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Abstract:- Spatial query is a special type of database query 

supported by geo databases and spatial databases. The 

queries differ from non-spatial SQL queries. Today, many 

modern applications call for novel forms of queries that 

aim to find objects satisfying both a spatial predicate, and a 

predicate on their associated texts. For example, instead of 

considering all the restaurants, a nearest neighbor query 

would instead ask for the restaurant that is the closest 

among those whose menus contain “steak, spaghetti, 

brandy” all at the same time. Currently the best solution to 

such queries is based on the IR2-tree, which, as shown in 

this paper, has a few deficiencies that seriously impact its 

efficiency. Motivated by this, we develop a new access 

method called the spatial inverted index that extends the 

conventional inverted index to cope with multidimensional 

data, and comes with algorithms that can answer nearest 

neighbor queries with keywords in real time. As verified by 

experiments, the proposed techniques outperform the IR2-

tree in query response time significantly, often by a factor 

of orders of magnitude. 
 

 

Index Terms— Information retrieval, spatial index, keyword 

search 
 

1. INTRODUCTION 

 

A spatial database manages multidimensional objects (such 

as points, rectangles, etc.), and provides fast access to those 

objects based on different selection criteria. The 

importance of spatial databases is reflected by the 

convenience of modeling entities of reality in a geometric 

manner. For example, locations of restaurants, hotels, 

hospitals and so on are often represented as points in a 

map, while larger extents such as parks, lakes, and 

landscapes often as a combination of rectangles. Many 

functionalities of a spatial database are useful in various 

ways in specific contexts. For instance, in a geography 

information system, range search can be deployed to find 

all restaurants in a certain area, while nearest neighbor 

retrieval can discover the restaurant closest to a given 

address. 

 

Nearest neighbor search (NNS), also known as proximity 

search, similarity search or closest point search, is 

an optimization problem for finding closest points.   

A search algorithm is an algorithm for finding an item 

with specified properties among a collection of items. 

   A spatial index is a type of extended index that allows 

you to index a spatial column. A spatial column is a table 

column that contains data of a spatial data type, such 

as geometry 

   The IR2-tree, however, also inherits a drawback of 

signature files: false hits. That is, a signature file, due to its 

conservative nature, may still direct the search to some 

objects, even though they do not have all the keywords. 

The penalty thus caused is the need to verify an object 

whose satisfying a query or not cannot be resolved using 

only its signature, but requires loading its full text 

description, which is expensive due to the resulting random 

accesses. It is noteworthy that the false hit problem is not 

specific only to signature files, but also exists in other 

methods for approximate set membership tests with 

compact storage. Therefore, the problem cannot be 

remedied by simply replacing signature file with any of 

those methods. 

 
 

Fig. 1.  (a) Shows the locations of points and 

    (b) Gives their associated texts. 

 
2. PROBLEM DEFINITION 

 

Let P be a set of multidimensional points. As our goal is to 

combine keyword search with the existing location-finding 

services on facilities such as hospitals, restaurants, hotels, 

etc., we will focus on dimensionality 2, but our technique 

can be extended to arbitrary dimen-sionalites with no 

technical obstacle. We will assume that the points in P have 

integer coordinates, such that each coordinate ranges in [0, 

t], where t is a large integer. This is not as restrictive as it 

may seem, because even if one would like to insist on real-

valued coordinates, the set of different coordinates 

representable under a space limit is still finite and 

enumerable; therefore, we could as well convert everything 

to integers with proper scaling. 

  Each point p ∈ P is associated with a set of words, which 

is denoted as Wp and termed the document of p. For 

example, if p stands for a restaurant, Wp can be its menu, 

or if p is a hotel,  

Wp can be the description of its services and facilities, or if 
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p is a hospital, Wp can be the list of its out-patient 

specialties. It is clear that Wp may potentially contain 

numerous words. 

Traditional nearest neighbor search returns the data point 

closest to a query point. Following [12], we ex-tend the 

problem to include predicates on objects’ texts. Formally, 

in our context, a nearest neighbor (NN) query specifies a 

point q and a set Wq of keywords (we refer to Wq as the 

document of the query). It returns the point in Pq that is the 

nearest to q, where Pq is defined as 

Pq = {p ∈ P | Wq ⊆ Wp}      (1) 

  
In other words, Pq is the set of objects in P whose 

documents contain all the keywords in Wq . In the case 

where Pq is empty, the query returns nothing. The prob-lem 

definition can be generalized to k nearest neighbor (kNN) 

search, which finds the k points in Pq closest to q; if Pq has 

less than k points, the entire Pq should be returned. 
 

