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Abstract— The purpose of this paper is to estimate the noise 

power spectrum by autocorrelation function AFC using a 

different radiographic film and full field digital mammography. 

The autocorrelation function is a measure of similarity between a 

data set and a shifted copy data as a function of shift magnitude. 

This method has the advantage of providing the value of the noise 

power at zero frequency and the NPS calculated via 

autocorrelation function ACF is smoother than NPS, which is 

calculated by the direct fast Fourier method. Noise power 

spectrum computations using different images have been 

attempted using codes written in MATLAB® Version 7.8.0.347 

(Math Works, 2009).  

Keywords—Autocorrletion function; Noise power spectrum;  

Full field digital mammograghy. Fast Fourier Transform FFT 

I.  INTRODUCTION  

Noise is defined as undesirable image characteristics that 

reduce the visibility of specific objects. Any component of the 

signal that does not convey relevant information can be 

considered as noise [1]. Examples of noise are the fluctuations 

in the source signal, randomness in the detector output, and 

superimposed structures which are not related to the signal of 

interest.In general, image quality is determined by three 

primary physical parameters: contrast, spatial resolution and 

noise [2]. These quality parameters can be evaluated by 

objective image quality measurements such as signal-to-noise 

ratio (SNR), modulation transfer function (MTF) and Wiener 

spectra (WS).  Together they form a basis for the description 

of image quality, which encompasses the three primary 

physical image quality parameters; (See Fig 1). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

 
Fig.1 Image quality triangle: illustrates the Wiener spectrum in relation to 

parameters and physical image measurements [3]. 

 

With any imaging system, images are partially degraded by 

various sources of statistical fluctuation which arise along the 

imaging chain [4]. For example, quantum and electronic noise 

that produces random variations of signal can obscure useful 

information in a diagnostic image. Random noise means 

fluctuations of the signal over an image, as a result of uniform 

exposure, and can be characterized by the standard deviation 

of the signal variations over the image of a uniform object. The 

Wiener spectrum must be used to get a more complete 

description of the spatial correlation of noise: it measures noise 

power as a function of spatial frequency [4][5][6]. 

The noise power spectrum (NPS) of a radiographic film can be 

expressed in three constituent noise sources and can be written 

as  

 
𝑊𝑇(𝑢) = 𝑊𝑄(𝑢) + 𝑊𝐺(𝑢) + 𝑊𝑆(𝑢)             (1) 

 

where 𝑊𝑇 , 𝑊𝑄 , 𝑊𝐺 , 𝑊𝑆 stand for the WS of the system 

radiographic noise, quantum mottle, film graininess and screen 

structure mottle respectively, and u is spatial frequency. 

Radiographic mottle is the fluctuations of film density from 

one area to another due to imaging system noise [7][8][9][10]. 

In order to specify the spatial structure of image noise or to 

describe any correlation between the densities at different 

points, the autocorrelation function of the fluctuation could be 

used [11].  

Development in medical imaging systems has led to new 

sources of noise and new ways to address and minimize their 

impact on the quality of the image. As a digital detector, the 

measured noise power spectrum will suffer from aliasing 

because the noise data might have been sampled at discrete 

intervals by the pixel matrix.  Williams et al (1999) discuss 

aliasing of NPS for digital mammography systems [12]. 

Detectors that produce images with significant spatial 

frequency content above the sampling limit prior to sampling 

will suffer from aliasing. Ultimately, aliasing leads to an 

increase in noise power at high spatial frequencies [13].Some 

of the important theoretical aspects of noise power 

measurements are in the work of Cunningham [14,15] and 

Dobbins III (2000)[16]. 

The most economical way of estimating the autocorrelation for 

a given noise image is first to estimate the noise power 

spectrum and then calculate its inverse of fast Fourier (FT) 

[17]. Since the autocorrelation function may be calculated 

from the noise power spectrum, and vice versa, both of these 

methods provide equivalent and complete descriptions of the 

corre1ations present in the noise. In this study calculation of 
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WS via autocorrelation function offers significant advantages 

over the standard method by improving the accuracy with 

which the WS is determined and by allowing the NPS at zero 

frequency to be determined in a straightforward manner by 

using a radiograph film and full field digital mammography 

systems. 

