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Abstract  
 

This study concerns the problem of the 

longitudinal vibrations of beams resting on 

elastic foundation and under the actions of 

travelling exponentially varying load with a 

constant velocity type of motion. A mathematical 

formulation representing the transverse motions 

of the engineering structure which is valid for all 

variants of classical boundary conditions is set 

up.  An analytical method of analysis is 

presented for investigating the effects of some 

vital structural parameters on the dynamic 

response characteristic of the structurally 

prestressed elastic beam with rotatory inertia 

correction factor. The theory proposed is applied 

to a beam having simple supports at both ends.  

However, the theory and application is not 

limited to the beam with simply supported 

boundary condition and without much 

mathematical difficulties, it can also be used to 

treat dynamic analysis of continuous beam 

structures including energy dissipation. Closed 

form solutions of the equation of motion 

describing the beam-load interactions are 

obtained. Analysis is carried out and various 

results are presented in plotted curve. 

 

1. Introduction  
The vibration analysis (linear or non-linear) of 

structural members has been and continues to be 

the subject of numerous studies in Engineering 

Science and related fields; this is due largely to the 

fact that it embraces a wide class of problems with 

great relevance in many engineering applications. 

For example, the analysis and design of highway 

and railway bridges, cable-railways, cableways 

and overhead cranes to mention a few. 

 Thus, the effect of  the nature of the 

complexity of the interactions between beams or 

beam-like structural elements and the load 

traversing them at various velocities on the 

dynamic characteristics of such structures have 

been investigated by many researchers [1-10]. 

 Historically, three types of problems have 

been considered in the open literature. If the 

inertia effect of the moving subsystem is 

neglected, the problem reduces to the vibration of 

elastic structure under the actions of an external 

moving force and this is termed the moving force 

problem.  When the inertia effect of the mass of 

the moving load is taken into account and 

assuming infinite stiffness of the coupling 

between the continuous system and the moving 

subsystem, we have the moving mass. The 

dynamical problem involving finite coupling 

stiffness leads to the moving oscillator’s problem. 

Depending on the type of model used and 

assumptions adopted, great numbers of 

publications have evolved during the past years 

[11-26]. 
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 In spite of the enormous investigations 

and great amount of work that have been devoted 

to the dynamic response of beams under moving 

load, it unarguably remains a major topic for 

future scientific research because of the 

continuing advancements in design technology 

and emergence of new materials with improved 

quality which enable the construction of lighter 

and more slender structures, vulnerable to fast 

traveling heavy loads [27]. 

 It is well known that a considerable 

amount of work dealing with the vibration of 

beams under the effect of moving load has been 

found in the open literature, however, to the 

authors’ knowledge, the vibration analysis of 

beams incorporating a rotatory inertia correction 

factor and subjected to exponentially varying load 

is not common.  Thus, this work concerns the 

dynamic response of axially prestressed elastic 

beam resting on elastic foundation and traversed 

by masses traveling at constant velocity.  The 

specific aims of this study is to classify the effects 

of some parameters namely prestressed, 

foundation subgrade, rotatory inertia correction 

factor, mass ratio etc on the flexural motions and 

critical velocity of elastic beams subjected to 

moving masses.  
 

 

2.0  Formulation of the problem 

The governing differential equation  for isotropic 

beam of length L on an elastic foundation and 

traversed by a moving load of mass M  travelling 

with constant velocity v is given by 
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where EI is the flexural rigidity of the beam, 

 txQ ,  is the transverse deflection,   is the mass 

per unit length of the beam, N is the constant axial 

force, oK is the elastic foundation, 
oR is the 

rotatory inertia,  txP ,  is the transverse load, x is 

the spatial coordinate taken along the axis of the 

beam and t is the time variable. 