For example, assume that P consists of 8 points whose 

locations are as shown in Figure 1a (the black dots), and 

their documents are given in Figure 1b. Consider a query 

point q at the white dot of Figure 1a with the set of 

keywords Wq = {c, d}. Nearest neighbor search finds p6, 

noticing that all points closer to q than p6 are missing either 

the query keyword c or d. If k = 2 nearest neighbors are 

wanted, p8 is also returned in addition. The result is still 

{p6, p8} even if k increases to 3 or higher, because only 2 

objects have the keywords c and d at the same time. 

 

We consider that the dataset does not fit in memory, and 

needs to be indexed by efficient access methods in order to 

minimize the number of I/Os in answering a query. 

 

3. RELATED WORK 

 
Section 3.1 reviews the information retrieval R-tree which 

is the state of the art for answering the nearest neighbor 

queries defined in Section 2. Section 3.2 explains an 

alternative solution based on the inverted index. Finally, 

Section 3.3 discusses other relevant work in spatial 

keyword search. 
 

3.1 The IR2-tree 

As mentioned before, the IR2-tree combines the R-tree 

with signature files. Next, we will review what is signature 

file, before explaining the details of IR2-trees. Our 

discussion assumes the knowledge of R-trees and the best-

first algorithm [14] for NN search, both of which are well-

known techniques in spatial databases. 

Signature file in general refers to a hashing-based 

framework, whose instantiation in  is known as 

superimposed coding (SC), which is shown to be more 

effective than other instantiations [11]. It is designed to 

perform membership tests: determine whether a query word 

w exists in a set W of words. SC is conservative, in the 

sense that if it says “no”, then w is definitely not in W . If, 

on the other hand, SC returns “yes”, the true answer can be 

either way, in which case the whole W must be scanned to 

avoid a false hit. 

In the context of [12], SC works in the same way as the 

classic technique of bloom filter. In preprocessing, it builds 

a bit signature of length l from W by hashing each word in 

W to a string of l bits, and then taking the disjunction of all 

bit strings. To illustrate, denote by h(w) the bit string of a 

word w. First, all the l bits of h(w) are initialized to 0. 

Then, SC repeats the following m times: randomly choose 

a bit and set it to 1. Very importantly, randomization must 

use w as its seed to ensure that the same w always ends up 

with an identical h(w). Furthermore, the m choices are 

mutually independent, and may even happen to be the same 

bit. The concrete values of l and m affect the space cost and 

false hit probability, as will be discussed later. 

 

Figure 2 gives an example to illustrate the above process, 

assuming l = 5 and m = 2. For example, in the bit string 

h(a) of a, the 3rd and 5th (counting from left) 
 

Word hashed bit string 

A 00101  
B 01001  
C 00011  

 

D 00110  
 

E 10010  

 

 
Fig. 2. Example of bit string computation with l = 5 and m = 2 bits are set 

to 1.  

As mentioned earlier, the bit signature of a set W of words 

simply ORs the bit strings of all the members of W. For 

instance, the signature of a set {a, b} equals01101, while 

that of {b, d} equals 01111. 
 

 

Given a query keyword w, SC performs the member-

ship test in W by checking whether all the 1’s of h(w) 

appear at the same positions in the signature of W . If not, 

it is guaranteed that w cannot belong to W . Otherwise, the 

test cannot be resolved using only the signature, and a scan 

of W follows. A false hit occurs if the scan reveals that W 

actually does not contain w.  

 

For example, assume that we want to test whether word 

c is a member of set {a, b} using only the set’s signature 

01101. Since the 4th bit of h(c) = 00011 is 1 but that of 

01101 is 0, SC immediately reports “no”. As another 

example, consider the membership test of c in {b, d} whose 

signature is 01111.  

 

This time, SC returns “yes” because 01111 has 1’s at all 

the bits where h(c) is set to 1; as a result, a full scan of the 

set is required to verify that this is a false hit. 
 

The IR2-tree is an R-tree where each (leaf or non leaf) 

entry E is augmented with a signature that summarizes the 

union of the texts of the objects in the sub tree of E. Figure 

3 demonstrates an example based on the dataset of Figure 1 

and the hash values in Figure 2. The string 01111 in the 

leaf entry p2, for example, is the signature of Wp2 = {b, d} 

(which is the document of p2; see Figure 1b). The string 

11111 in the non leaf entry E3 is the signature of Wp2 ∪ 
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Wp6 , namely, the set of all words describing p2 and p6. 

Notice that, in general, the signature of a non leaf entry E 

can be conveniently obtained simply as the disjunction of 

all the signatures in the child node of E. A non leaf 

signature may allow a query algorithm to realize that a 

certain word cannot exist in the sub tree.  
 

