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Abstract

This study concerns the problem of the
longitudinal vibrations of beams resting on
elastic foundation and under the actions of
travelling exponentially varying load with a
constant velocity type of motion. A mathematical
formulation representing the transverse motions
of the engineering structure which is valid for all
variants of classical boundary conditions is set
up. An analytical method of analysis is
presented for investigating the effects of some
vital structural parameters on the dynamic
response characteristic of the structurally
prestressed elastic beam with rotatory inertia
correction factor. The theory proposed is applied
to a beam having simple supports at both ends.
However, the theory and application is not
limited to the beam with simply supported
boundary condition and without much
mathematical difficulties, it can also be used to
treat dynamic analysis of continuous beam
structures including energy dissipation. Closed
form solutions of the equation of motion
describing the beam-load interactions are
obtained. Analysis is carried out and various
results are presented in plotted curve.

1. Introduction

The vibration analysis (linear or non-linear) of
structural members has been and continues to be
the subject of numerous studies in Engineering

Science and related fields; this is due largely to the
fact that it embraces a wide class of problems with
great relevance in many engineering applications.
For example, the analysis and design of highway
and railway bridges, cable-railways, cableways
and overhead cranes to mention a few.

Thus, the effect of the nature of the
complexity of the interactions between beams or
beam-like structural elements and the load
traversing them at various velocities on the
dynamic characteristics of such structures have
been investigated by many researchers [1-10].

Historically, three types of problems have
been considered in the open literature. If the
inertia effect of the moving subsystem is
neglected, the problem reduces to the vibration of
elastic structure under the actions of an external
moving force and this is termed the moving force
problem. When the inertia effect of the mass of
the moving load is taken into account and
assuming infinite stiffness of the coupling
between the continuous system and the moving
subsystem, we have the moving mass. The
dynamical problem involving finite coupling
stiffness leads to the moving oscillator’s problem.
Depending on the type of model used and
assumptions  adopted, great numbers of
publications have evolved during the past years
[11-26].
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In spite of the enormous investigations
and great amount of work that have been devoted
to the dynamic response of beams under moving
load, it unarguably remains a major topic for
future scientific research because of the
continuing advancements in design technology
and emergence of new materials with improved
quality which enable the construction of lighter
and more slender structures, vulnerable to fast
traveling heavy loads [27].

It is well known that a considerable
amount of work dealing with the vibration of
beams under the effect of moving load has been
found in the open literature, however, to the
authors’ knowledge, the vibration analysis of
beams incorporating a rotatory inertia correction
factor and subjected to exponentially varying load
is not common. Thus, this work concerns the
dynamic response of axially prestressed elastic
beam resting on elastic foundation and traversed
by masses traveling at constant velocity. The
specific aims of this study is to classify the effects
of some parameters namely prestressed,
foundation subgrade, rotatory inertia correction
factor, mass ratio etc on the flexural motions and
critical velocity of elastic beams subjected to
moving masses.

2.0  Formulation of the problem

The governing differential equation for isotropic
beam of length L on an elastic foundation and
traversed by a moving load of mass M travelling
with constant velocity v is given by

£ QUKD QM | 0D o 0QUxD
OX oX ot ox“ot
+ K, e*Q(x,t)=P(x,t)

(1)

where EIl is the flexural rigidity of the beam,
Q(x,t) is the transverse deflection, 4 is the mass
per unit length of the beam, N is the constant axial
force, K, is the elastic foundation, R°is the

rotatory inertia, P(x,t) is the transverse load, X is
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the spatial coordinate taken along the axis of the
beam and t is the time variable.

When the inertia of the moving load is taken into
consideration, the transverse load can be
expressed in the form

P(x,t)=P, (x,t){ —édz%’('t)} )

where  the  continuous moving  force
P, (x,t) acting on the beam model is given

by
P (x,t) =e”M,;g5(x—Vt) @)

2
and the convective acceleration operator Wis

defined as

d> 0% 2v,0° v, 0?
—2 = —2 + + > (4)

dt ot oxot  oOx

The boundary condition is arbitrary and without
loss of generality, the initial conditions are of the
form

QX0) _,

Q(x,0)=0, p

®)