When the inertia of the moving load is taken into 

consideration, the transverse load can be 

expressed in the form  
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where the continuous moving force 

),( txPf acting on the beam model is given 

by 
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The boundary condition is arbitrary and without 

loss of generality, the initial conditions are of the 

form 

0
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Substituting equations (2) to (4) in equation (1) 

one obtains 
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which describes the flexural motions of axially 

prestressed beam resting on elastic foundation and 

subjected to variable magnitude moving load. It is 

remarked at this juncture that equation (6) is valid 

for all variants of classical boundary conditions. 
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3.0      General Solution Procedures 

It is evident that an exact closed form solution of 

the above partial differential equation (6) is not 

feasible. Consequently, an approximate solution is 

sought.  Thus, the Galerkin technique described in 

[24] is employed. By this technique the partial 

differential equation (6) is reduced to a sequence 

of ordinary differential equations in the first 

instance and the resulting set of second order 

ordinary differential equations is further simplified 

using an asymptotic method of solution due to 

Struble and these set of equations are finally 

solved completely by the method of integral 

transformations.  This versatile technique requires 

that the solution of equation (6) takes the form 


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
n

i
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where )(xU i  is chosen such that pertinent 

boundary conditions are satisfied. Equation (7) 

when substituted into the equation (6) yields 

 





 0)()()(

)()(2)()()()()(

)()()()()()()()(

1

2

1

1





















tvxgMexUtWv

xUtWvxUtWtvxMxUtWeK

xUtWRxUtWxUtNWxUtEIW

i

n

i

i

t

iii

iiiiii

n

i

iii

x

o

n

i

ii

o

iiii

iv

ii









 



 

     (8) 
An appropriate selection of functions for beam 

problems are beam mode shapes. Thus, the m
th

  

normal mode of vibration of a uniform beam 
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is chosen such that the pertinent boundary 

conditions are satisfied. In equation (9), i   is the 

mode frequency, iii CBA ,, are constants which 

can be determined by using the boundary 

conditions associated with the beam structure. 

 

4.0 Operational simplification 

 To obtain )(tWi from equation (8), it is 

required that the expression on the left hand side 

of equation (8) be orthogonal to the 

function )(xU j . Thus   
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 we note that the dirac delta function as an even 

function can be expressed as 

L
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In view of equation (7), using equation (11) in 

equation (10), after some simplifications and 

rearrangement, one obtains 
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5.0 Application and Illustrative examples 

For the purpose of analysis, an elastic beam with 

simply supported boundary conditions, carrying 

fast traveling masses is considered.  However, the 

analysis and formulation presented in this work 

are not limited to just simply supported boundary 

condition.  The analysis in its general form may 

well be applied to beams with various boundary 

conditions.  For beams with simple supports at 

both ends x = 0 and x = L, it can be shown that 

0 iii CBA and 
L

i
i


  .  To this effect, 

the transverse displacement response of beams 

having simple supports at both ends can be given 

taking into account (7) as 
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Substituting equation (14) into the transformed 

governing equation (12) and after some 

simplifications and rearrangements one obtains 
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Equation (16) represents the transformed equation 

of a uniform Rayleigh beam on a constant elastic 

foundation. Evidently, an exact closed form 

solution to this problem is not possible. 

Consequently, in what follows two cases of the 

coupled equation are considered. 

6.0  Solution of the transform equation 

(6.1) The moving force problem 

If the inertia effect of the moving mass is 

considered as negligible, we shall have the 

classical case of a moving force problem. Under 

this assumption 0
and after some 

simplifications and rearrangements and 

considering only the ith particle of the system, 

equation (16) becomes  
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It can be shown that the general solution of 

equation (17) can be written in the form 

ttPttPtCtCtW mfmfmfmfi  sin)(cos)(sincos)( 2121   

    (19)  
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substituting equations (22) and (23) into equation 

(19) yields 
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When use is made of the initial conditions (5) in 

conjunction with equation (24), one obtains 
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substituting equations (25) and (26) into equation 

(24), simplifying and inverting yield 
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 Equation (27) represents the transverse 

displacement response to a moving force of a 

uniform Rayleigh beam resting on an elastic 

foundation. 

 

(6.2)     The moving mass problem 

In this case, 0
 that is, the mass of the 

moving load is commensurable with that of the 

structure, the inertia effect of the moving mass is 

taken into consideration. This is termed the 

moving mass problem. To this end equation (16) 

is rearranged to take the form 
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Equation (28) after some simplifications and 

rearrangements take the form 
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    (30) 

In equation (30), unlike in the case of moving 

force problem an exact analytical solution is not 

feasible. Though the equation yields readily to 

numerical technique, an analytical approximate 

method is desirable as solutions so obtained often 

shed light on vital information about the vibrating 

system. 