For example, as the 2nd bit of h(b) is 1, we know that no 

object in the sub trees of E4 and E6 can have word b in its 

texts – notice that the signatures of E4 and E6 have 0 as 

their 2nd bits. In general, the signatures in an IR2-tree may 

have different lengths at various levels. 
 

 

On conventional R-trees, the best-first algorithm [14] is 

a well-known solution to NN search. It is straight forward 

to adapt it to IR2-trees. Specifically, given a query point q 

and a keyword set Wq , the adapted algorithm accesses the 

entries of an IR2-tree in ascending order of the distances of 

their MBRs to q (the MBR of a leaf entry is just the point 

itself), pruning those entries whose 

 
 

Fig. 3. Example of an IR2-tree. 

(a) Shows the MBRs of the underlying R-tree 

 

 
 

(b) gives the signatures of the entries. 
 

signatures indicate the absence of at least one word of Wq 

in their subtrees. Whenever a leaf entry, say of point p, 

cannot be pruned, a random I/O is performed to retrieve its 

text description Wp. If Wq is a subset of Wp, the algorithm 

terminates with p as the answer; otherwise, it continues 

until no more entry remains to be processed. In Figure 3, 

assume that the query point q has a keyword set Wq = {c, 

d}. It can be verified that the algorithm must read all the 

nodes of the tree, and fetch the documents of p2, p4, and p6 

(in this order). The final answer is p6, while p2 and p4 are 

false hits. 

3.2 Solutions based on inverted indexes 

Inverted indexes (I-index) have proved to be an effective 

access method for keyword-based document retrieval. In 

the spatial context, nothing prevents us from treating the 

text description Wp of a point p as a document, and then, 

building an I-index. Figure 4 illustrates the index for the 

dataset of Figure 1. Each word in the vocabulary has an 

inverted list, enumerating the ids of the points that have the 

word in their documents. 

 

Note that the list of each word maintains a sorted order 

of point ids, which provides considerable convenience in 

query processing by allowing an efficient merge step. For 

example, assume that we want to find the points that have 

words c and d. This is essentially to compute the 

intersection of the two words’ inverted lists. As both lists 

are sorted in the same order, we can do so by merging 

them, whose I/O and CPU times are both linear to the total 

length of the lists. 

Recall that, in NN processing with IR2-tree, a point 

retrieved from the index must be verified (i.e., having its 

text description loaded and checked). Verification is also 

necessary with I-index, but for exactly the opposite reason. 

For IR2-tree, verification is because we do not have the 

detailed texts of a point, while for I-index, it is because we 

do not have the coordinates. Specifically, given an NN 

query q with keyword set Wq , the query algorithm of I-

index first retrieves (by merging) the set Pq of all points 

that have all the keywords of Wq , 

 
 

According to the experiments of [12], when Wq has only 

a single word, the performance of I-index is very bad, 

which is expected because everything in the inverted list of 

that word must be verified. Interestingly, as the size of Wq 

increases, the performance gap between I-index and IR2-

tree keeps narrowing such that I-index even starts to 

outperform IR2-tree at |Wq | = 4. This is not as surprising as 

it may seem. As |Wq | grows large, not many objects need 

to be verified because the number of objects carrying all 

the query keywords drops rapidly. On the other hand, at 

this point an advantage of I-index starts to pay off. That is, 

scanning an inverted list is relatively cheap because it 

involves only sequential I/Os1, as opposed to the random 

nature of accessing the nodes of an IR2-tree. 
 

3.3 Other relevant work 
 

Our treatment of nearest neighbor search falls in the 

general topic of spatial keyword search, which has also 

given rise to several alternative problems. A complete 

survey of all those problems goes beyond the scope of this 

paper. Below we mention several representatives, but 

interested readers can refer to [4] for a nice survey. 
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Cong et al. [10] considered a form of keyword-based 

nearest neighbor queries that is similar to our formu-lation, 

but differs in how objects’ texts play a role in determining 

the query result. Specifically, aiming at an IR flavor, the 

approach of [10] computes the relevance between the 

documents of an object p and a query q. This relevance 

score is then integrated with the Euclidean distance 

between p and q to calculate an overall similarity of p to q. 

The few objects with the highest similarity are returned. In 

this way, an object may still be in the query result, even 

though its document does not contain all the query 

keywords. In our method, same as [12], object texts are 

utilized in evaluating a Boolean predicate, i.e., if any query 

keyword is missing in an object’s document, it must not be 

returned. Neither approach subsumes the other, and both 

make sense in different applications. As an application in 

our favor, consider the scenario where we want to find a 

close restaurant serving “steak, spaghetti and brandy”, and 

do not accept any restaurant that does not serve any of 

these three items. In this case, a restaurant’s document 

either fully satisfies our requirement, or does not satisfy at 

all. There is no “partial satisfaction”, as is the rationale 

behind the approach of [10]. 

