

false hit probability, as will be discussed later.

Figure 2 gives an example to illustrate the above process,

assuming l = 5 and m = 2. For example, in the bit string

h(a) of a, the 3rd and 5th (counting from left)

Word hashed bit string

A 00101
B 01001
C 00011

D 00110

E 10010

Fig. 2. Example of bit string computation with l = 5 and m = 2 bits are set

to 1.

As mentioned earlier, the bit signature of a set W of words

simply ORs the bit strings of all the members of W. For

instance, the signature of a set {a, b} equals01101, while

that of {b, d} equals 01111.

Given a query keyword w, SC performs the member-

ship test in W by checking whether all the 1’s of h(w)

appear at the same positions in the signature of W . If not,

it is guaranteed that w cannot belong to W . Otherwise, the

test cannot be resolved using only the signature, and a scan

of W follows. A false hit occurs if the scan reveals that W

actually does not contain w.

For example, assume that we want to test whether word

c is a member of set {a, b} using only the set’s signature

01101. Since the 4th bit of h(c) = 00011 is 1 but that of

01101 is 0, SC immediately reports “no”. As another

example, consider the membership test of c in {b, d} whose

signature is 01111.

This time, SC returns “yes” because 01111 has 1’s at all

the bits where h(c) is set to 1; as a result, a full scan of the

set is required to verify that this is a false hit.

The IR2-tree is an R-tree where each (leaf or non leaf)

entry E is augmented with a signature that summarizes the

union of the texts of the objects in the sub tree of E. Figure

3 demonstrates an example based on the dataset of Figure 1

and the hash values in Figure 2. The string 01111 in the

leaf entry p2, for example, is the signature of Wp2 = {b, d}

(which is the document of p2; see Figure 1b). The string

11111 in the non leaf entry E3 is the signature of Wp2 ∪

International Journal of Engineering Research & Technology (IJERT)

ISSN: 2278-0181

Published by, www.ijert.org

RACMS-2014 Conference Proceedings

Volume 3, Issue 33

Special Issue - 2015

2

Wp6 , namely, the set of all words describing p2 and p6.

Notice that, in general, the signature of a non leaf entry E

can be conveniently obtained simply as the disjunction of

all the signatures in the child node of E. A non leaf

signature may allow a query algorithm to realize that a

certain word cannot exist in the sub tree.

For example, as the 2nd bit of h(b) is 1, we know that no

object in the sub trees of E4 and E6 can have word b in its

texts – notice that the signatures of E4 and E6 have 0 as

their 2nd bits. In general, the signatures in an IR2-tree may

have different lengths at various levels.

On conventional R-trees, the best-first algorithm [14] is

a well-known solution to NN search. It is straight forward

to adapt it to IR2-trees. Specifically, given a query point q

and a keyword set Wq , the adapted algorithm accesses the

entries of an IR2-tree in ascending order of the distances of

their MBRs to q (the MBR of a leaf entry is just the point

itself), pruning those entries whose

Fig. 3. Example of an IR2-tree.

(a) Shows the MBRs of the underlying R-tree

(b) gives the signatures of the entries.

signatures indicate the absence of at least one word of Wq

in their subtrees. Whenever a leaf entry, say of point p,

cannot be pruned, a random I/O is performed to retrieve its

text description Wp. If Wq is a subset of Wp, the algorithm

terminates with p as the answer; otherwise, it continues

until no more entry remains to be processed. In Figure 3,

assume that the query point q has a keyword set Wq = {c,

d}. It can be verified that the algorithm must read all the

nodes of the tree, and fetch the documents of p2, p4, and p6

(in this order). The final answer is p6, while p2 and p4 are

false hits.

3.2 Solutions based on inverted indexes

Inverted indexes (I-index) have proved to be an effective

access method for keyword-based document retrieval. In

the spatial context, nothing prevents us from treating the

text description Wp of a point p as a document, and then,

building an I-index. Figure 4 illustrates the index for the

dataset of Figure 1. Each word in the vocabulary has an

inverted list, enumerating the ids of the points that have the

word in their documents.

Note that the list of each word maintains a sorted order

of point ids, which provides considerable convenience in

query processing by allowing an efficient merge step. For

example, assume that we want to find the points that have

words c and d. This is essentially to compute the

intersection of the two words’ inverted lists. As both lists

are sorted in the same order, we can do so by merging

them, whose I/O and CPU times are both linear to the total

length of the lists.

