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Abstract 

This paper proposed a numerical computation for 

solving path planning problem for a mobile robot 

operating in indoor environment grid model. It is 

based on the use of Laplace’s Equation to constraint 

the distribution of potential values in the 

configuration space of a mobile robot. Consequently, 

the solution of Laplace’s Equation is computed by 

employing Half-Sweep Gauss-Seidel via Nine-Point 

Laplacian (HSGS9L) iterative method. The 

simulation results show that this half-sweep iteration 

performs much faster than the previous methods in 

generating smooth path for mobile robot to move 

from start to goal position. 

1. Introduction 

In industrial automation, the robot is often 

required to have the capability of moving quickly 

from a given initial point to a specified goal point. 

During its exploration, the robot must be able to 

avoid from colliding with any obstacles in its 

environment model. Thus, path planning problem is 

considered one of the most important issue in 

constructing a truly autonomous vehicle. This study 

attempts to provide the solution to the path planning 

problem for a mobile robot operating in indoor 

environment model by using a global numerical 

approach. It is inspired by the theory of heat transfer 

analogy. Based on this heat transfer model, the 

configuration space is modeled with Laplace’s 

equation. Consequently, the solutions of Laplace's 

equation also called harmonic functions that 

represent temperature values distribution in the 

configuration space will be used to simulate the 

generation of path for mobile robot motion. In the 

past, various approaches had been used to obtain 

harmonic functions, but the most common method is 

via numerical techniques due to the availability of 

fast processing machine and their elegant and 

efficiency in solving the problem. In this work, we 

investigate the performance of Gauss-Seidel with 

half-sweep iteration method based on 9-point 

formula, better known as Half-Sweep Gauss via 

Nine-Point Laplacian (HSGS9L) iterative method to 

obtain the harmonic functions for generating mobile 

robot path in varying sizes of environment model.   

2. Literature Review 

Pioneer work by Connolly and Gruppen [1] 

shows that harmonic functions have a number of 

properties useful in robotic applications. Khatib [2] 

utilized the use of potential functions for robot path 

planning, in which every obstacle produces a 

repelling force and the goal exerts an attractive force. 

In contrast, the work by Koditschek [3] concluded 

that geometrically at least in certain types of 

domains, the potential functions can be used to guide 

the effector from almost any point to a given point. 

All of these potential field methods, however, suffer 

from the generation of local minima. Connolly et al. 

[4] and Akishita et al. [5], both of them developed 

independently a global method that generates smooth 

path by using solutions to Laplace’s equations, 

where the potential fields were computed in a global 

manner over the entire region. Meanwhile, Waydo & 

Murray [6] studied the use of stream functions for 

vehicle motion. More recently, Szulczyński et al. [7] 

employed harmonic functions for real-time obstacle 

avoidance.  

Various approaches had been used to obtain 

harmonic functions in the past. The standard are 

Jacobi and Gauss-Seidel [8] point iterative methods. 

Daily and Bevly [9] employed analytical solution for 

arbitrarily shaped obstacles. Garrido et al. [10] 

computed the harmonic functions with finite 

elements for robotic motion. Then, Abdullah [11] 
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introduced half-sweep iteration for his works on 

Explicit Decoupled Group (EDG) iterative method 

for solving 2-D Poisson equations. This half-sweep 

iterative method was also applied in solving partial 

differential equations in Ibrahim & Abdullah [12], 

Yousif & Evans [13], and Abdullah & Ali [14]. A 

modified version of this method was also 

investigated by Sulaiman et al. for solving diffusion 

equation [15]. 

3. Configuration Space Model 

Mobile robot path planning problem can be 

modeled as a well-known steady-state heat transfer 

problem, where heat sources come from the 

boundaries and the heat sink will pull the heat in. 

This heat conduction process produces a temperature 

distribution and the heat flux lines that are flowing to 

the sink fill the workspace. In a mobile robot 

environment setup, the goal point is treated as a heat 

sink whilst the boundary walls and obstacles are 

considered as heat sources that are fixed with 

constant temperate values. Once the temperature 

distribution in the field is obtained, it will be used as 

a guide to generate path for mobile robot to move 

from the start point to the goal point. The idea is to 

follow the heat flux that will flow from high 

temperature sources to the lowest temperature point 

in the environment. The temperature distribution of 

the configuration space is computed by employing 

harmonic function to model the environment setup. 