 

In geographic web search, each webpage is assigned a 

geographic region that is pertinent to the webpage’s 

contents. In web search, such regions are taken into 

account so that higher rankings are given to the pages in 

the same area as the location of the computer issuing the 

query (as can be inferred from the computer’s IP address) 

[8], [13], [21]. The underpinning problem that needs to be 

solved is different from keyword-based nearest neighbor 

search, but can be regarded as the combination of keyword 

search and range queries. 

 

Zhang et al. [20] dealt with the so-called m-closest key-

words problem. Specifically, let P be a set of points each of 

which carries a single keyword. Given a set Wq of query 

keywords (note: no query point q is needed), the goal is to 

find m = |Wq | points from P such that (i) each point has a 

distinct keyword in Wq , and (ii) the maximum mutual 

distance of these points is minimized (among all subsets of 

m points in P fulfilling the previous condi-tion). In other 

words, the problem has a “collaborative” nature in that the 

resulting m points should cover the query keywords 

together. This is fundamentally different from our work 

where there is no sense of collaboration at all, and instead 

the quality of each individual point with respect to a query 

can be quantified into a concrete value. Cao et al. [6] 

proposed collective spatial keyword querying, which is 

based on similar ideas, but aims at optimizing different 

objective functions. 

 

In [5], Cong et al. proposed the concept of prestige-

based spatial keyword search. The central idea is to 

evaluate the similarity of an object p to a query by taking 

also into account the objects in the neighborhood of p. Lu 

et al. [17] recently combined the notion of keyword search 

with reverse nearest neighbor queries. 

 

Although keyword search has only started to receive 

attention in spatial databases, it is already thoroughly 

studied in relational databases, where the objective is to 

enable a querying interface that is similar to that of search 

engines, and can be easily used by naive users without 

knowledge about SQL. Well known systems with such 

mechanisms include DBXplorer [1], Discover [15], Banks 

[3], and so on. Interested readers may refer to [9] for 

additional references into that literature. 

 

4 DRAWBACKS OF THE IR2 -TREE 

 

The IR2-tree is the first access method for answering NN 

queries with keywords. As with many pioneering solutions, 

the IR2-tree also has a few drawbacks that affect its 

efficiency. The most serious one of all is that the number of 

false hits can be really large when the object of the final 

result is faraway from the query point, or the result is 

simply empty. In these cases, the query algorithm would 

need to load the documents of many objects, incurring 

expensive overhead as each loading necessitates a random 

access. 

To explain the details, we need to first discuss some 

properties of SC (the variant of signature file used in the 

IR2-tree). Recall that, at first glance, SC has two 

parameters: the length l of a signature, and the number m 

of bits chosen to set to 1 in hashing a word. There is, in 

fact, really just a single parameter l, because the optimal m 

(which minimizes the probability of a false hit) has been 

solved by Stiassny [18]: 

 

mopt = l · ln(2)/g          (2)  

 

where g is the number of distinct words in the set W on 

which the signature is being created. Even with such an 

optimal choice of m, Faloutsos and Christodoulakis [11] 

show that the false hit probability equals 

 

Pf alse = (1/2)mopt .        (3)  

 

Put in a different way, given any word w that does not 

belong to W , SC will still report “yes” with probability Pf 

alse, and demand a full scan of W . 

 

It is easy to see that Pf alse can be made smaller by 

adopting a larger l (note that g is fixed as it is decided by 

W ). In particular, asymptotically speaking, to make sure Pf 

alse is at least a constant, l must be Ω(g), i.e., the signature 

should have Ω(1) bit for every distinct word of W . Indeed, 

for the IR2-tree, Felipe et al. [12] adopt a value of l that is 

approximately equivalent to 4g in their experiments (g here 

is the average number of distinct words a data point has in 

its text description). It thus follows that 

 

Pf alse = (1/2)4 LN(2) = 0.15.     (4)  

 

The above result takes a heavy toll on the efficiency of 

the IR2-tree. For simplicity, let us first assume that the 
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query keyword set Wq has only a single keyword w (i.e., 

|Wq | = 1). Without loss of generality, let p be the object of 

the query result, and S be the set of data points that are 

closer to the query point q than p. In other words, none of 

the points in S has w in their text documents (otherwise, p 

cannot have been the final result). By Equation 4, roughly 

15% of the points in S cannot be pruned using their 

signatures, and thus, will become false hits. This also 

means that the NN algorithm is expected to perform at least 

0.15|S| random I/Os. 