Substituting equations (2) to (4) in equation (1)
one obtains

g QD Q0D | QY o, 001

ox* ox’ ar " axa
+K,e*Q(x,t) + MS(x—v;t) aZQ(ZX’t) +2v, 0°Q(x.1) +V! 62Q(z(,t)
oxot OX
:e”"zm:Mig(S(x—vit)
i1
(6)

which describes the flexural motions of axially
prestressed beam resting on elastic foundation and
subjected to variable magnitude moving load. It is
remarked at this juncture that equation (6) is valid
for all variants of classical boundary conditions.
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3.0 General Solution Procedures

It is evident that an exact closed form solution of
the above partial differential equation (6) is not
feasible. Consequently, an approximate solution is
sought. Thus, the Galerkin technique described in
[24] is employed. By this technique the partial
differential equation (6) is reduced to a sequence
of ordinary differential equations in the first
instance and the resulting set of second order
ordinary differential equations is further simplified
using an asymptotic method of solution due to
Struble and these set of equations are finally
solved completely by the method of integral
transformations. This versatile technique requires
that the solution of equation (6) takes the form

Q. (%) = YW, (U, () @

where U;(X) is chosen such that pertinent

boundary conditions are satisfied. Equation (7)
when substituted into the equation (6) yields

Zn: EIW, (U ()~ NW, (U 7(X) + W, (00U, () — 2R, (U7(6)

+K e W, (U, (x) + i M;o(x 7Vit)Mi (HU; () +2vW, (U ()

+V2AW, (U] (x)]} Zn:Migﬁ(vait) =0

(8)
An appropriate selection of functions for beam
problems are beam mode shapes. Thus, the m™
normal mode of vibration of a uniform beam

Ui(x)_

(9)

is chosen such that the pertinent boundary
conditions are satisfied. In equation (9), 4. is the

mode frequency, A, B,, C, are constants which

can be determined by using the boundary
conditions associated with the beam structure.
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4.0 Operational simplification

To obtain W, (t) from equation (8), it is
required that the expression on the left hand side
of equation (8) be orthogonal to the
functionU ; (x) . Thus

S EIHL G )~ NH, G, )+ K H G DI 0+ [k G, §) - 2R°H, G, D10

+ Zn: M,|W, (t)j'é(x =Vt (U (x)dx + 2v W, (t)Tﬁ(x =v;lU; (U ; (x)dx

m

+VAW, (t)JL.&(x -Vt (U (x)dx}} =e”" Y M,gU;(vt)

i=1

(10)

we note that the dirac delta function as an even
function can be expressed as

= navit
o(x— vt)—1+2 cos E gos X
L L& L L
(11)

In view of equation (7), using equation (11) in
equation (10), after some simplifications and
rearrangement, one obtains

i{vvi(t)+A1(i_' ]) () + ZA i KH @, j)+ZZCOS it N3 n)}N

i1 A, (i, J)
+(2v,H, G, j)+ 4y, Zcos by G, n))W (t)
+[foe( +2vZZcos 'y <G, ], n))W(t }} ] ZM gu; (vit)
(12)
where

H, G 1) = U 00U, (0dk H, (G, ) = [U/(OU, (x)dx

Hy (i, 1) = IJ_.Ui (QU;(dx - H, (0, 1) = Ie”‘in(X)U j (X)dx
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Hmm:@wwmeHm¢m{w¢?wwwwm
man{wmwwm Hm¢m{mﬂﬁwmmmm
man{wwwmm Hmmm{wﬂﬁwmmmw
A, ) = Hy i, ) = R°H, (i, )

A D) =B H G ) - N H, G )+ R, )
u u u
(13)

5.0 Application and Illustrative examples

For the purpose of analysis, an elastic beam with
simply supported boundary conditions, carrying
fast traveling masses is considered. However, the
analysis and formulation presented in this work
are not limited to just simply supported boundary
condition. The analysis in its general form may
well be applied to beams with various boundary
conditions. For beams with simple supports at
both ends x = 0 and x = L, it can be shown that

A 1 I 1 L

the transverse displacement response of beams
having simple supports at both ends can be given
taking into account (7) as

Q,(x,t)= Zn:Wi (t)sini% (14)

and

U, (x) =sin JL U, (v;t) =sin It
(15)

Substituting equation (14) into the transformed
governing equation (12) and after some
simplifications and rearrangements one obtains
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n

+Zn:Ari*. HH @, )+ZZcos it N n))W Q)
+(2v,H_ (@, j)+ 4y, Zcos ity 4@, 1, n)}W )

(2
(v H.(, j)+2v22cos dad Hf(i,j,n)}/vi(t)}}

()t i JﬂV|t
z ;gsin
/qu(Iv J) i=1 L

(16)

Equation (16) represents the transformed equation
of a uniform Rayleigh beam on a constant elastic
foundation. Evidently, an exact closed form
solution to this problem is not possible.
Consequently, in what follows two cases of the
coupled equation are considered.

