
Improving CPU Performance For Heterogeneous Computing Using OpenCL

Shashank B. Thombre, Balagopal Bhallamudi, Abhinav Choudhury

International Institute of Information Technology Bhubaneswar, Bhubaneswar.

Abstract

With the rapid development of smart phones,

tablets, and pads, there has been widespread

adoption of Graphic Processing Units (GPUs). The

hand-held market is now seeing an ever-increasing

rate of development of computationally intensive

applications, which require significant amounts of

processing resources. To meet this challenge, GPUs

can be used for general-purpose processing. We are

moving towards a future where devices will be more

connected and integrated. This will allow

applications to run on handheld devices, while

offloading computationally intensive tasks to other

compute units available. There is a growing need for

a general programming framework which can utilize

heterogeneous processing units such as GPUs and

DSPs. OpenCL, a widely used programming

framework has been a step towards integrating these

different processing units on desktop platforms.

A thorough study of the factors that impact

the performance of OpenCL on CPUs. Specifically,

starting from the two main architectural mismatches

between many-core CPUs and the OpenCL

platform—parallelism granularity and the memory

model we identify such performance “traps” that

lead to performance degradation in OpenCL for

CPUs. Using multiple code examples, we quantify the

impact of these traps, showing how avoiding them

can give up to 3 times better performance.

1.Introduction

In recent years, modern processor architectures have

shifted their focus on increasing the amount of

parallelism rather than just increasing the processor

clock speed. Currently every computer system we

can call it as a heterogeneous system as it contains

central processing unit (CPUs) with multiple cores,

as well as graphical processing units (GPUs)[1]. Both

CPUs and GPUs can be used for the parallel

computing. Some time ago, using a GPU for general

purpose computation was a major programming

challenge. But thanks to execution models like

CUDA (Compute Unified Device Architecture)[2], it

has become simpler. Though games still represent a

big market for graphical market manufacturers, GPUs

can still be designed keeping general purpose

computations in mind. GPUs are generally known for

faster floating point operation executions and hence

attracting research communities.

 Applications with great amount of data

parallelism perform considerably better on GPU as

compared to the CPU. To take full advantage of

heterogeneous parallel processing platforms Open

Compute Language(OpenCL)[3] was introduced. By

using the OpenCL an application can be partitioned

such that part of code runs on the host processor i.e.

CPU and part of the code runs on GPU. In OpenCL

we are able to manage, OpenCL initialization, data

transfers and kernel executions by set of language

extensions and runtime Application Program

Interfaces (APIs).

 OpenCL has a lot of similarities with CUDA

(Compute Unified Device Architecture) and unlike

CUDA it is platform independent and hence it keeps

gaining popularity for GPU computing. To take

advantage of all parallel computing resources the

applications need not be rewritten. Typically we

write kernels using OpenCL. Kernels are nothing but

2795

International Journal of Engineering Research & Technology (IJERT)

ISSN: 2278-0181

www.ijert.org

Vol. 2 Issue 6, June - 2013

IJ
E
R
T

IJ
E
R
T

IJERTV2IS60811

the computationally intensive functions of the

application. The applications generally perform

several tasks while executing. The application needs

to query platforms and devices available on system,

create contexts, create command queues, and

enqueue kernels to these command queues. Thus as

compare to the normal execution the parallel

execution shows almost 10x performance

improvement for the simple applications used in our

experiment.

 According to its specifications [3], OpenCL

shares the core parallelism approach with CUDA

which is designed for NVIDIA GPUs. Thus there are

visible mismatches between the OpenCL platform

and the CPUs. Furthermore these mismatches may

affect the performance of the CPUs. This slight

performance degradation may be taken as

parallelization overhead and further it can easily be

reduced by slight code transformations[4][5].

2. OpenCL Programming Framework

 The design and implementation of OpenCL

framework is discussed in this section. The point of

discussion revolves around an architecture consisting

of multiple core CPUs, GPUs, accelerators and DSPs

generally termed as heterogeneous accelerator

embedded architectures. OpenCL provides general

purpose GPU programming model provides way to

address complex memory hierarchies and vector

operations.