 

So far we have considered |Wq | = 1, but the discussion 

extends to arbitrary |Wq | in a straightforward manner. It is 

easy to observe (based on Equation 4) that, in general, the 

false hit probability satisfies 

 

Pf alse ≥ 0.15|Wq |. (5) 

 

When |Wq | > 1, there is another negative fact that adds to 

the deficiency of the IR2-tree: for a greater |Wq |, the 

expected size of S increases dramatically, because fewer 

and fewer objects will contain all the query keywords. The 

effect is so severe that the number of random accesses, 

given by Pf alse|S|, may escalate as |Wq | grows (even with 

the decrease of Pf alse). In fact, as long as |Wq | > 1, S can 

easily be the entire dataset when the user tries out an 

uncommon combination of keywords that does not exist in 

any object. In this case, the number of random I/Os would 

be so prohibitive that the IR2-tree would not be able to give 

real time responses. 

 

5 MERGING AND DISTANCE BROWSING 

 

Since verification is the performance bottleneck, we should 

try to avoid it. There is a simple way to do so in an I-index: 

one only needs to store the coordinates of each point 

together with each of its appearances in the inverted lists. 

The presence of coordinates in the inverted lists naturally 

motivates the creation of an R-tree on each list indexing the 

points therein (a structure reminiscent of the one in [21]). 

Next, we discuss how to perform keyword-based nearest 

neighbor search with such a combined structure. 

 

The R-trees allow us to remedy awkwardness in the way 

NN queries are processed with an I-index. Recall that, to 

answer a query, currently we have to first get all the points 

carrying all the query words in Wq by merging several lists 

(one for each word in Wq). This appears to be unreasonable 

if the point, say p, of the final result lies fairly close to the 

query point q. It would be great if we could discover p very 

soon in all the relevant lists so that the algorithm can 

terminate right away. This would become a reality if we 

could browse the lists synchronously by distances as 

opposed to by ids. In particular, as long as we could access 

the points of all lists in ascending order of their distances to 

q (breaking ties by ids), such a p would be easily 

discovered as its copies in all the lists would definitely 

emerge consecutively in our access order. So all we have to 

do is to keep counting how many copies of the same point 

have popped up continuously, and terminate by reporting 

the point once the count reaches |Wq |. At 

any moment, it is enough to remember only one count, 

because whenever a new point emerges, it is safe to forget 

about the previous one. 
 

As an example, assume that we want to perform NN 

search whose query point q is as shown in Figure 1, and 

whose Wq equals {c, d}. Hence, we will be using the lists 

of words c and d in Figure 4. Instead of expanding these 

lists by ids, the new access order is by distance to q, 

namely, p2, p3, p6, p6, p5, p8, p8. The processing finishes as 

soon as the second p6 comes out, without reading the 

remaining points. Apparently, if k nearest neighbors are 

wanted, termination happens after having reported k points 

in the same fashion. 

 

Distance browsing is easy with R-trees. In fact, the best-

first algorithm is exactly designed to output data points in 

ascending order of their distances to q. How-ever, we must 

coordinate the execution of best-first on |Wq | R-trees to 

obtain a global access order. This can be easily achieved 

by, for example, at each step taking a “peek” at the next 

point to be returned from each tree, and output the one that 

should come next globally. This algorithm is expected to 

work well if the query keyword set Wq is small. For sizable 

Wq , the large number of random accesses it performs may 

overwhelm all the gains over the sequential algorithm with 

merging. 
 

A serious drawback of the R-tree approach is its space 

cost. Notice that a point needs to be duplicated once for 

every word in its text description, resulting in very 

expensive space consumption. In the next section, we will 

overcome the problem by designing a variant of the 

inverted index that supports compressed coordinate 

embedding. 
 

6 SPATIAL INVERTED LIST 
 

The spatial inverted list (SI-index) is essentially a com-

pressed version of an I-index with embedded coordi-nates 

as described in Section 5. Query processing with an SI-

index can be done either by merging, or together with R-

trees in a distance browsing manner. Furthermore, the 

compression eliminates the defect of a conventional I-index 

such that an SI-index consumes much less space. 

 

6.1 The compression scheme 

Compression is already widely used to reduce the size of 

an inverted index in the conventional context where each 

inverted list contains only ids. In that case, an effective 

approach is to record the gaps between consecutive ids, as 

opposed to the precise ids. For example, given a set S of 

integers {2, 3, 6, 8}, the gap-keeping approach will store 

{2, 1, 3, 2} instead, where the i-th value (i ≥ 2) is the 

difference between the i-th and (i − 1)-th values in the 

original S. As the original S can be precisely reconstructed, 

no information is lost. The only overhead is that 

decompression incurs extra computation cost, but such cost 

is negligible compared to the overhead of I/Os. Note that 

gap-keeping will be much less beneficial if the 
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integers of S are not in a sorted order. This is because the 

space saving comes from the hope that gaps would be 

much smaller (than the original values) and hence could be 

represented with fewer bits. This would not be true had S 

not been sorted. 