6.0 Solution of the transform equation
(6.1) The moving force problem

If the inertia effect of the moving mass is
considered as negligible, we shall have the
classical case of a moving force problem. Under

this assumption I'" = 0 and after some
simplifications and rearrangements and
considering only the ith particle of the system,
equation (16) becomes

e _javit
W t W t)=—Mgsin——-—
Or ot O= 8 G oL
)
where
PN )
N I

It can be shown that the general solution of
equation (17) can be written in the form

W, (t) =C, cosm,;t+C, sinm, t + P, (t) cos @, t + P, (t) sin v, t

(19)
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where

Pm - t -
P(t) = - fje“"smﬂv—l_'sma)mftdt (20)

mf
and

me

P,(t) = Ie“" sinﬂVT‘tcos o tdt (21)

mf

C,and C,are constants to be determined and
__ Mg

P, = .
")

Evaluating integrals (20) and (21) leads to

P a-w, .

Pt) = - | e sin(a— mp )t + ——— € cOs(a— @y )t
20, | @ +(@-w,) o +@-o,)
a+o,
O e sin(a+ oy )t~ ——— €™ cos(a+ mp )t
®° +@+o,) o +(@a+w,)

and

P, . a+o,
P, (t) = ——™ d e sin(a+ oy Jt—— e cos(a+wp )t

20, | @ +@+0,)° o’ +@-w,)°

[ A~ Wy

it at
—_— e” cos(a—amy, )t
o +(@-o,)° ( )

e”sin(a- o t-——————
O PP

(23)

substituting equations (22) and (23) into equation
(19) yields

(a — Wt )Sin(a — Wt )t

W, (t) = Clcosa)mft+Czsina)m,t—e‘"‘{coswmft[ P
= Wt

wcos(@a-w, )t (a+oy,)sin(@a+o, )t (a+ o, )cos(@a+ o, )t}

o’ +@-o,)* o’ +@+ro,)? o’ +@+ao,)?

_ ( wsin(a+ o, )t @+, )cos(@a+w, )t osin@a-awo,t
+5in o -

o’ +(@a+ro,)? o’ +(@a+o,)’ o’ +(@a-o,)*

(8~ @, )cos(a—awy )t
T @ +@-wy)’

(24)

When use is made of the initial conditions (5) in
conjunction with equation (24), one obtains
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me o 1 1
C = 2 2 2 2 2
oyl 0 +@a-0,) o +@+to,)
(25)
and
P a+a,, a— o,
C,=- 2 2 2 2 2
Oy | 0" +(@+0,) o +(@-w,)
(26)

substituting equations (25) and (26) into equation
(24), simplifying and inverting yield

. Mg [0 ®
——Jcos ot — ——— -
2w A, ) o’ +@-0,)" o +@+oy)

mf Zo \1s

_Sino{ (a+ay) (awmf))zj_e,{comm{(awm.)sin(awmf)t

o' +@+oy,) o +@-o, o’ +@-o,)’

Qn (xt)=

wcos(@a-w, )t (a+ay)sin@+w, )t (a+a,)cos(@+w, )t
o’ +@-0,)’ o’ +@+ao,)’ o’ +@+ao,)’

osin@+o, )t (a+o,)cos(@a+aw, )t  wsin(a-w,)t
- +

+sin wm,t[

o’ +@+a,)’ o’ +@+ao,)’ o’ +@-ao,)’

5 5 xsin—
o’ +@-0,) L

_ (a-wy)cos(@-a, )tﬂ} i

Equation  (27) represents the transverse
displacement response to a moving force of a
uniform Rayleigh beam resting on an elastic
foundation.