Mathematically, a harmonic function on a 

domain Ω  R
n
 is a function which satisfies 

Laplace’s equation, in which xi is the i-th Cartesian 

coordinate, and n is the dimension. In the case of 

robot path construction, the domain Ω consists of the 

outer boundary walls, all obstacles in the workspace, 

start points and the goal point. 


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The equation of Eq. (1) can be solved efficiently 

using numerical method. Standard methods are point 

Jacobi and Gauss-Seidel iterative method. In this 

study, the robot model is represented by a point in 

the configuration space. The configuration space is 

designed in grid form. The function values 

associated with each node are then computed 

iteratively via numerical technique to satisfy 

equation in Eq. (1). The highest temperature is 

assigned to the start point whereas the goal point is 

assigned the lowest, meanwhile different initial 

temperature values are assigned to the outer wall 

boundaries and obstacles. Initial temperature values 

are not required to be assigned to the start points. 

The solutions to the Laplace’s Equation are 

examined with Dirichlet boundary conditions. 

4. Formulation of Half-Sweep Gauss-

Seidel via Nine-Point Laplacian 

Our previous works that employed a block 

iterative method using 9-point formula (also known 

as 9-point Laplacian) [19, 20] performed much faster 

than the iteration using standard 5-point formula [16, 

17], except for half-sweep iteration [18] which is 

essentially computed only half of the total nodes in 

the configuration space. In this study, we propose an 

improved version of [18] by employing 9-point 

formula into the equation. The proposed method is 

now known as Half-Sweep Gauss-Seidel via Nine-

Point Laplacian (HSGS9L) would iterate only half of 

the node points in the configuration space but 

include 8 neighbouring points in its formulation. By 

adding more points in the formulation, the accuracy 

of each node point calculation get higher, thus leads 

to faster convergence rate. With HSGS9L iterative 

method, the computation involves node of black 

points only, thus in contrast to full-sweep iteration as 

shown in Figure 1 (a), the half-sweep iteration of 

HSGS9L as shown in Figure 1 (b) involves only half 

of the whole node points.  

Essentially, the standard full-sweep iteration uses 

5-point stencil shown in Figure 2 (a), whereas half-

sweep iteration is actually based on the five-point 

45-degree rotated finite difference approximation as 

shown in Figure 2 (b). The main characteristic of 

half-sweep iteration is the reduction of 

computational complexity by considering only half 

of the total node points.  

In the case of 9-point formulation, full-sweep 

iteration uses stencils shown in Figure 3 (a), whereas 

in the implementation of half-sweep iteration with 

HSGS9L the stencil shown in Figure 3 (b) is used. 

Figure 4 (a) shows the five black points involve in 

each calculation of standard 5-point half-sweep 

iteration, whereas Figure 4 (b) shows the nine black 

points to be considered in each calculation of 

HSGS9L iterative method. Now, let us consider the 

two-dimensional Laplace’s equation in Eq. (1) 

defined as 

0
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Then, the discretization of Eq. (2) based on the 

Nine-Point Laplacian can be defined as below 
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The 9-point finite difference approximation 

equation in Eq. (3) is then used to generate linear 
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system. To solve the generated linear system, the 

iterative process is run until the maximum error falls 

into a specified tolerance error, in which the iteration 

stops. It is important that tolerance error is set to a 

very small value since high precision is essential in 

order to avoid (or at least minimize) the occurrence 

of flat area in the final solution. Once the 

temperature values of all black points are obtained, 

approximate values of the remaining white points 

will be obtained directly by standard direct method 

computation in single iteration.  

5.  Experiments and Results 

The experiment was carried out with varying 

sizes of static environment model, i.e. 128x128, 

256x256 and 512x512, that consists of a goal point, 

three starting points and varying setup of inner walls 

and outer boundary walls. Initially, the inner and 

outer walls were fixed with high temperature values, 

whereas the goal point was set to very low 

temperature, and all other free spaces were set to 

zero temperature value. The experiments run on Intel 

Core 2 Duo CPU running at 3 GHz speed with 1GB 

of RAM. The software code, now known as 

RobotPath Simulator, was written in Delphi for very 

fast computation, see Figure 5. In the previous works 

[16 - 19], the code was written in MatLab. The 

computation speed increased 5 folds with Delphi 

implementation.  