 

Compressing an SI-index is less straightforward. The 

difference here is that each element of a list, a.k.a. a point 

p, is a triplet (idp, xp, yp), including both the id and 

coordinates of p. As gap-keeping requires a sorted order, it 

can be applied on only one attribute of the triplet. For 

example, if we decide to sort the list by ids, gap-keeping on 

ids may lead to good space saving, but its application on 

the x- and y-coordinates would not have much effect. 

 

To attack this problem, let us first leave out the ids and 

focus on the coordinates. Even though each point has 2 

coordinates, we can convert them into only one so that gap-

keeping can be applied effectively. The tool needed is a 

space filling curve (SFC) such as Hilbert- or Z-curve. SFC 

converts a multidimensional point to a 1D value such that 

if two points are close in the original space, their 1D values 

also tend to be similar. As dimensionality has been brought 

to 1, gap-keeping works nicely after sorting the (converted) 

1D values. 

 

For example, based on the Z-curve2, the resulting values, 

called Z-values, of the points in Figure 1a are demonstrated 

in Figure 5 in ascending order. With gap-keeping, we will 

store these 8 points as the sequence 12, 3, 8, 1, 7, 9, 2, 7. 

Note that as the Z-values of all points can be accurately 

restored, the exact coordinates can be restored as well. 

Let us put the ids back into consideration. Now that we 

have successfully dealt with the two coordinates with a 2D 

SFC, it would be natural to think about using a 3D SFC to 

cope with ids too. As far as space reduction is concerned, 

this 3D approach may not a bad solution. The problem is 

that it will destroy the locality of the points in their original 

space. Specifically, the converted values would no longer 

preserve the spatial proximity of the points, because ids in 

general have nothing to do with coordinates. 

 

6.2 Building R-trees 

Remember that an SI-index is no more than a com-pressed 

version of an ordinary inverted index with coordinates 

embedded, and hence, can be queried in the same way as 

described in Section 3.2, i.e., by merging several inverted 

lists. In the sequel, we will explore the option of indexing 

each inverted list with an R-tree. As explained in Section 

3.2, these trees allow us to process a query by distance 

browsing, which is efficient when the query keyword set 

Wq is small. 

 

As before, merging demands that points of all lists 

should be ordered following the same principle. This is not 

a problem because our design in the previous subsection 

has laid down such a principle: ascending order of Z-

values. Moreover, this ordering has a cru-cial property that 

conventional id-based ordering lacks: preservation of 

spatial proximity. The property makes it possible to build 

good R-trees without destroying the Z-value ordering of 

any list. Specifically, we can (carefully) group consecutive 

points of a list into MBRs, and incorporate all MBRs into 

an R-tree. The proximity-preserving nature of the Z-curve 

will ensure that the MBRs are reasonably small when the 

dimensionality is low. For example, assume that an 

inverted list includes all the points in Figure 5, sorted in the 

order shown. To build an R-tree, we may cut the list into 4 

blocks {p6, p2},{p8, p4}, {p7, p1}, and {p3, p5}. Treating 

each block as a leaf node results in an R-tree identical to 

the one in Figure 3a. Linking all blocks from left to right 

preserves the ascending order of the points’ Z-values 

Creating an R-tree from a space filling curve has been 

considered by Kamel and Faloutsos [16]. Different from 

their work, we will look at the problem in a more rigorous 

manner, and attempt to obtain the optimal solution. 

Formally, the underlying problem is as follows. There is an 

inverted list L with, say, r points p1, p2, ..., pr , sorted in 

ascending order of Z-values. We want to divide L into a 

number of disjoint blocks such that (i) the number of points 

in each block is between B and 2B − 1, where B is the 

block size, and (ii) the points of a block must be 

consecutive in the original ordering of L. The goal is to 

make the resulting MBRs of the blocks as small as 

possible. 

 

How “small” an MBR is can be quantified in a number 

of ways. For example, we can take its area, perimeter, or a 

function of both. Our solution, presented below, can be 

applied to any quantifying metric, but our discussion will 

use area as an example. The cost of a dividing scheme of L 

is thus defined as the sum of the areas of the optimal 

division of the subsequence pi, pi+1, ..., pj . The aim of the 

above problem is thus to find C[1, r]. We also denote by 

A[i, j] the area of the MBR enclosing pi, pi+1, ..., pj . 