Recall that, in NN processing with IR2-tree, a point

retrieved from the index must be verified (i.e., having its

text description loaded and checked). Verification is also

necessary with I-index, but for exactly the opposite reason.

For IR2-tree, verification is because we do not have the

detailed texts of a point, while for I-index, it is because we

do not have the coordinates. Specifically, given an NN

query q with keyword set Wq , the query algorithm of I-

index first retrieves (by merging) the set Pq of all points

that have all the keywords of Wq ,

According to the experiments of [12], when Wq has only

a single word, the performance of I-index is very bad,

which is expected because everything in the inverted list of

that word must be verified. Interestingly, as the size of Wq

increases, the performance gap between I-index and IR2-

tree keeps narrowing such that I-index even starts to

outperform IR2-tree at |Wq | = 4. This is not as surprising as

it may seem. As |Wq | grows large, not many objects need

to be verified because the number of objects carrying all

the query keywords drops rapidly. On the other hand, at

this point an advantage of I-index starts to pay off. That is,

scanning an inverted list is relatively cheap because it

involves only sequential I/Os1, as opposed to the random

nature of accessing the nodes of an IR2-tree.

3.3 Other relevant work

Our treatment of nearest neighbor search falls in the

general topic of spatial keyword search, which has also

given rise to several alternative problems. A complete

survey of all those problems goes beyond the scope of this

paper. Below we mention several representatives, but

interested readers can refer to [4] for a nice survey.

International Journal of Engineering Research & Technology (IJERT)

ISSN: 2278-0181

Published by, www.ijert.org

RACMS-2014 Conference Proceedings

Volume 3, Issue 33

Special Issue - 2015

3

Cong et al. [10] considered a form of keyword-based

nearest neighbor queries that is similar to our formu-lation,

but differs in how objects’ texts play a role in determining

the query result. Specifically, aiming at an IR flavor, the

approach of [10] computes the relevance between the

documents of an object p and a query q. This relevance

score is then integrated with the Euclidean distance

between p and q to calculate an overall similarity of p to q.

The few objects with the highest similarity are returned. In

this way, an object may still be in the query result, even

though its document does not contain all the query

keywords. In our method, same as [12], object texts are

utilized in evaluating a Boolean predicate, i.e., if any query

keyword is missing in an object’s document, it must not be

returned. Neither approach subsumes the other, and both

make sense in different applications. As an application in

our favor, consider the scenario where we want to find a

close restaurant serving “steak, spaghetti and brandy”, and

do not accept any restaurant that does not serve any of

these three items. In this case, a restaurant’s document

either fully satisfies our requirement, or does not satisfy at

all. There is no “partial satisfaction”, as is the rationale

behind the approach of [10].

In geographic web search, each webpage is assigned a

geographic region that is pertinent to the webpage’s

contents. In web search, such regions are taken into

account so that higher rankings are given to the pages in

the same area as the location of the computer issuing the

query (as can be inferred from the computer’s IP address)

[8], [13], [21]. The underpinning problem that needs to be

solved is different from keyword-based nearest neighbor

search, but can be regarded as the combination of keyword

search and range queries.

Zhang et al. [20] dealt with the so-called m-closest key-

words problem. Specifically, let P be a set of points each of

which carries a single keyword. Given a set Wq of query

keywords (note: no query point q is needed), the goal is to

find m = |Wq | points from P such that (i) each point has a

distinct keyword in Wq , and (ii) the maximum mutual

distance of these points is minimized (among all subsets of

m points in P fulfilling the previous condi-tion). In other

words, the problem has a “collaborative” nature in that the

resulting m points should cover the query keywords

together. This is fundamentally different from our work

where there is no sense of collaboration at all, and instead

the quality of each individual point with respect to a query

can be quantified into a concrete value. Cao et al. [6]

proposed collective spatial keyword querying, which is

based on similar ideas, but aims at optimizing different

objective functions.

In [5], Cong et al. proposed the concept of prestige-

based spatial keyword search. The central idea is to

evaluate the similarity of an object p to a query by taking

also into account the objects in the neighborhood of p. Lu

et al. [17] recently combined the notion of keyword search

with reverse nearest neighbor queries.

