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Abstract 

 

With the rapid development of smart phones, 

tablets, and pads, there has been widespread 

adoption of Graphic Processing Units (GPUs). The 

hand-held market is now seeing an ever-increasing 

rate of development of computationally intensive 

applications, which require significant amounts of 

processing resources. To meet this challenge, GPUs 

can be used for general-purpose processing. We are 

moving towards a future where devices will be more 

connected and integrated. This will allow 

applications to run on handheld devices, while 

offloading computationally intensive tasks to other 

compute units available.  There is a growing need for 

a general programming framework which can utilize 

heterogeneous processing units such as GPUs and 

DSPs.  OpenCL, a widely used programming 

framework has been a step towards integrating these 

different processing units on desktop platforms.   

A thorough study of the factors that impact 

the performance of OpenCL on CPUs.  Specifically, 

starting from the two main architectural mismatches 

between many-core CPUs and the OpenCL 

platform—parallelism granularity and the memory 

model we identify such performance “traps” that 

lead to performance degradation in OpenCL for 

CPUs. Using multiple code examples, we quantify the 

impact of these traps, showing how avoiding them 

can give up to 3 times better performance.  

1.Introduction 

In recent years, modern processor architectures have 

shifted their focus on increasing the amount of 

parallelism rather than just increasing the processor  

 

 

 

clock speed. Currently every computer system we 

can call it as a heterogeneous system as it contains 

central processing unit (CPUs) with multiple cores, 

as well as graphical processing units (GPUs)[1]. Both 

CPUs and GPUs can be used for the parallel 

computing.  Some time ago, using a GPU for  general 

purpose computation was a major programming 

challenge. But thanks to execution models like 

CUDA (Compute Unified Device Architecture)[2], it 

has become simpler. Though games still represent a 

big market for graphical market manufacturers, GPUs 

can still be designed keeping general purpose 

computations in mind. GPUs are generally known for 

faster floating point operation executions and hence 

attracting research communities. 

 Applications with great amount of data 

parallelism perform considerably better on GPU as 

compared to the CPU.  To take full advantage of 

heterogeneous parallel processing platforms Open 

Compute Language(OpenCL)[3] was introduced. By 

using the OpenCL an application can be partitioned 

such that part of code runs on the host processor i.e. 

CPU and part of the code runs on GPU. In OpenCL 

we are able to manage, OpenCL initialization, data 

transfers and kernel executions by set of language 

extensions and runtime Application Program 

Interfaces (APIs). 

 OpenCL has a lot of similarities with CUDA 

(Compute Unified Device Architecture) and unlike 

CUDA it is platform independent and hence it keeps 

gaining popularity for GPU computing.  To take 

advantage of all parallel computing resources the 

applications need not be rewritten.  Typically we 

write kernels using OpenCL. Kernels are nothing but 
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the computationally intensive functions of the 

application. The  applications generally perform 

several tasks while executing. The application needs 

to query platforms and devices available on system, 

create contexts, create command queues, and 

enqueue kernels to these command queues. Thus as 

compare to the normal execution the parallel 

execution shows almost 10x performance 

improvement for the simple applications used in our 

experiment. 

 According to its specifications [3], OpenCL 

shares the core parallelism approach with CUDA 

which is designed for NVIDIA GPUs.  Thus there are 

visible mismatches between the OpenCL platform 

and the CPUs. Furthermore these mismatches may 

affect the performance of the CPUs. This slight 

performance degradation may be taken as 

parallelization overhead and further it can easily be 

reduced by slight code transformations[4][5]. 

 

2. OpenCL Programming Framework 

 The design and implementation of OpenCL 

framework is discussed in this section.  The point of 

discussion revolves around an architecture consisting 

of multiple core CPUs, GPUs, accelerators and DSPs 

generally termed as heterogeneous accelerator 

embedded architectures.  OpenCL provides general 

purpose GPU programming model provides way to 

address complex memory hierarchies and vector 

operations. 

 

 

 OpenCL  is an open royalty-free standard 

for general purpose parallel programming across 

CPUs, GPUs and other processors.  OpenCL gives 

software developers portable and efficient access to 

utilize the power of these heterogeneous processing 

platforms.  OpenCL includes a language (based 

on C99) for writing kernels (functions that execute on 

OpenCL devices), plus application programming 

interfaces (APIs) that are used to define and then 

control the platforms.   OpenCL is maintained by 

the non- profit technology consortium  Khronos  

Group. It has been adopted by Intel,  Advanced 

Micro Devices (AMD), NVIDIA, Altera, Samsung, 

Vivante, and ARM holdings. 

The operational model of OpenCL mainly consists of 

4 sub models platform model, execution model, 

programming model and memory model[1][3].  