 OpenCL is an open royalty-free standard

for general purpose parallel programming across

CPUs, GPUs and other processors. OpenCL gives

software developers portable and efficient access to

utilize the power of these heterogeneous processing

platforms. OpenCL includes a language (based

on C99) for writing kernels (functions that execute on

OpenCL devices), plus application programming

interfaces (APIs) that are used to define and then

control the platforms. OpenCL is maintained by

the non- profit technology consortium Khronos

Group. It has been adopted by Intel, Advanced

Micro Devices (AMD), NVIDIA, Altera, Samsung,

Vivante, and ARM holdings.

The operational model of OpenCL mainly consists of

4 sub models platform model, execution model,

programming model and memory model[1][3].

2.1 Platform Model

 Figure 2.1 shows the OpenCL platform

model in details. The platform model consists of one

host and one or more OpenCL devices. OpenCL

devices can be CPU cores, GPUs, accelerators or

DSPs. OpenCL devices are divided into one or more

compute units (CUs), which are further divided into

processing elements(PEs). Computation on a device

occurs with a processing element.

Figure 2.1: OpenCL Platform model: Host with Compute

devices, Compute Units and Processing elements [1].

The OpenCL application submits commands from the

host to execute computations on the processing

elements within a device. The processing elements

within a compute unit execute a single stream of

instructions as SIMD units.

2.2 Execution Model

 OpenCL program executes on GPU in the

form of kernel(s) that execute on one or

more OpenCL devices and a host program that

executes on the CPU. The host program defines the

context for the kernels and manages their execution.

Kernel defines an index space depending on the

application. An instance of the kernel executes for

each point in this index space [9]. This kernel

instance is called a work-item. The work-item is

identified as a point in the index space, by a global

ID for the work-item. Each work-item executes the

same code but the specific execution pathway

through the code and the data can vary per work-

item. Work-items are organized into work-groups.

Work-groups are assigned a unique work-group ID

with the same dimensionality as the index space used

for the work items. A unique local ID is assigned to

work-items, within a work-group so that a single

2796

International Journal of Engineering Research & Technology (IJERT)

ISSN: 2278-0181

www.ijert.org

Vol. 2 Issue 6, June - 2013

IJ
E
R
T

IJ
E
R
T

IJERTV2IS60811

work-item can be uniquely identified by its global ID

or by a combination of its local ID and work-group

ID. The work-items in a given work-group execute
concurrently on the processing elements of a single

compute unit. The index space is called an

NDRange which is an N-dimensional index space,

where N is one, two or three.

2.3 Programming Model

 The OpenCL execution model supports data

parallel and task parallel programming model[9].

 In simpler words data parallel model can be

explained as the sequence of operations applied on

multiple elements of memory object.

Independent data elements can easily be transferred

to the respective processing elements and execution

can be done in parallel.

 In task parallel programming model a single

instance of a kernel executed independent of any

index space.

2.4 Memory Model

 Work-item(s) executing a kernel have access

to four distinct memory regions. This is

distinctly shown in Figure 2.2:

Figure 2.2: OpenCL memory model[2]

Global Memory : This memory region permits

read/write access to all work-items in all work-

groups. Work-items can read from or write to any

element of a memory object.

Constant Memory: A region of global memory that

remains constant during the execution of a kernel.

The host allocates and initializes memory objects

placed into constant memory.
Local Memory: A memory region local to a work-

group. This memory region can be used to allocate

variables that are shared by all work-items in that

work-group.

Private Memory: A region of memory private to a

work-item. Variables defined in one work-items

private memory are not visible to another work-item.

3. Experimental setup

All the experiments are carried out on real

hardware. A machine with an Intel core i5-2450m

processor running at 2.50 GHz and 2 GB RAM. The

Microsoft VC++ IDE 2010 along with windows7
operating system are used for all the programming.

 We have run each program for 5 times and

execution time mentioned below is the average

execution time. In each execution the time of

execution varies slightly and cannot be constant for

even same data. This happens due to local system

environment. Vector addition, matrix multiplication,

vector dot product programs are used for the

performance analysis.

 Though parallel execution of programs

shows us significant performance improvement, the

memory model mismatch between OpenCL(same as

GPUs) and CPU further affects the performance of

CPUs. On GPUs the host and devices are physically

independent of each other i.e. having separate

memory spaces. Thus to complete a parallel task,

explicit data transfers between host and device are

required which may require additional time.