Although keyword search has only started to receive

attention in spatial databases, it is already thoroughly

studied in relational databases, where the objective is to

enable a querying interface that is similar to that of search

engines, and can be easily used by naive users without

knowledge about SQL. Well known systems with such

mechanisms include DBXplorer [1], Discover [15], Banks

[3], and so on. Interested readers may refer to [9] for

additional references into that literature.

4 DRAWBACKS OF THE IR2 -TREE

The IR2-tree is the first access method for answering NN

queries with keywords. As with many pioneering solutions,

the IR2-tree also has a few drawbacks that affect its

efficiency. The most serious one of all is that the number of

false hits can be really large when the object of the final

result is faraway from the query point, or the result is

simply empty. In these cases, the query algorithm would

need to load the documents of many objects, incurring

expensive overhead as each loading necessitates a random

access.

To explain the details, we need to first discuss some

properties of SC (the variant of signature file used in the

IR2-tree). Recall that, at first glance, SC has two

parameters: the length l of a signature, and the number m

of bits chosen to set to 1 in hashing a word. There is, in

fact, really just a single parameter l, because the optimal m

(which minimizes the probability of a false hit) has been

solved by Stiassny [18]:

mopt = l · ln(2)/g (2)

where g is the number of distinct words in the set W on

which the signature is being created. Even with such an

optimal choice of m, Faloutsos and Christodoulakis [11]

show that the false hit probability equals

Pf alse = (1/2)mopt . (3)

Put in a different way, given any word w that does not

belong to W , SC will still report “yes” with probability Pf

alse, and demand a full scan of W .

It is easy to see that Pf alse can be made smaller by

adopting a larger l (note that g is fixed as it is decided by

W). In particular, asymptotically speaking, to make sure Pf

alse is at least a constant, l must be Ω(g), i.e., the signature

should have Ω(1) bit for every distinct word of W . Indeed,

for the IR2-tree, Felipe et al. [12] adopt a value of l that is

approximately equivalent to 4g in their experiments (g here

is the average number of distinct words a data point has in

its text description). It thus follows that

Pf alse = (1/2)4 LN(2) = 0.15. (4)

The above result takes a heavy toll on the efficiency of

the IR2-tree. For simplicity, let us first assume that the

International Journal of Engineering Research & Technology (IJERT)

ISSN: 2278-0181

Published by, www.ijert.org

RACMS-2014 Conference Proceedings

Volume 3, Issue 33

Special Issue - 2015

4

query keyword set Wq has only a single keyword w (i.e.,

|Wq | = 1). Without loss of generality, let p be the object of

the query result, and S be the set of data points that are

closer to the query point q than p. In other words, none of

the points in S has w in their text documents (otherwise, p

cannot have been the final result). By Equation 4, roughly

15% of the points in S cannot be pruned using their

signatures, and thus, will become false hits. This also

means that the NN algorithm is expected to perform at least

0.15|S| random I/Os.

So far we have considered |Wq | = 1, but the discussion

extends to arbitrary |Wq | in a straightforward manner. It is

easy to observe (based on Equation 4) that, in general, the

false hit probability satisfies

Pf alse ≥ 0.15|Wq |. (5)

When |Wq | > 1, there is another negative fact that adds to

the deficiency of the IR2-tree: for a greater |Wq |, the

expected size of S increases dramatically, because fewer

and fewer objects will contain all the query keywords. The

effect is so severe that the number of random accesses,

given by Pf alse|S|, may escalate as |Wq | grows (even with

the decrease of Pf alse). In fact, as long as |Wq | > 1, S can

easily be the entire dataset when the user tries out an

uncommon combination of keywords that does not exist in

any object. In this case, the number of random I/Os would

be so prohibitive that the IR2-tree would not be able to give

real time responses.

5 MERGING AND DISTANCE BROWSING

Since verification is the performance bottleneck, we should

try to avoid it. There is a simple way to do so in an I-index:

one only needs to store the coordinates of each point

together with each of its appearances in the inverted lists.

The presence of coordinates in the inverted lists naturally

motivates the creation of an R-tree on each list indexing the

points therein (a structure reminiscent of the one in [21]).

Next, we discuss how to perform keyword-based nearest

neighbor search with such a combined structure.