(6.2) The moving mass problem

In this case, I'" #0 that is, the mass of the
moving load is commensurable with that of the
structure, the inertia effect of the moving mass is
taken into consideration. This is termed the
moving mass problem. To this end equation (16)
is rearranged to take the form

Wi () +on W, (t)+r*{H Al W, (t)+2§:005£|_it He (i, . mW, (1)

P Ho G W0+ VP HE G S, 0

+2v,He (i, W, () +4v, Y cos
n=1

wt H
e. - Migsinﬂit
HA () L

-{-2viZZJCOSnLLit He (@, j,nW, (t)} =
n=1

where
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H. G, J) H, (i, j,n)
OD=an T

. _HC(i,j) . _Hd(i,j,n)
Hc(I,J)—T(iYD HD(I,J,n)—TJ(i,j)

0D gy g - LD
Aq (i, ) A (i, )

He ()=
(29)

Equation (28) after some simplifications and
rearrangements take the form

{a),fﬁ +F*(foE(i,j)+2vi2ni cosmlz_vi HF(i,j,n)ﬂ
{1+F*(HA(i,j)+2i cosmlz_V‘tHB(i,j,n)ﬂ

e MgU, (v;t)

(30)

In equation (30), unlike in the case of moving
force problem an exact analytical solution is not
feasible. Though the equation vyields readily to
numerical technique, an analytical approximate
method is desirable as solutions so obtained often
shed light on vital information about the vibrating
system.

Here we seek the modified frequency
corresponding to the frequency of the free system
due to the presence of the effect of the mass of the
system. An equivalent free system operator
defined by the modified frequency then replaces
equation (30). To this end, we set the right hand
side of (30) to zero and consider a parameter

1 <1 for any arbitrary mass ratio I"" define as

J— r*
1+T°

(31)

So that
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I =n+0(7%) (32)

and
1

{1+F[ A, j)+ZZCOS Gl 5 (i, J, n)ﬂ

:{1—7{HA(L j)+2icosﬂl_itHB(i, j,n)ﬂ
) (33)

where

<1

U(HA(i, j)+2icos”ﬂL‘tHB(i, j,n))

n=1

(34)

Substituting equations (32) and (33) into equation
(30), one obtains

W(t)+77{2vH @i, ) + 4v, Zcos—'H @, j, n)}/\/ ®
+{a)mf +77[v H.(, J)+2v22005 it Hq(,j,n) }N(t)

—a);fn(HA(i, j)+2icosTiHB(i, j,n)]

n=1
wt H
— & _Mm,gsin PN
A (i, J)

(35)
to O(#) only.

When 7=0 in -equation (35), a case
corresponding to the case when the inertia effect
of the mass of the system is neglected, then the
solution of (35) can be written as

W (x,t) = Ay COS(@t =~ f3,,) (36)

where A and S, are constants.
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Furthermore as 7 <1struble’s technique required

that the asymptotic solutions of the homogeneous
part of the equation (28) can be written as

W (x,t) = C(m,t) cos|a,, t — (M, 1) |+ 7oL, t) + O(5%)
(37)

where C(m,t) and ¢#(m,t) are slowly varying
function of time or equivalent,

where — implies ““ is of ”

To obtain the modified frequency, equation (37)
and its derivatives are substituted into the
homogeneous part of equation (35). We extract
only the variational part of the equation describing
the behaviour of C(m,t) and ¢@(m,t)during the

motion of the mass. Thus, making this
substitution and taken into account the following
trigonometric identities

sin[(om, t— ¢(m,t)]cos"/T’V't = % {sin[(om,t —p(m,t) +$]+ sin[a)m,t —p(m,t) —”—”L“]}

nwt _

cos[a)m,t - ¢(m,t)]cosT = % {cos w0 t—p(m,t) + ”—’L“]Jr cos[wmft —g(m,t) —”—”L“]}

(38)

and neglecting terms which do not contribute to
the variational equations we obtain

—26(m, )@y sinfmyt - 4(m,t)]+2C(m,t)g(m, ey, cosfwyt—g(m,t)]
— 278, He (i, )C(M, )y sin[eon t — g(m, )]+ 7C.(m, 2 H ¢ (i, ) cosfey t - f(m,1)]
— o H (i, j)cosle, t— g(m,t)]=0

Retaining terms to O(7) only.

The variational equations are obtained by equating
the coefficients of sinla)mft —¢(m,t)J and

cos|m, t — ¢(m,t)J and setting them to zero, thus
—26(m,t) 2% H. (i, )IC(M, Yoy, =0
(40)
and
—2C(m,t)¢(m,t)a;mf +77C(m't)\/i2HE(i’ j)_a)rif UHA(iv J): 0

(41)
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solving equations (40) and (41) respectively gives

C(mt)=Ae™ (42)
and
R R NIV ()] S8

mf

(43)
where ¢, is a constant.