 While mapping OpenCL on CPUs the host

and device are the same CPU sharing the same

memory space. Thus the explicit data transfer from

host to device(H2D) and device to host(D2H)

becomes unnecessary. We are eliminating this data

transfer overhead by using zero copy technique. In

this technique instead of initializing data on host and

copying on device buffers we are creating buffers on

device and initializing data directly onto buffers. The

host accesses the same data (buffers) by using pointer

to these buffers. Thus, instead of making multiple

copies of the data, host accesses data by using a

pointer. (zero copy)

3.1 Vector addition

 While running vector addition program in

non parallel environment it is found that on an

average it takes 1 milisecond time for execution.

Sufficiently large size data is chosen for clear time

discrimination. Two vectors used are of size 65536.

 Figure 3.1 shows the performance of vector

addition running in parallel and the time spent in data

transfer. It has been observed that the execution time

2797

International Journal of Engineering Research & Technology (IJERT)

ISSN: 2278-0181

www.ijert.org

Vol. 2 Issue 6, June - 2013

IJ
E
R
T

IJ
E
R
T

IJERTV2IS60811

depends upon the local work item size that is

specified in the program. The performance for vector

addition is 3x faster(including overhead).

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

32 256 1024

H2D&D2H(ms)

exe time(ms)

Figure3.1: Kernel Execution time and data transfer

time for vector addition with varying the local work

item size.

 The data transfer time between host and

device is considerably large hence it cannot be

simply ignored. After applying the zero copy

technique we reduced the data transfer overhead and

hence gained 5x performance.

 Figure 3.2 shows results after applying zero

copy technique.

0.145

0.15

0.155

0.16

0.165

0.17

0.175

0.18

0.185

32 256 1024

H2D&D2H
time(ms)

kernel execution
time(ms)

Figure3.2: Kernel Execution time and data transfer

time for vector addition with varying the local work

item size using zero copy technique.

3.2 Matrix Multiplication

 We have chosen two matrices of size 128 x

128 for calculating results in parallel. While

running in non parallel environment the average
execution time for this calculation is 29 ms but while

in parallel it shows significant speedup.

 Figure 3.3 shows the actual execution results

for the matrix multiplication in parallel.

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

{2,2} {4,4} {8,8} {16,16} {32,32}

H2D&D2H(ms)

exe time(ms)

Figure 3.3 :Execution time for matrix multiplication

with varying the local work item size and dat transfer

overhead

 From execution time we can conclude that

the matrix multiplication runs at least 27 times faster

in parallel using the OpenCL. The data transfer time

is small compare to the actual kernel execution time.

Hence does not affects overall execution time.

3.3 Dot Product

 In dot product we are using two vectors of

size 1024. In non parallel environment the average

execution time is 1 ms but when executed in parallel

using OpenCL it gives significant speedup.

 Figure 3.4 shows the actual results obtained

while executing the dot product program in parallel

with variations in execution time according to local

work item size and data transfer time.

Local Work Item Size

Local work item size

 Local Work Item Size

2798

International Journal of Engineering Research & Technology (IJERT)

ISSN: 2278-0181

www.ijert.org

Vol. 2 Issue 6, June - 2013

IJ
E
R
T

IJ
E
R
T

IJERTV2IS60811

0
0.1

0.2
0.3

0.4
0.5

0.6
0.7

0.8
0.9

1

2 16 64 256 1024

H2D&D2H(ms)

exe time(ms)

Figure3.4: Execution time and data transfer time for

dot product with varying the local work item size.

The data transfer time in case of dot product

is considerably large and it adds to total execution

time. Figure3.5 shows the results after applying zero

copy technique on dot

product.

0

0.2

0.4

0.6

0.8

1

2 16 64 256 1024

H2D&D2H

time(ms)

kernel exe

time(ms)

Figure3.4: Execution time and data transfer time for

dot product with varying the local work item size

using zero copy technique.

From execution time we can conclude that

the dot product runs at least 5 times faster in parallel

using the OpenCL.

4. Discussion
 In this experimentation, it is found that

better computational performance and better device

utilization can be achieved when the parallelism is

implemented on a particular systems. The host sends

the kernels to execute on the available devices. In

OpenCL every host program consists of 13 sub tasks.