The R-trees allow us to remedy awkwardness in the way

NN queries are processed with an I-index. Recall that, to

answer a query, currently we have to first get all the points

carrying all the query words in Wq by merging several lists

(one for each word in Wq). This appears to be unreasonable

if the point, say p, of the final result lies fairly close to the

query point q. It would be great if we could discover p very

soon in all the relevant lists so that the algorithm can

terminate right away. This would become a reality if we

could browse the lists synchronously by distances as

opposed to by ids. In particular, as long as we could access

the points of all lists in ascending order of their distances to

q (breaking ties by ids), such a p would be easily

discovered as its copies in all the lists would definitely

emerge consecutively in our access order. So all we have to

do is to keep counting how many copies of the same point

have popped up continuously, and terminate by reporting

the point once the count reaches |Wq |. At

any moment, it is enough to remember only one count,

because whenever a new point emerges, it is safe to forget

about the previous one.

As an example, assume that we want to perform NN

search whose query point q is as shown in Figure 1, and

whose Wq equals {c, d}. Hence, we will be using the lists

of words c and d in Figure 4. Instead of expanding these

lists by ids, the new access order is by distance to q,

namely, p2, p3, p6, p6, p5, p8, p8. The processing finishes as

soon as the second p6 comes out, without reading the

remaining points. Apparently, if k nearest neighbors are

wanted, termination happens after having reported k points

in the same fashion.

Distance browsing is easy with R-trees. In fact, the best-

first algorithm is exactly designed to output data points in

ascending order of their distances to q. How-ever, we must

coordinate the execution of best-first on |Wq | R-trees to

obtain a global access order. This can be easily achieved

by, for example, at each step taking a “peek” at the next

point to be returned from each tree, and output the one that

should come next globally. This algorithm is expected to

work well if the query keyword set Wq is small. For sizable

Wq , the large number of random accesses it performs may

overwhelm all the gains over the sequential algorithm with

merging.

A serious drawback of the R-tree approach is its space

cost. Notice that a point needs to be duplicated once for

every word in its text description, resulting in very

expensive space consumption. In the next section, we will

overcome the problem by designing a variant of the

inverted index that supports compressed coordinate

embedding.

6 SPATIAL INVERTED LIST

The spatial inverted list (SI-index) is essentially a com-

pressed version of an I-index with embedded coordi-nates

as described in Section 5. Query processing with an SI-

index can be done either by merging, or together with R-

trees in a distance browsing manner. Furthermore, the

compression eliminates the defect of a conventional I-index

such that an SI-index consumes much less space.

6.1 The compression scheme

Compression is already widely used to reduce the size of

an inverted index in the conventional context where each

inverted list contains only ids. In that case, an effective

approach is to record the gaps between consecutive ids, as

opposed to the precise ids. For example, given a set S of

integers {2, 3, 6, 8}, the gap-keeping approach will store

{2, 1, 3, 2} instead, where the i-th value (i ≥ 2) is the

difference between the i-th and (i − 1)-th values in the

original S. As the original S can be precisely reconstructed,

no information is lost. The only overhead is that

decompression incurs extra computation cost, but such cost

is negligible compared to the overhead of I/Os. Note that

gap-keeping will be much less beneficial if the

International Journal of Engineering Research & Technology (IJERT)

ISSN: 2278-0181

Published by, www.ijert.org

RACMS-2014 Conference Proceedings

Volume 3, Issue 33

Special Issue - 2015

5

integers of S are not in a sorted order. This is because the

space saving comes from the hope that gaps would be

much smaller (than the original values) and hence could be

represented with fewer bits. This would not be true had S

not been sorted.

Compressing an SI-index is less straightforward. The

difference here is that each element of a list, a.k.a. a point

p, is a triplet (idp, xp, yp), including both the id and

coordinates of p. As gap-keeping requires a sorted order, it

can be applied on only one attribute of the triplet. For

example, if we decide to sort the list by ids, gap-keeping on

ids may lead to good space saving, but its application on

the x- and y-coordinates would not have much effect.

To attack this problem, let us first leave out the ids and

focus on the coordinates. Even though each point has 2

coordinates, we can convert them into only one so that gap-

keeping can be applied effectively. The tool needed is a

space filling curve (SFC) such as Hilbert- or Z-curve. SFC

converts a multidimensional point to a 1D value such that

if two points are close in the original space, their 1D values

also tend to be similar. As dimensionality has been brought

to 1, gap-keeping works nicely after sorting the (converted)

1D values.