 Here we seek the modified frequency 

corresponding to the frequency of the free system 

due to the presence of the effect of the mass of the 

system. An equivalent free system operator 

defined by the modified frequency then replaces 

equation (30).  To this end, we set the right hand 

side of (30) to zero and consider a parameter 

1  for any arbitrary mass ratio 
* define as 
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Substituting equations (32) and (33) into equation 

(30), one obtains 
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     (35) 

to )(O only. 

When 0  in equation (35), a case 

corresponding to the case when the inertia effect 

of the mass of the system is neglected, then the 

solution of (35) can be written as 

)cos(),( mmfmf tAtxW     (36) 

where mfA and m  are constants. 
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Furthermore as 1 struble’s technique required 

that the asymptotic solutions of the homogeneous 

part of the equation (28) can be written as 
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where ),( tmC  and ),( tm  are slowly varying 

function of time or equivalent, 

where  implies “ is of ” 

To obtain the modified frequency, equation (37) 

and its derivatives are substituted into the 

homogeneous part of equation (35).  We extract 

only the variational part of the equation describing 

the behaviour of  ),( tmC  and ),( tm during the 

motion of the mass.  Thus, making this 
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and neglecting terms which do not contribute to 

the variational equations we obtain 
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solving equations (40) and (41) respectively gives 
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where m  is a constant. 

Therefore, when the inertia effect of the moving 

mass is considered, the first approximation to the 

homogeneous system is 
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represents the modified natural frequency due to 

the presence of the moving mass. It is observed 

that when 0 , we recover the frequency of the 

moving force problem when the inertia effect of 

the moving mass is neglected. Thus, to solve the 

non-homogeneous equation (28), the differential 

operator which acts on  tmQ ,  and  tkQ ,  is 

replaced by the equivalent free system operator 

defined by the modified frequency kf . Using 

equation (45), the homogeneous part of equation 

(30) can be written as  
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retaining )(O only.  

Equation (47) is analogous to equation (17).  

Thus, using similar argument as in moving force 

problem, )(tWi  can be obtained which on 
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    (48) 

which represents the transverse-displacement 

response to a moving mass at a constant velocity 

of a uniform Rayleigh beam resting on elastic 

foundation.   

7.0 Results and Discussions 

In order to illustrate the analytical results, the 

uniform Bernoulli-Euler beam is taken to be of the 

length L=15.192. Other values used 

are KgM 27.8407 , 

91010924.2 E and smV /128.3 . The 

transverse deflections of the beam are calculated 

and plotted against time for various values of 

foundation constant (moduli), axial force and the 

rotatory inertia factor.  Values of K between 
3/0 mN  

and 
36 /100.4 mN were used while the 

values of N were varied between 

NN 0 and NN 6100.2  .  

Figure 1 illustrates the displacement 

response of the simply supported Bernoulli 

-Euler beam for a moving force problem for fixed 

values of N and various values of K. Clearly, the 

results show that as the foundation modulus 

increases, the transverse displacement of the beam 

decreases. Similar results are obtained when the 

simply supported beam is transverse by a 

concentrated masses moving at constant speed as 

shown in figure 4. 

The deflection profile for various values 

of applied axial force N for both cases of moving 

force and moving mass problems of the uniform 

beam are displayed in figures 2 and 5 respectively. 

It is observed that as the applied axial force N 

increases the transverse displacement of the beam 

decreases.  

In Figures 3 and 6, the dynamic response 

of Bernoulli-Euler beam simply supported at both 

ends for various values of rotatory inertia 
oR  are 

showcased for both cases of moving force and 

moving mass problems.  These figures depict that 

as  the rotatory inertia correction factor 
oR increases, the response amplitudes of vibration 

of the elastic beam decreases. 