2.1 Platform Model 

 Figure 2.1 shows the OpenCL platform 

model in details.  The platform model consists of one 

host and one or more OpenCL devices.  OpenCL 

devices can be CPU cores, GPUs, accelerators or 

DSPs.  OpenCL devices are divided into one or more 

compute units (CUs), which are further divided into 

processing elements(PEs).  Computation on a device 

occurs with a processing element. 

 

 

Figure 2.1: OpenCL Platform model: Host with Compute 

devices, Compute Units and Processing elements [1]. 

 

 

The OpenCL application submits commands from the 

host to execute computations on the processing 

elements within a device.  The processing elements 

within a compute unit execute a single stream of 

instructions as SIMD units.   

 

2.2 Execution Model 

 
 OpenCL program executes on GPU in the 

form of kernel(s) that execute on one or 

more OpenCL devices and a host program that 

executes on the CPU.  The host program defines the 

context for the kernels and manages their execution. 

Kernel defines an index space depending on the 

application. An instance of the kernel executes for 

each point in this index space [9].  This kernel 

instance is called a work-item. The work-item  is 

identified as a point in the index space, by a global 

ID for the work-item. Each work-item executes the 

same code but the specific execution pathway 

through the code and the data can vary per work-

item.  Work-items are organized into work-groups. 

Work-groups are assigned a unique work-group ID 

with the same dimensionality as the index space used 

for the work items.  A unique local ID is assigned to 

work-items,  within a work-group so that a single 
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work-item can be uniquely identified by its global ID 

or by a combination of its local ID and work-group 

ID. The work-items in a given work-group execute 
concurrently on the processing elements of a single 

compute unit. The index space is called an 

NDRange which is an N-dimensional index space, 

where N is one, two or three. 

 

2.3 Programming Model 

 
 The OpenCL execution model supports data 

parallel and task parallel programming model[9]. 

 In simpler words data parallel model can be 

explained as the sequence of operations applied on 

multiple elements of memory object. 

Independent data elements can easily be transferred 

to the respective processing elements and execution 

can be done in parallel. 

 In task parallel programming model a single 

instance of a kernel executed independent of any 

index space. 

 

2.4 Memory Model 

 
 Work-item(s) executing a kernel have access 

to four distinct memory regions. This is 

distinctly shown in Figure 2.2: 

 
 

Figure 2.2: OpenCL memory model[2] 

 

 
Global Memory :   This memory region permits 

read/write access to all work-items in all work-

groups. Work-items can read from or write to any 

element of a memory object. 

Constant Memory:  A region of global memory that 

remains constant during the execution of a kernel. 

The host allocates and initializes memory objects 

placed into constant memory. 
Local Memory:  A memory region local to a work-

group. This memory region can be used to allocate 

variables that are shared by all work-items in that 

work-group. 

Private Memory:  A region of memory private to a 

work-item. Variables defined in one work-items 

private memory are not visible to another work-item. 

 

3. Experimental setup 
  

All the experiments are carried out on real 

hardware.  A machine with an Intel core i5-2450m 

processor running at 2.50 GHz and 2 GB RAM. The 

Microsoft VC++ IDE 2010 along with windows7 
operating system are used for all the programming.   

 We have run each program for 5 times and 

execution time mentioned below is the average 

execution time. In each execution the time of 

execution varies slightly and cannot be constant for 

even same data. This happens due to local system 

environment.   Vector addition, matrix multiplication, 

vector dot product programs are used for the 

performance analysis. 

 Though parallel execution of programs 

shows us significant performance improvement, the 

memory model mismatch between OpenCL(same as 

GPUs) and CPU further affects the performance of 

CPUs.  On GPUs the host and devices are physically 

independent of each other i.e. having separate 

memory spaces.  Thus to complete a parallel task, 

explicit data transfers between host and device are 

required which may require additional time. 

 While mapping OpenCL on CPUs the host 

and device are the same CPU sharing the same 

memory space.  Thus the explicit data transfer from 

host to device(H2D) and device to host(D2H) 

becomes unnecessary.  We are eliminating this data 

transfer overhead by using zero copy technique.  In 

this technique instead of initializing data on host and 

copying on device buffers we are creating buffers on 

device and initializing data directly onto buffers.  The 

host accesses the same data (buffers) by using pointer 

to these buffers.  Thus, instead of making multiple 

copies of the data, host accesses data by using a 

pointer. (zero copy) 

    

 

3.1 Vector addition 

 
 While running vector addition program in 

non parallel environment it is found that on an 

average it takes 1 milisecond time for execution.  

Sufficiently large size data is chosen for clear time 

discrimination.  Two vectors used are of size 65536.    

 Figure 3.1 shows the performance of vector 

addition running in parallel and the time spent in data 

transfer.  It has been observed that the execution time 
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depends upon the local work item size that is 

specified in the program.  The performance for vector 

addition is 3x faster(including overhead). 
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Figure3.1: Kernel Execution time and data transfer 

time for vector addition with varying the local work 

item size. 