 

II. BEUTEL'S METHOD  

This method has the advantage of providing the value of the 

noise power at zero frequency and NPS calculated via 

autocorrelation function (ACF) is smoother than NPS, which 

is calculated by the direct (FT) method [18]. The formula for 

computing autocorrelation function (ACF) is  

𝐴𝐹𝐶(𝑥𝑘) =
1

𝑁2
∑ ∑ 𝐷𝑖𝐷𝑖+𝑘,𝑗

𝑁

𝑖=𝑗=1

𝑁−1

𝐾=0

                                      (2) 

A uniformly exposed radiograph is scanned by a 

microdensitometer, and optical density fluctuation data about 

the mean density is obtained by subtracting the mean density 

from the density values. Total N density values, each spaced by 

dx = 0.0125mm (sampling interval) are chosen. The density 

values Di were low pass flirted to provide protection against 

aliasing .The first N points on the autocorrelation function are 

calculated using Equation 2. 

 

III. METHODOLOGY 

The autocorrelation function is a measure of similarity between 

a data set and a shifted copy data as a function of shift 

magnitude. Correlation analysis is used to find periodic patterns 

in noisy data. The definition of autocorrelation function (ACF) 

is similar to that for the auto covariance function (ACVF). The 

auto covariance function estimator for record of N data point's 

𝑥𝑖 is given by 

𝐶𝑥𝑥(𝑘) =
1

𝑁
∑ 𝑥𝑖 . 𝑥𝑖+𝑘                                          (3)

𝑁−𝐾

𝑖=1

 

 

That is, for a given shift (or lag) of the record along itself, k, the 

ACVF 𝐶𝑋𝑋(𝑘) is a summary of how well the shifted data 

resembles the unshifted record [17]. Noise power spectrum 

computations using different images have been attempted using 

codes written in MATLAB® Version 7.8.0.347 (Math Works, 

2009). Fig2 shows the steps of calculating NPS by Matlab 

codes using different a radiograph film and full field digital 

mammography systems In this work images A1.bmp and 

A3.bmp are digitized images obtained from analog images by 

scanning. The uniform background area of the film was 

scanned by a microdensitometer. This scanning gave image 

A1.bmp and A3.bmp. The size of the scan was 1000 × 1000 

pixels corresponding to the physical area of 

1.25cm by 1.25cm and 978 × 590   pixels corresponding to 

Images file0000.bmp, file0001.bmp and file0002.bmp are full 

field digital mammography systems. Images A1.bmp and 

A3.bmp were prepared at the Aberdeen Royal Infirmary, 

Scotland. Images file0000.bmp, file0001.bmp and 

file0002.bmp were prepared at Putrajaya Hospital, Malaysia. 

IV. RESULTS AND DISCUSSION 

A. Low Pass Filter 

In Beutel's method, the data is low–pass filtered by averaging 

pairs of pixels; this is similar to the Wagner method. Using low 

pass filtering it was found that the noise power spectrum in the 

high frequencies is reduced as in Fig.3.   

 

 

 

 
   

Fig2.Block diagram describes steps to compute the NPS by Beutel’s method. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Fig. 3 NPS values were measured with low pass filter and without filter. 

 

Read Image 

 

 
Calibrate Pixel Value to Optical Density 

Compute Average Density of Selected Area 

 

 
Calculate Mean Density of ROI 

 

Calculate Density Fluctuations 
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B. Length of fast Fourier transform 

Fig.4 illustrates the effects of changing the fast Fourier 

transform FFT length (L) upon the NPS from different regions 

of interest ROIS. Table 1 shows different FFT segments. It was 

found that increasing FFT lengths caused a reduction of 

segment numbers and reduced the spatial frequency resolution 

without changing curve shapes. 

 

 
 

 

 

 

 

 

 

 

 

Fig. 4 Comparison among of NPS curves with different values of the length of 
Fourier transform 

 

TABLE 1: Effect of fast Fourier transform length in the NPS 

curves in Fig. 4. 