 

Now we will discuss the properties of C[i, j]. There are j 

− i + 1 points from pi to pj . So C[i, j] is undefined if j − i + 

1 < B, because we will never create a block with less than 

B points. Furthermore, in the case where j − i + 1 ∈ [B, 2B 

− 1], C[i, j] can be immediately solved as the area of the 

MBR enclosing all the j − i + 1 points. Hence, next we will 

focus on the case j − i + 1 ≥ 2B. 

 

Notice that when we try to divide the set of points {pi, 

pi+1, ..., pj }, there are at most B − 1 ways to decide which 

points should be in the same block together with the first 

point pi. Specifically, a block of size B must include, 

besides pi, also pi+1, pi+2, all the way to pi+B−1. If the block 

size goes to B + 1, then the additional point will have to be 

pi+B ; similarly, to get a block size of B + 2, we must also 

put in pi+B+1 and so on, until the block size reaches the 

maximum 2B − 1. Regardless of the block size, the 
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remaining points (that are not together with p1) constitute a 

smaller set on which the division problem needs to be 

solved recursively. The total number of choices may be 

less than B − 1 because care must be taken to make sure 

that the number of those remaining points is at least B. In 

any case, C[i, j] equals the lowest cost of all the 

permissible choices, or formally: 

 
 

algorithm that runs in O(Br2 ) time: it suffices to derive C[i, 

j] in ascending order of the value of j − i, namely, starting 

with those with j − i = 2B, followed by those with j−i = 

2B+1, and so on until finishing at j−i = r−1. We can 

significantly improve the computation time to O(Br), by 

the observation that j can be fixed to r throughout the 

computation in order to obtain C[1, r] eventually. 

 

We have finished explaining how to build the leaf nodes 

of an R-tree on an inverted list. As each leaf is a block, all 

the leaves can be stored in a blocked SI-index as described 

in Section 6.1. Building the nonleaf levels is trivial, 

because they are invisible to the merging-based query 

algorithms, and hence, do not need to preserve any 

common ordering. We are free to apply any of the existing 

R-tree construction algorithms. It is noteworthy that the 

nonleaf levels add only a small amount to the overall space 

overhead because, in an R-tree, the number of nonleaf 

nodes is by far lower than that of leaf nodes. 

 

7 EXPERIMENTS 

 

In the sequel, we will experimentally evaluate the prac-tical 

efficiency of our solutions to NN search with key-words, 

and compare them against the existing methods. 

 

Competitors. The proposed SI-index comes with two query 

algorithms based on merging and distance brows-ing 

respectively. We will refer to the former as SI-m and the 

other as SI-b. Our evaluation also covers the state-of-the-art 

IR2-tree; in particular, our IR2-tree implemen-tation is the 

fast variant developed in [12], which uses longer signatures 

for higher levels of tree. Furthermore, we also include the 

method, named index file R-tree (IFR) henceforth, which, 

as discussed in Section 5, indexes each inverted list (with 

coordinates embedded) using an R-tree, and applies 

distance browsing for query process-ing. IFR can be 

regarded as an uncompressed version of SI-b. 

 

Data. Our experiments are based on both synthetic and real 

data. The dimensionality is always 2, with each axis 

consisting of integers from 0 to 16383. The synthetic 

category has two datasets: Uniform and Skew, which differ 

in the distribution of data points, and in whether there is a 

correlation between the spatial distribution and objects’ 

text documents. Specifically, each dataset has 1 million 

points. Their locations are uniformly distributed in 

Uniform, whereas in Skew, they follow the Zipf 

distribution3.For both datasets, the vocabulary has 200 

words, and each word appears in the text documents of 50k 

points. The difference is that the association of words with 

points is completely random in Uniform, while in Skew, 

there is a pattern of “word-locality”: points that are 

spatially close have almost identical text documents. 

 

 
 

Our real dataset, referred to as Census below, is a 

combination of a spatial dataset published by the U.S. 

Census Bureau4, and the web pages from Wikipedia5. The 

spatial dataset contains 20847 points, each of which 

represents a county subdivision. We use the name of the 

subdivision to search for its page at Wikipedia, and collect 

the words there as the text description of the corresponding 

data point. All the points, as well as their text documents, 

constitute the dataset Census. The main statistics of all of 

our datasets are summarized in Table 1. 

 

Parameters. The page size is always 4096 bytes. All the 

SI-indexes have a block size of 200 (see Section 6.1 for the 

meaning of a block). The parameters of IR2-tree are set in 

exactly the same way as in [12]. Specifically, the tree on 

Uniform has 3 levels, whose signatures (from leaves to the 

root) have respectively 48, 768, and 840 bits each. The 

corresponding lengths for Skew are 48, 856, and 864. The 

tree on Census has 2 levels, whose lengths are 2000 and 

47608, respectively. 