For example, based on the Z-curve2, the resulting values,

called Z-values, of the points in Figure 1a are demonstrated

in Figure 5 in ascending order. With gap-keeping, we will

store these 8 points as the sequence 12, 3, 8, 1, 7, 9, 2, 7.

Note that as the Z-values of all points can be accurately

restored, the exact coordinates can be restored as well.

Let us put the ids back into consideration. Now that we

have successfully dealt with the two coordinates with a 2D

SFC, it would be natural to think about using a 3D SFC to

cope with ids too. As far as space reduction is concerned,

this 3D approach may not a bad solution. The problem is

that it will destroy the locality of the points in their original

space. Specifically, the converted values would no longer

preserve the spatial proximity of the points, because ids in

general have nothing to do with coordinates.

6.2 Building R-trees

Remember that an SI-index is no more than a com-pressed

version of an ordinary inverted index with coordinates

embedded, and hence, can be queried in the same way as

described in Section 3.2, i.e., by merging several inverted

lists. In the sequel, we will explore the option of indexing

each inverted list with an R-tree. As explained in Section

3.2, these trees allow us to process a query by distance

browsing, which is efficient when the query keyword set

Wq is small.

As before, merging demands that points of all lists

should be ordered following the same principle. This is not

a problem because our design in the previous subsection

has laid down such a principle: ascending order of Z-

values. Moreover, this ordering has a cru-cial property that

conventional id-based ordering lacks: preservation of

spatial proximity. The property makes it possible to build

good R-trees without destroying the Z-value ordering of

any list. Specifically, we can (carefully) group consecutive

points of a list into MBRs, and incorporate all MBRs into

an R-tree. The proximity-preserving nature of the Z-curve

will ensure that the MBRs are reasonably small when the

dimensionality is low. For example, assume that an

inverted list includes all the points in Figure 5, sorted in the

order shown. To build an R-tree, we may cut the list into 4

blocks {p6, p2},{p8, p4}, {p7, p1}, and {p3, p5}. Treating

each block as a leaf node results in an R-tree identical to

the one in Figure 3a. Linking all blocks from left to right

preserves the ascending order of the points’ Z-values

Creating an R-tree from a space filling curve has been

considered by Kamel and Faloutsos [16]. Different from

their work, we will look at the problem in a more rigorous

manner, and attempt to obtain the optimal solution.

Formally, the underlying problem is as follows. There is an

inverted list L with, say, r points p1, p2, ..., pr , sorted in

ascending order of Z-values. We want to divide L into a

number of disjoint blocks such that (i) the number of points

in each block is between B and 2B − 1, where B is the

block size, and (ii) the points of a block must be

consecutive in the original ordering of L. The goal is to

make the resulting MBRs of the blocks as small as

possible.

How “small” an MBR is can be quantified in a number

of ways. For example, we can take its area, perimeter, or a

function of both. Our solution, presented below, can be

applied to any quantifying metric, but our discussion will

use area as an example. The cost of a dividing scheme of L

is thus defined as the sum of the areas of the optimal

division of the subsequence pi, pi+1, ..., pj . The aim of the

above problem is thus to find C[1, r]. We also denote by

A[i, j] the area of the MBR enclosing pi, pi+1, ..., pj .

Now we will discuss the properties of C[i, j]. There are j

− i + 1 points from pi to pj . So C[i, j] is undefined if j − i +

1 < B, because we will never create a block with less than

B points. Furthermore, in the case where j − i + 1 ∈ [B, 2B

− 1], C[i, j] can be immediately solved as the area of the

MBR enclosing all the j − i + 1 points. Hence, next we will

focus on the case j − i + 1 ≥ 2B.

Notice that when we try to divide the set of points {pi,

pi+1, ..., pj }, there are at most B − 1 ways to decide which

points should be in the same block together with the first

point pi. Specifically, a block of size B must include,

besides pi, also pi+1, pi+2, all the way to pi+B−1. If the block

size goes to B + 1, then the additional point will have to be

pi+B ; similarly, to get a block size of B + 2, we must also

put in pi+B+1 and so on, until the block size reaches the

maximum 2B − 1. Regardless of the block size, the

International Journal of Engineering Research & Technology (IJERT)

ISSN: 2278-0181

Published by, www.ijert.org

RACMS-2014 Conference Proceedings

Volume 3, Issue 33

Special Issue - 2015

6

remaining points (that are not together with p1) constitute a

smaller set on which the division problem needs to be

solved recursively. The total number of choices may be

less than B − 1 because care must be taken to make sure

that the number of those remaining points is at least B. In

any case, C[i, j] equals the lowest cost of all the

permissible choices, or formally:

algorithm that runs in O(Br2) time: it suffices to derive C[i,

j] in ascending order of the value of j − i, namely, starting

with those with j − i = 2B, followed by those with j−i =

2B+1, and so on until finishing at j−i = r−1. We can

significantly improve the computation time to O(Br), by

the observation that j can be fixed to r throughout the

computation in order to obtain C[1, r] eventually.