Therefore, when the inertia effect of the moving
mass is considered, the first approximation to the
homogeneous system is

W, (t)=Ae™ cos[a)kft —gom]
(44)

where

O = Oy {1_Q|:HA(I1 J) _Viz LQI,J):H 45)
2 ,

mf

represents the modified natural frequency due to
the presence of the moving mass. It is observed
that when7 =0, we recover the frequency of the
moving force problem when the inertia effect of
the moving mass is neglected. Thus, to solve the
non-homogeneous equation (28), the differential
operator which acts on Q(m,t) and Q(k,t) is
replaced by the equivalent free system operator
defined by the modified frequency @, . Using
equation (45), the homogeneous part of equation
(30) can be written as

2
WO, oz =0 (46)
dt
Thus, the entire equation (30) becomes
2 ot H
dLiz(t) + o W, (t) = % Mgsin Jmit
dt 1A, (i, ) L
(47)
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retaining O(7) only.

Equation (47) is analogous to equation (17).
Thus, using similar argument as in moving force
problem, W.(t) can be obtained which on

inversion gives

concentrated masses moving at constant speed as
shown in figure 4.

The deflection profile for various values
of applied axial force N for both cases of moving
force and moving mass problems of the uniform
beam are displayed in figures 2 and 5 respectively.
It is observed that as the applied axial force N
increases the transverse displacement of the beam

% nLg [ [ B ®
Qm(X,t) 7;2wmmAu(iy J‘)ICOS wmmt[mz + (a_wmm)z a)z + (a+ wmm)zj decreaseS
, @+ o) (R (2~ 04y SiN(@ ~ Oyt . .
,S|nwmmt[wz+(a+wm)z ,wu(af%)zjfe {Cmmmt[ o+ a-on) In Figures 3 and 6, the dynamic response

ocos(@a- o, )t (a+a,,)sin(@+ o, )t (a+ao,,)cos@+ wmm)t]

o +@-w,) o + @+ o) o + @+ o)

wsin(a+ w,,)t  (a+ ,,)cos(@ + o,, )t N osin(a - o,, )t
o + @+ o,,) o’ +(a-o,)

+5in @,
mm[ o + @+ o,,)

o +@-w,,)

(@~ op) c05(a - wmmnm i
L
(48)

which represents the transverse-displacement
response to a moving mass at a constant velocity
of a uniform Rayleigh beam resting on elastic
foundation.

7.0 Results and Discussions

In order to illustrate the analytical results, -the
uniform Bernoulli-Euler beam is taken to be of the
length L=15.192.  Other  values  used

areM =8407.27Kg,

E =2.10924x10°andV =3.128m/s. The
transverse deflections of the beam are calculated
and plotted against time for various values of
foundation constant (moduli), axial force and the
rotatory inertia factor. Values of K between

ON/m?® and 4.0x10°N /m3were used while the
values of N were  varied between

N =ONandN =2.0x10°N .

Figure 1 illustrates the displacement
response of the simply supported Bernoulli

-Euler beam for a moving force problem for fixed
values of N and various values of K. Clearly, the
results show that as the foundation modulus
increases, the transverse displacement of the beam
decreases. Similar results are obtained when the
simply supported beam is transverse by a

of Bernoulli-Euler beam simply supported at both

ends for various values of rotatory inertia R° are
showcased for both cases of moving force and
moving mass problems. These figures depict that
as the rotatory inertia correction factor

R increases, the response amplitudes of vibration
of the elastic beam decreases.

The comparison of the transverse
displacement of moving force and moving mass
cases for the simply supported beam transverse by
a moving load travelling at constant velocity for

K =40,000N /m*and

°
>

K=0

— - =+ K=40000
—————— K=400000
— - - — K=4000000

°
=

°
©

V(L/2, im
&
o °

I
=

3
S

08
Time (t secs)

Fig 1: Transverse displacement of a simply supported
moving force for various values of foundation modulus

and fixed values of axial force N=20000N and

rotatory inertia R® =0.8
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04

—K=0

= - —K=40000
024 | e K=400000
— - - —K=4000000

——N=20000
=+ ="N=200000
""" N=2000000
= -~ =N=20000000

S
N

V(Li2, im

04

V(L/2.m

-0.6

-0.8

Time (t secs)