L No of segments Area (mm2) 

64 255 1.527xe-005 

128 49 3.021xe-005 

256 9 6.008xe-005 

 

C. Data Shifting Factor K 

We conducted experiments to study   NPS by changing the 

shifting factor k in Equation 2 on both digital (file 0000.bmp, 

file 0001.bmp) and analogue (A1.bmp, A3.bmp). We found 

that digital images give better results as shown in table 2, Fig.5 

and Fig.6. After the change Equation 2 becomes as follows  

 

𝐴𝐹𝐶(𝑥𝑘) =
1

𝑁2
∑ ∑ 𝐷𝑖𝑗𝐷𝑖,𝑗+𝑘

𝑁

𝑖=𝑗=1

𝑁−1

𝐾=0

                                        (4) 

 

 

 

Calculation of NPS by this equation was made using 

images A1.bmp and A3.bmp. It was found that there is no 

change in the NPS as in Fig.5 and Fig.6. For digital images 

(file0000.bmp, file0001.bmp) it was found that there is change 

as in Fig.7and Fig.8. 

 

 

 

 

 

TABLE 2: Testing (k) factor used several different images. 

Equation 
𝑨𝑭𝑪(𝒙𝒌) =

𝟏

𝑵𝟐
∑ ∑ 𝑫𝒊𝒋𝑫𝒊,𝒋+𝒌

𝑵

𝒊=𝒋=𝟏

𝑵−𝟏

𝑲=𝟎

                                         

Image Factor( k) No. of  

segments 

Area (mm2) L 

A1.bmp (i+k, j) 49 3.0216e-005 128 

A1.bmp (i , j+k) 49 3.0216e-005 128 

A3.bmp (i , j+k) 28 3.0216e-005 128 

A3.bmp (i+k, j) 28 3.0216e-005 128 

File0000.bmp (i+k, j) 475 3.2851e-005 128 

File0000.bmp (i , j+k) 475 3.1708e-005 128 

File0001.bmp (i+k, j) 475 3.3508e-005 128 

File0001.bmp (i , j+k) 475 3.2103e-005 128 

 

 

 

 

 

 

 

 

 

 

 
Fig.5 Comparison NPS values between two versions of factor (k) using 

image A1.bmp. 

 

 

 

 

 

 

 
 

 

 

 

 

 

Fig.6 Comparison NPS values between two versions of factor (k) using image 
A3.bmp. 
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Fig. 7 Comparison NPS values of two versions of factor (k) using image file 
0000.bmp. 

 

 

 

 

 

 

 

 

 

 

 

Fig.8 Comparison NPS values of two versions of factor (k) using image file 

0001.bmp. 

D. NORMALIZATION 

In Beutel's method the normalization was reduce to dx/L 

without using any windowing. This was achieved by 

multiplying the square of the FFT with dx/L. As in Fig.9, when 

this normalization was used, we found the variance of density 

fluctuation equaled the area under the NPS curve and the order 

of magnitude of NPS obtained was 10-3 to 10-5 mm2. This result 

would be acceptable in practice. 
 

 

 

 

 

 

 

 

 

 

Fig. 9 Normalization the NPS measured via ACF. 

III.CONCLUSION 

In Beutel's method, the noise power spectrum was measured 

via autocorrelation function AFC. The AFC is a measure of 

similarity between data and shifted data as a function of shifted 

magnitude. The data was subjected to a low-pass filter by 

averaging pairs of pixels; this filter was based on Wagner's 

method. It was found that the NPS in the high frequencies is 

reduced. For the effects of changing fast Fourier length, it was 

found that increasing FFT length resulted in a reduction of 

segment numbers and a corresponding reduction in the spatial 

frequency resolution without changing curve shapes as 

presented in Table 1 and Fig. 4 respectively. We conducted 

experiments to study NPS by changing the shift factor k in 

Equation 2 on both digital and analogue images. We found that 

digital images give better results. The normalization of NPS 

was achieved by multiplying the square of the FFT with dx/L 

without using any windowing. It was found that the variance 

of density fluctuation equaled the area under the NPS curve 

and the order of magnitude of NPS obtained was   10-3-10-5 

mm2.. 
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