We have finished explaining how to build the leaf nodes

of an R-tree on an inverted list. As each leaf is a block, all

the leaves can be stored in a blocked SI-index as described

in Section 6.1. Building the nonleaf levels is trivial,

because they are invisible to the merging-based query

algorithms, and hence, do not need to preserve any

common ordering. We are free to apply any of the existing

R-tree construction algorithms. It is noteworthy that the

nonleaf levels add only a small amount to the overall space

overhead because, in an R-tree, the number of nonleaf

nodes is by far lower than that of leaf nodes.

7 EXPERIMENTS

In the sequel, we will experimentally evaluate the prac-tical

efficiency of our solutions to NN search with key-words,

and compare them against the existing methods.

Competitors. The proposed SI-index comes with two query

algorithms based on merging and distance brows-ing

respectively. We will refer to the former as SI-m and the

other as SI-b. Our evaluation also covers the state-of-the-art

IR2-tree; in particular, our IR2-tree implemen-tation is the

fast variant developed in [12], which uses longer signatures

for higher levels of tree. Furthermore, we also include the

method, named index file R-tree (IFR) henceforth, which,

as discussed in Section 5, indexes each inverted list (with

coordinates embedded) using an R-tree, and applies

distance browsing for query process-ing. IFR can be

regarded as an uncompressed version of SI-b.

Data. Our experiments are based on both synthetic and real

data. The dimensionality is always 2, with each axis

consisting of integers from 0 to 16383. The synthetic

category has two datasets: Uniform and Skew, which differ

in the distribution of data points, and in whether there is a

correlation between the spatial distribution and objects’

text documents. Specifically, each dataset has 1 million

points. Their locations are uniformly distributed in

Uniform, whereas in Skew, they follow the Zipf

distribution3.For both datasets, the vocabulary has 200

words, and each word appears in the text documents of 50k

points. The difference is that the association of words with

points is completely random in Uniform, while in Skew,

there is a pattern of “word-locality”: points that are

spatially close have almost identical text documents.

Our real dataset, referred to as Census below, is a

combination of a spatial dataset published by the U.S.

Census Bureau4, and the web pages from Wikipedia5. The

spatial dataset contains 20847 points, each of which

represents a county subdivision. We use the name of the

subdivision to search for its page at Wikipedia, and collect

the words there as the text description of the corresponding

data point. All the points, as well as their text documents,

constitute the dataset Census. The main statistics of all of

our datasets are summarized in Table 1.

Parameters. The page size is always 4096 bytes. All the

SI-indexes have a block size of 200 (see Section 6.1 for the

meaning of a block). The parameters of IR2-tree are set in

exactly the same way as in [12]. Specifically, the tree on

Uniform has 3 levels, whose signatures (from leaves to the

root) have respectively 48, 768, and 840 bits each. The

corresponding lengths for Skew are 48, 856, and 864. The

tree on Census has 2 levels, whose lengths are 2000 and

47608, respectively.

Queries:

 As in [12], we consider NN search with the AND

semantic. There are two query parameters: (i) the number k

of neighbors requested, and (ii) the number |Wq | of

keywords. Each workload has 100 queries that have the

same parameters, and are generated indepen-dently as

follows. First, the query location is uniformly distributed in

the data space. Second, the set Wq of keywords is a random

subset (with the designated size |Wq |) of the text

description of a point randomly sampled from the

underlying dataset. We will measure the query cost as the

total I/O time (in our system, on average, every sequential

page access takes about 1 milli-second, and a random

access is around 10 times slower).