The comparison of the transverse 

displacement of moving force and moving mass 

cases for the simply supported beam transverse by 

a moving load travelling at constant velocity for 
3/000,40 mNK  and 
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Fig 1: Transverse displacement of a simply supported 

moving force for various values of foundation modulus 

and fixed values of axial force NN 20000  and 

rotatory inertia 8.00 R  
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Fig 2: Deflection profile of simply supported moving 

force for various values of axial force and fixed 

values of foundation modulus 
3/40000 mNK  and rotatory inertia 8.00 R  

 

 

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5

R0=1.5

R0=3.5

R0=5.5

R0=7.5

V
(L

/2
, 

t)
m

Time (t secs)

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5

R0=1.5

R0=3.5

R0=5.5

R0=7.5

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5

R0=1.5

R0=3.5

R0=5.5

R0=7.5

V
(L

/2
, 

t)
m

Time (t secs)  
Fig 3: The deflection of simply supported moving 

force for various values of rotatory inertia and fixed 

values of foundation modulus 
3/40000 mNK  and axial force  NN 20000  
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Fig 4: Transverse displacement of a simply 

supported moving mass for various values of 

foundation modulus and fixed axial force 

NN 20000  and rotatory inertia 8.00 R . 
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Fig 5: Deflection profile of simply supported moving 

mass for various values of axial force and fixed 

values of foundation odulus
3/40000 mNK  and 

rotatory inertia 8.00 R  
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Fig 6: The deflection of simply supported moving 

mass for various values of rotatory inertia and fixed 

values of foundation 

modulus
3/40000 mNK  and axial force 

NN 20000 . 
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Fig 7: Comparison of the displacement response of 

moving force and moving mass cases of a simply 

supported fixed values 
3/40000,20000 mNKNN  and 8.00 R  

 

 

 

 

 
 

Fig 8: The graph of modified natural frequency 

against mass ratio for fixed value of foundation 

modulus
3/40000 mNK  and axial force 

NN 20000 . 

 
 
Fig 9: The graph of modified natural frequency 

against velocity for fixed value of foundation 

modulus
3/40000 mNK  and axial force 

NN 20000 . 
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Fig 10: The graph of modified natural frequency 

against rotatory inertia for fixed value of foundation 

modulus
3/40000 mNK  and axial force 

NN 20000 . 

 
 
Fig 11: The graph of critical velocity against mass 

ratio for fixed value of foundation 

modulus
3/40000 mNK  and axial force 

NN 20000 . 

 

 

 
 

 
Fig 12: The graph of critical velocity against 

foundation modulus for fixed value of  axial force 

NN 20000 . 

 

 
 
Fig 13: The graph of critical velocity against axial 

force for fixed value of foundation 

modulus
3/40000 mNK  . 

NN 000,20  is displayed in figure 7. It is 

observed from this figure that relying on moving 

force solution as a safe approximation to moving 

mass problem is quite misleading.  

In figure 8, the relationship between the 

natural frequency and the mass ratio is displayed.  

It is shown from the figure that as the mass ratio 
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increases the natural frequency of the system also 

increases.  Similar result is obtained in figure 9 

which depicts that as the velocity of the traversing 

load increases the natural frequency of the system 

also increases. For fixed values of foundation 

modulus K and axial force N figure 10 clearly 

shows that as the values of rotatory inertia 

correction factor increases, the natural frequency 

of the system decreases. 

In figure 11, it is clearly shown that as the mass 

ratio increases the critical velocity of the 

dynamical system decreases.  While figure 12 

depicts that as the values of foundation modulus K 

increases for fixed values of other parameters the 

critical velocity of the system also increases.  

Similar result is obtained in figure 13 which show 

that for fixed value of foundation modulus K and 

rotatory inertia correction factor R
0
 the critical 

velocity of the system increases as the value of 

axial force N increases.  These interesting results 

confirm that the presence of these structural 

parameters in appropriate measures in the design 

of engineering structures will enhance safety and 

reliability in the design of such structures. 

7.0 Conclusion 

The dynamic behaviour of a beam simply 

supported at both ends and carrying moving 

concentrated varying magnitude loads has been 

analyzed.  An approximate method of solution has 

been employed to treat the governing differential 

equations of motion describing the dynamic 

interactions of the continuous system and the 

moving sub-systems. The system response in 

series form has been obtained with the inclusion 

of the inertial effect of the moving mass in the 

governing differential equations of motion.  It was 

observed that the moving mass inertial effect is 

very significant.  Results further show that 

structural parameters such as the foundation 

modulus, axial force, mass ratio and the rotatory 

inertia correction factor have significant effects on 

the flexural motions and critical velocity of elastic 

structures carrying moving load. Thus, in the 

design of   engineering structures such as railway 

bridges, overhead cranes, cableways and tunnels 

effects of these important parameters should put 

into considerations to guarantee the safety and 

reliability of the design.  
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