The iteration process terminated when the 

computation converges to a specified very small 

value, i.e. 1.0
-10

, where there were no more 

significant changes in temperature values. The 

number of iterations, maximum error and elapsed 

time for various numerical techniques are shown in 

Table 1. It was clearly shown in Figure 6 that 

HSGS9L iteration performed faster than the various 

previous methods. Note that the speed of 

computation gets faster as the number of obstacles 

increases, since nodes occupied by obstacles were 

ignored during computation, see Table 2.  

Once the temperature distributions were obtained, 

the path was generated by performing steepest 

descent search from the start points to the goal point. 

The process of generating the paths was very fast. 

From the current point, the algorithm simply picked 

the lowest temperature value from its eight 

neighbouring points. This process continues, until 

the generated path reached the goal point. As shown 

in Figure 7(a) - (d), all three paths are successfully 

generated for all four scenarios of obstacles setup. 

6. Conclusions 

This study shows that solving robot path planning 

problem using numerical techniques are indeed very 

attractive and feasible due to the recent advanced and 

new found techniques as well as the availability of 

fast machine nowadays. The proposed HSGS9L 

iterative method performs significantly faster than 

the previous methods as described in our earlier 

works [16 - 19]. In the future work, we would 

include an accelerator through Successive Over-

Relaxation (SOR) into the proposed method to 

further speed up the computation, similar to the 

application of Nine-Point Laplacian in [20],[21]. 
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  (a) (b) 

Figure 1: (a) All nodes will be considered in full-sweep iteration. (b) Only black points will be 
considered in half-sweep iteration. 
 

   
 (a) (b) 

Figure 2: Stencils of 5-point formula for (a) full-sweep and (b) half-sweep iteration, respectively. 
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 (a) (b) 

Figure 3: Stencils of 9-point formula for (a) full-sweep and (b) half-sweep iteration, respectively. 
 

    
 (a) (b) 

Figure 4: (a) Fives black points for each calculation of 5-point formula implementation. (b) For 9-point 
formula computation, nine black points are used. 
 

 

 

Figure 5: RoboPath Simulator was written in Delphi for very fast computation. 
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Figure 6: Graph performance of the three iterative methods. Number of iterations against sizes of 
environment model in 1 obstacle setup. 
 

 

   
 (a) (b) 

   
 (c) (d) 

Figure 7: The paths generated with Half-Sweep Gauss-Seidel via Nine-Point Laplacian iterative 
method. (a) One obstacle; (b) Two obstacles; (c) Three obstacles; (d) Four obstacles. 
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Table 1. Performance comparison of GS vs HSGS vs HSGS9L in 1 obstacles setup. 

 Iterative 
methods 

Sizes of environment 

128x128 256x256 512x512 

Number of iteration GS 21552 78522 281220 

HSGS 11280 41344 149130 

HSGS9L 9537 34984 126352 

Maximum error GS 0.9999-10 0.9999-10 0.9999-10 

HSGS 0.9990-10 0.9999-10 0.9999-10 

HSGS9L 0.9988-10 0.9998-10 0.9999-10 

Elapsed time (m:s:ms) GS 0:15:517 3:52:336 61:00:070 

HSGS 0:03:485 0:43:845 10:20:754 

HSGS9L 0:03:750 0:48:643 11:39:741 

GS: Gauss-Seidel;  HSGS:  Half-Sweep Gauss-Seidel;  HSGS9L: HSGS via Nine-Point Laplacian. 

 

Table 2. Performance of HSGS9L with varying number of obstacles. 

 Number of 
obstacles 

Size of environment 

128x128 256x256 512x512 

Number of 

iterations 
1 9537 34984 126352 

2 9268 34080 123362 

3 9073 33451 121337 

4 8132 30327 111041 

Maximum 

error 
1 0.9988-10 0.9998-10 0.9999-10 

2 0.9997-10 0.9999-10 0.9999-10 

3 0.9987-10 0.9998-10 0.9999-10 

4 0.9986-10 0.9997-10 0.9999-10 

Elapsed time  

(m:s:ms) 
1 0m3s844ms 0m48s643ms 11m39s741ms 

2 0m3s750ms 0m48s2ms 11m30s632ms 

3 0m3s672ms 0m46s907ms 11m10s506ms 

4 0m3s282ms 0m42s626ms 10m25s630ms 
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