Results on query efficiency:

 Let us start with the query performance with respect to

the number of keywords |Wq |. For this purpose, we will fix

the parameter k to 10, i.e., each query retrieves 10

neighbors. For each competing method, we will report its

average query time in processing a workload. The results

are shown in Figure 6, where (a), (b), (c) are about datasets

Uniform, Skew, and Census, respectively. In each case, we

International Journal of Engineering Research & Technology (IJERT)

ISSN: 2278-0181

Published by, www.ijert.org

RACMS-2014 Conference Proceedings

Volume 3, Issue 33

Special Issue - 2015

7

present the I/O time of IR2-tree separately in a table,

because it is significantly more expensive than the other

solu-tions. The experiment on Uniform inspects |Wq | up to

4, because almost all queries with greater |Wq | return no

result at all.

The fastest method is either SI-m or SI-b in all cases. In

particular, SI-m is especially efficient on Census where

each inverted list is relatively small (this is hinted from the

column “the number objects per word” in Table 1), and

hence, index-based search is not as effective as simple

scans. The behavior of the two algorithms on Uniform very

well confirms the intuition that distance browsing is more

suitable when |Wq | is small, but is outperformed by

merging when Wq is sizable. On Skew, SI-b is significantly

better than SI-m due to the “word-locality” pattern. As for

IFR, its behavior in general follows that of SI-b because

they differ only in whether compression is performed. The

superiority of SI-b stems from its larger node capacity.

IR2-tree, on the other hand, fails to give real time

answers, and is often slower than our solutions by a factor

of orders of magnitude, particularly on Uniform and

Census where word-locality does not exist. As ana-lyzed in

Section 3.1, the deficiency of IR2-tree is mainly caused by

the need to verify a vast number of false hits. To illustrate

this, Figure 7 plots the average false hit number per query

(in the experiments of Figure 6) as a function of |Wq |. We

see an exponential escalation of the number on Uniform

and Census, which explains the drastic explosion of the

query cost on those datasets. Interesting is that the number

of false hits fluctuates6 a little on Skew, which explains the

fluctuation in the cost of IR2-tree in Figure 6b.

Next, we move on to study the other query parameter k (the

number of neighbors returned). The experiments for this

purpose are based on queries with |Wq | = 3. As before, the

average query time of each method in handling a workload

is reported. Figures 8a, 8b, 8c give the results on Uniform,

Skew, and Census, respectively. Once again, the costs of

IR2-tree are separated into tables. In these experiments, the

best approach is still either SI-m or SI-b. As expected, the

cost of SI-m is not affected by k, while those of the other

solutions all increase monoton-ically.

 The relative superiority of alternative methods, in

general, is similar to that exhibited in Figure 6. Perhaps

worth pointing out is that, for all distributions, distance

browsing appears to be the most efficient approach when k

is small.

Results on space consumption:

 We will complete our experiments by reporting

the space cost of each method on each dataset. While four

methods are examined in the experiments on query time,

there are only three as far as space is concerned. Remember

that SI-m and SI-b actually deploy the same SI-index and

hence, have the same space cost. In the following, we will

refer to them collectively as SI-index.

Summary:

 The SI-index, accompanied by the proposed

query algorithms, has presented itself as an excellent

tradeoff between space and query efficiency. Compared to

IFR, it consumes significantly less space, and yet, answers

queries much faster. Compared to IR2-tree, its superiority is

overwhelming since its query time is typically lower by a

factor of orders of magnitude.

8 CONCLUSIONS

We have seen plenty of applications calling for a search

engine that is able to efficiently support novel forms of

spatial queries that are integrated with keyword search. The

existing solutions to such queries either incur prohibitive

space consumption or are unable to give real time answers.

In this paper, we have remedied the situation by developing

an access method called the spatial inverted index (SI-

index). Not only that the SI-index is fairly space

economical, but also it has the ability to perform keyword-

augmented nearest neighbor search in time that is at the

order of dozens of milli-seconds. Furthermore, as the SI-

index is based on the conventional technology of inverted

index, it is readily incorporable in a commercial search

engine that applies massive parallelism, implying its

immediate industrial merits.

REFERENCES

[1] S. Agrawal, S. Chaudhuri, and G. Das. Dbxplorer: A system for

keyword-based search over relational databases. In Proc. of
International Conference on Data Engineering (ICDE), pages 5–16,

2002.

[2] N. Beckmann, H. Kriegel, R. Schneider, and B. Seeger. The R*-tree:
An efficient and robust access method for points and rectangles. In

Proc. of ACM Management of Data (SIGMOD), pages 322–331,

1990.
[3] G. Bhalotia, A. Hulgeri, C. Nakhe, S. Chakrabarti, and S. Sudar-

shan. Keyword searching and browsing in databases using banks. In

Proc. of International Conference on Data Engineering (ICDE),
pages 431–440, 2002.