 

 The data transfer time between host and 

device is considerably large hence it cannot be 

simply ignored. After applying the zero copy 

technique we reduced the data transfer overhead and 

hence gained  5x performance. 

 Figure 3.2 shows results after applying zero 

copy technique. 
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Figure3.2: Kernel Execution time and data transfer 

time for vector addition with varying the local work 

item size using zero copy technique. 

 

 

 

 

 

3.2 Matrix Multiplication 

 
 We have chosen two matrices of size 128 x 

128  for calculating results in parallel.  While 

running in non parallel environment the average 
execution time for this calculation is 29 ms but while 

in parallel it shows significant speedup. 

 Figure 3.3 shows the actual execution results 

for the matrix multiplication in parallel. 
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Figure 3.3 :Execution time for matrix multiplication     

with varying the local work item size and dat transfer 

overhead  

 

 From execution time we can conclude that 

the matrix multiplication runs at least 27 times faster 

in parallel using the OpenCL.  The data transfer time 

is small compare to the actual kernel execution time.  

Hence does not affects overall execution time. 

 

3.3 Dot Product 

 
 In dot product we are using two vectors of 

size 1024. In non parallel environment the average 

execution time is 1 ms but when executed in parallel 

using OpenCL it gives significant speedup.  

 Figure 3.4 shows the actual results obtained 

while executing the dot product program in parallel 

with variations in execution time according to local 

work item size and data transfer time. 

Local Work Item Size 

Local work item size 

       Local Work Item Size 

 

2798

International Journal of Engineering Research & Technology (IJERT)

ISSN: 2278-0181

www.ijert.org

Vol. 2 Issue 6, June - 2013

IJ
E
R
T

IJ
E
R
T

IJERTV2IS60811



 

0
0.1

0.2
0.3

0.4
0.5

0.6
0.7

0.8
0.9

1

2 16 64 256 1024

H2D&D2H(ms)

exe time(ms)

Figure3.4: Execution time and data transfer time for 

dot product with varying the local work item size.  

 

The data transfer time in case of dot product 

is considerably large and it adds to total execution 

time. Figure3.5 shows the results after applying zero 

copy technique on dot 

product.
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Figure3.4: Execution time and data transfer time for 

dot product with varying the local work item size 

using zero copy technique.  

 
From execution time we can conclude that 

the dot product runs at least 5 times faster in parallel 

using the OpenCL.   

 

4. Discussion 
 In this experimentation, it is found that 

better computational performance and better device 

utilization can be achieved when the parallelism is 

implemented on a particular systems.  The host sends 

the kernels to execute on the available devices.  In 

OpenCL every host program consists of 13 sub tasks. 

These are executed by the host to ensure the 

parallelism. The sub tasks are: 

1. Discover and initialize platform 

2. Discover and initialize devices 

3. Create a context 

4. Create a command queue 

5. Create device buffer 

6. Write host data to device buffer 

7. Create and compile the program 

8. Create the kernel 

9. Set the kernel arguments 

10. Configure the work item structure 

11. Enqueue the kernel for execution 

12. Read the output buffer back to the host 

13. Release the OpenCL resources 

 

The main purpose of running applications in 

parallel is to fully  utilize available hardware 

and reduce the execution time as well. 

 On 15 November 2011, the 

Khronos Group announced the OpenCL 1.2 

specification, which added significant 

functionality over the previous versions in 

terms of performance and features for 

parallel programming. Most notable features 

include device partitioning, separate 

compilation and linking objects, enhanced 

image support, built-in kernels, DirectX 

functionality. 

 

5. Conclusion and future work 

 
 The current developments in 

semiconductor technology enable us to use 

GPUs at very low prices.  To explore these 

GPUs for computational purpose along with 

the other hardware OpenCL provides the 

best framework.   

In this experimentation, we have studied the 

performance of OpenCL on a heterogeneous 

platform. OpenCL gives significant amount 

of performance gain over non parallel 

implementation.   

 It has been observed that while 

running two or more OpenCL applications 

on a heterogeneous platform, each 

application creates its own command queue 

and enqueues the OpenCL kernels to these 

command queues independent of other 

applications. The OpenCL runtime selects 

the kernels from these commands in round 

robin manner for execution on device.  Thus 

execution time shown also includes the 

waiting time in the command queue. By 

using proper scheduling algorithms further 

Local work item size 

Local work item size 
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performance improvement can be 

achieved[7].   

 Also according to the specifications 

[3], OpenCL shares the core parallelism 

approach with CUDA, which is designed for 

the NVIDIA GPUs.  Thus when 

computations are done on CPUs there are 

visible mismatches between the OpenCL 

platform and CPU architecture.  This affects 

performance significantly for the CPUs.  

The OpenCL code is thus further needs to be 

optimized and tuned properly.  To optimize 

the OpenCL code is fully programmers 

responsibility according to the performance 

of system and application requirements[5]. 
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