These are executed by the host to ensure the

parallelism. The sub tasks are:

1. Discover and initialize platform

2. Discover and initialize devices

3. Create a context

4. Create a command queue

5. Create device buffer

6. Write host data to device buffer

7. Create and compile the program

8. Create the kernel

9. Set the kernel arguments

10. Configure the work item structure

11. Enqueue the kernel for execution

12. Read the output buffer back to the host

13. Release the OpenCL resources

The main purpose of running applications in

parallel is to fully utilize available hardware

and reduce the execution time as well.

 On 15 November 2011, the

Khronos Group announced the OpenCL 1.2

specification, which added significant

functionality over the previous versions in

terms of performance and features for

parallel programming. Most notable features

include device partitioning, separate

compilation and linking objects, enhanced

image support, built-in kernels, DirectX

functionality.

5. Conclusion and future work

 The current developments in

semiconductor technology enable us to use

GPUs at very low prices. To explore these

GPUs for computational purpose along with

the other hardware OpenCL provides the

best framework.

In this experimentation, we have studied the

performance of OpenCL on a heterogeneous

platform. OpenCL gives significant amount

of performance gain over non parallel

implementation.

 It has been observed that while

running two or more OpenCL applications

on a heterogeneous platform, each

application creates its own command queue

and enqueues the OpenCL kernels to these

command queues independent of other

applications. The OpenCL runtime selects

the kernels from these commands in round

robin manner for execution on device. Thus

execution time shown also includes the

waiting time in the command queue. By

using proper scheduling algorithms further

Local work item size

Local work item size

2799

International Journal of Engineering Research & Technology (IJERT)

ISSN: 2278-0181

www.ijert.org

Vol. 2 Issue 6, June - 2013

IJ
E
R
T

IJ
E
R
T

IJERTV2IS60811

performance improvement can be

achieved[7].

 Also according to the specifications

[3], OpenCL shares the core parallelism

approach with CUDA, which is designed for

the NVIDIA GPUs. Thus when

computations are done on CPUs there are

visible mismatches between the OpenCL

platform and CPU architecture. This affects

performance significantly for the CPUs.

The OpenCL code is thus further needs to be

optimized and tuned properly. To optimize

the OpenCL code is fully programmers

responsibility according to the performance

of system and application requirements[5].

6. References

[1] K. Group. “OpenCL- The OpenCL standardfor

parallel programming of Heterogenous Systems”, 2012.

http://www.khronos.org/opencl

[2] Group Khronos OpenCL parallel computing for

heterogeneous devices, khronos group , page1-50,2009.

[3] NVIDIA, “CUDA c programming guide.”

http://developer.download.nvidia.com/compute/DevZone/d

ocs/html/c/doc/CUDA_C_programming_guide.pdf,2012

[4] K. Group. “ The OpenCL Specification V1.2”

2011. http://www.khoronos.org/registry/cl/specs/opencl-

1.2.pdf.

[5] R. Karrenberg and S. Hack, “Improving

Performance of OpenCL on CPUs”, in compiler

construction 2012,pp 1-20,Springer,2012

[6] Z.Wang and M. O’Boyle, “Mapping parallelism

to multi-cores: A machine learning based approach,” in

Proc. 2009 ACM PPoPP, Raleigh,NC, 2009, pp. 75–84.

[7]. Jie Shen, Jian Fang, Henk Sips, Ana Lucia,

“Performance Traps in OpenCL for CPUs”, 21st

Euromicro International Conference on Parallel,

Distributed, and Network-Based Processing,pp 38-45,2013

[8] Arshdeep Bahga and Vijay K. Madisetti, “A

Dynamic Resource Management and Scheduling

Environment for Embedded Multimedia and

Communications Platforms.” in IEEE Embedded Systems

Letters, VOL. 3, NO. 1, pp 24-27,MARCH 2011

[9] Benedict Gaster, Lee Howes, David R. Kaeli,

Perhaad Mistry, Dana Schaa,”Heterogeneous computing

using OpenCL” Elsevier Inc, 225 Wyman Street, Waltham,

MA 02451, USA, November 27, 2012

2800

International Journal of Engineering Research & Technology (IJERT)

ISSN: 2278-0181

www.ijert.org

Vol. 2 Issue 6, June - 2013

IJ
E
R
T

IJ
E
R
T

IJERTV2IS60811