 

Queries: 

 As in [12], we consider NN search with the AND 

semantic. There are two query parameters: (i) the number k 

of neighbors requested, and (ii) the number |Wq | of 

keywords. Each workload has 100 queries that have the 

same parameters, and are generated indepen-dently as 

follows. First, the query location is uniformly distributed in 

the data space. Second, the set Wq of keywords is a random 

subset (with the designated size |Wq |) of the text 

description of a point randomly sampled from the 

underlying dataset. We will measure the query cost as the 

total I/O time (in our system, on average, every sequential 

page access takes about 1 milli-second, and a random 

access is around 10 times slower). 

 

Results on query efficiency: 

 

      Let us start with the query performance with respect to 

the number of keywords |Wq |. For this purpose, we will fix 

the parameter k to 10, i.e., each query retrieves 10 

neighbors. For each competing method, we will report its 

average query time in processing a workload. The results 

are shown in Figure 6, where (a), (b), (c) are about datasets 

Uniform, Skew, and Census, respectively. In each case, we 
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present the I/O time of IR2-tree separately in a table, 

because it is significantly more expensive than the other 

solu-tions. The experiment on Uniform inspects |Wq | up to 

4, because almost all queries with greater |Wq | return no 

result at all. 

 

The fastest method is either SI-m or SI-b in all cases. In 

particular, SI-m is especially efficient on Census where 

each inverted list is relatively small (this is hinted from the 

column “the number objects per word” in Table 1), and 

hence, index-based search is not as effective as simple 

scans. The behavior of the two algorithms on Uniform very 

well confirms the intuition that distance browsing is more 

suitable when |Wq | is small, but is outperformed by 

merging when Wq is sizable. On Skew, SI-b is significantly 

better than SI-m due to the “word-locality” pattern. As for 

IFR, its behavior in general follows that of SI-b because 

they differ only in whether compression is performed. The 

superiority of SI-b stems from its larger node capacity. 

 

IR2-tree, on the other hand, fails to give real time 

answers, and is often slower than our solutions by a factor 

of orders of magnitude, particularly on Uniform and 

Census where word-locality does not exist. As ana-lyzed in 

Section 3.1, the deficiency of IR2-tree is mainly caused by 

the need to verify a vast number of false hits. To illustrate 

this, Figure 7 plots the average false hit number per query 

(in the experiments of Figure 6) as a function of |Wq |. We 

see an exponential escalation of the number on Uniform 

and Census, which explains the drastic explosion of the 

query cost on those datasets. Interesting is that the number 

of false hits fluctuates6 a little on Skew, which explains the 

fluctuation in the cost of IR2-tree in Figure 6b. 

 

Next, we move on to study the other query parameter k (the 

number of neighbors returned). The experiments for this 

purpose are based on queries with |Wq | = 3. As before, the 

average query time of each method in handling a workload 

is reported. Figures 8a, 8b, 8c give the results on Uniform, 

Skew, and Census, respectively. Once again, the costs of 

IR2-tree are separated into tables. In these experiments, the 

best approach is still either SI-m or SI-b. As expected, the 

cost of SI-m is not affected by k, while those of the other 

solutions all increase monoton-ically.  

   The relative superiority of alternative methods, in 

general, is similar to that exhibited in Figure 6. Perhaps 

worth pointing out is that, for all distributions, distance 

browsing appears to be the most efficient approach when k 

is small. 

 

Results on space consumption: 
 

 We will complete our experiments by reporting 

the space cost of each method on each dataset. While four 

methods are examined in the experiments on query time, 

there are only three as far as space is concerned. Remember 

that SI-m and SI-b actually deploy the same SI-index and 

hence, have the same space cost. In the following, we will 

refer to them collectively as SI-index. 

 

 

Summary: 
 

 The SI-index, accompanied by the proposed 

query algorithms, has presented itself as an excellent 

tradeoff between space and query efficiency. Compared to 

IFR, it consumes significantly less space, and yet, answers 

queries much faster. Compared to IR2-tree, its superiority is 

overwhelming since its query time is typically lower by a 

factor of orders of magnitude. 

 

8 CONCLUSIONS 

 

We have seen plenty of applications calling for a search 

engine that is able to efficiently support novel forms of 

spatial queries that are integrated with keyword search. The 

existing solutions to such queries either incur prohibitive 

space consumption or are unable to give real time answers. 

In this paper, we have remedied the situation by developing 

an access method called the spatial inverted index (SI-

index). Not only that the SI-index is fairly space 

economical, but also it has the ability to perform keyword-

augmented nearest neighbor search in time that is at the 

order of dozens of milli-seconds. Furthermore, as the SI-

index is based on the conventional technology of inverted 

index, it is readily incorporable in a commercial search 

engine that applies massive parallelism, implying its 

immediate industrial merits. 
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