[4] X. Cao, L. Chen, G. Cong, C. S. Jensen, Q. Qu, A. Skovsgaard, D.

Wu, and M. L. Yiu. Spatial keyword querying. In ER, pages 16–29,
2012.

[5] X. Cao, G. Cong, and C. S. Jensen. Retrieving top-k prestige-based

relevant spatial web objects. PVLDB, 3(1):373–384, 2010.
[6] X. Cao, G. Cong, C. S. Jensen, and B. C. Ooi. Collective spatial

keyword querying. In Proc. of ACM Management of Data (SIG-

MOD), pages 373–384, 2011.
[7] B. Chazelle, J. Kilian, R. Rubinfeld, and A. Tal. The bloomier filter:

an efficient data structure for static support lookup tables. In Proc. of

the Annual ACM-SIAM Symposium on Discrete Algorithms (SODA),

pages 30–39, 2004.

[8] Y.-Y. Chen, T. Suel, and A. Markowetz. Efficient query processing

in geographic web search engines. In Proc. of ACM Management of
Data (SIGMOD), pages 277–288, 2006.

[9] E. Chu, A. Baid, X. Chai, A. Doan, and J. Naughton. Combining

keyword search and forms for ad hoc querying of databases. In
Proc. of ACM Management of Data (SIGMOD), 2009.

[10] G. Cong, C. S. Jensen, and D. Wu. Efficient retrieval of the top-k

most relevant spatial web objects. PVLDB, 2(1):337–348, 2009.
[11] C. Faloutsos and S. Christodoulakis. Signature files: An access

method for documents and its analytical performance evaluation.

ACM Transactions on Information Systems (TOIS), 2(4):267–288,
1984.

[12] I. D. Felipe, V. Hristidis, and N. Rishe. Keyword search on spatial

databases. In Proc. of International Conference on Data
Engineering (ICDE), pages 656–665, 2008.

International Journal of Engineering Research & Technology (IJERT)

ISSN: 2278-0181

Published by, www.ijert.org

RACMS-2014 Conference Proceedings

Volume 3, Issue 33

Special Issue - 2015

8

[13] R. Hariharan, B. Hore, C. Li, and S. Mehrotra. Processing spatial-

keyword (SK) queries in geographic information retrieval (GIR)

systems. In Proc. of Scientific and Statistical Database Management

(SSDBM), 2007.

[14] G. R. Hjaltason and H. Samet. Distance browsing in spa-tial
databases. ACM Transactions on Database Systems (TODS),

24(2):265–318, 1999.

[15] V. Hristidis and Y. Papakonstantinou. Discover: Keyword search in
relational databases. In Proc. of Very Large Data Bases (VLDB),

pages 670–681, 2002.

[16] I. Kamel and C. Faloutsos. Hilbert R-tree: An improved r-tree using
fractals. In Proc. of Very Large Data Bases (VLDB), pages 500–509,

1994.

[17] J. Lu, Y. Lu, and G. Cong. Reverse spatial and textual k nearest
neighbor search. In Proc. of ACM Management of Data (SIGMOD),

pages 349–360, 2011.

[18] S. Stiassny. mathematical analysis of various superimposed coding
methods. Am. Doc., 11(2):155–169, 1960.

[19] J. S. Vitter. Algorithms and data structures for external memory.

Foundation and Trends in Theoretical Computer Science, 2(4):305–
474, 2006.

[20] D. Zhang, Y. M. Chee, A. Mondal, A. K. H. Tung, and M. Kitsure-

gawa. Keyword search in spatial databases: Towards searching by
document. In Proc. of International Conference on Data

Engineering (ICDE), pages 688–699, 2009.

[21] Y. Zhou, X. Xie, C. Wang, Y. Gong, and W.-Y. Ma. Hybrid index
structures for location-based web search. In Proc. of Conference on

Information and Knowledge Management (CIKM), pages 155–162,
2005.

International Journal of Engineering Research & Technology (IJERT)

ISSN: 2278-0181

Published by, www.ijert.org

RACMS-2014 Conference Proceedings

Volume 3, Issue 33

Special Issue - 2015

9