Time (secs)

Fig 4: Transverse displacement of a simply
supported moving mass for various values of
foundation modulus and fixed axial force

Fig 2: Deflection profile of simply supported moving
force for various values of axial force and fixed
values of foundation modulus

K =40000N / m*®and rotatory inertia R°=0.8 N =20000N and rotatory inertia R” =0.8.
g° ke 0 . 1 &
Time (t secs) * time{secs)
Fig 3: The deflection of simply supported moving
force for various values of rotatory inertia and fixed Fig 5: Deflection profile of simply supported moving
values of foundation modulus mass for various values of axial force and fixed
K =40000N / m*and axial force N =20000N values of foundation odulus K =40000N / m®and

rotatory inertia R°=0.8
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w
.
o

V(Lr2)m
s
S

w
I
o

Modified Natural Frequency
w
=

time (secs)

Fig 6: The deflection of simply supported moving oer e 00 08 00 0T es e

mass for various values of rotatory inertia and fixed

values of foundation Fig 8: The graph of modified natural frequency

modulus K =40000N / m®and axial force against mass ratio for fixed value of foundation

N =20000N . modulus K =40000N /m?and axial force
N =20000N .

0.6 35

0.4
3.45

0.2

w
=

V(L/2,t)m
w
w
&

-0.2

w
W

Modified Natural Frequency

-0.4

-0.6 3.5

Time (secs) 32
0 1 2 3 4 5 6 7 8

Velocity

Fig 7: Comparison of the displacement response of

moving force and moving mass cases of a simply
supported fixed values Fig 9: The graph of modified natural frequency

N = 20000N, K =40000N /méand R°=0.8 against velocity for fixe3d value of foundation
modulus K =40000N / m® and axial force

N =20000N .
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Fig 12: The graph of critical velocity against

Fig 10: The graph of modified natural frequency foundation modulus for fixed value of axial force
against rotatory inertia for fixed value of foundation N =20000N
modulus K =40000N / m? and axial force
N =20000N .
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Fig 13: The graph of critical velocity against axial

force for fixed value of foundation

Fig 11: The graph of critical velocity against mass modulus K =40000N /m®.

ratio for fixed value of foundation

modulus K =40000N / m® and axial force N =20,000N is displayed in figure 7. It is
N =20000N . observed from this figure that relying on moving

force solution as a safe approximation to moving
mass problem is quite misleading.

In figure 8, the relationship between the
natural frequency and the mass ratio is displayed.
It is shown from the figure that as the mass ratio
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increases the natural frequency of the system also
increases. Similar result is obtained in figure 9
which depicts that as the velocity of the traversing
load increases the natural frequency of the system
also increases. For fixed values of foundation
modulus K and axial force N figure 10 clearly
shows that as the values of rotatory inertia
correction factor increases, the natural frequency
of the system decreases.

In figure 11, it is clearly shown that as the mass
ratio increases the critical velocity of the
dynamical system decreases. While figure 12
depicts that as the values of foundation modulus K
increases for fixed values of other parameters the
critical velocity of the system also increases.
Similar result is obtained in figure 13 which show
that for fixed value of foundation modulus K and
rotatory inertia correction factor R® the critical
velocity of the system increases as the value of
axial force N increases. These interesting results
confirm that the presence of these structural
parameters in appropriate measures in the design
of engineering structures will enhance safety and
reliability in the design of such structures.

7.0 Conclusion

The dynamic behaviour of a beam simply
supported at both ends and carrying moving
concentrated varying magnitude loads has been
analyzed. An approximate method of solution has
been employed to treat the governing differential
equations of motion describing the dynamic
interactions of the continuous system and the
moving sub-systems. The system response in
series form has been obtained with the inclusion
of the inertial effect of the moving mass in the
governing differential equations of motion. It was
observed that the moving mass inertial effect is
very significant.  Results further show that
structural parameters such as the foundation
modulus, axial force, mass ratio and the rotatory
inertia correction factor have significant effects on
the flexural motions and critical velocity of elastic
structures carrying moving load. Thus, in the
design of engineering structures such as railway
bridges, overhead cranes, cableways and tunnels
effects of these important parameters should put

International Journal of Engineering Research & Technology (IJERT)
ISSN: 2278-0181
Vol. 3Issuel, January - 2014

into considerations to guarantee the safety and
reliability of the design.
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