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ABSTRACT 

Split-Bregman is a recent algorithm  proposed with good 

convergence property in minimum number of iterations. 

It can be used in areas of denoising, deblurring, 

segmentation, inpaintaing etc. with ease due to its 

convergence property. In this paper we are trying to 

explore the fundamental theory of Bregman and Split 

Bregman with the help of convex function, constrained 

and unconstrained  optimisation models.  

Keywords:Convex function, Constrained and 

Unconstrained Optimisation, Bregman and Split-

Bregman. 

INTRODUCTION 

Optimization plays an important role in image processing  

for example in case of denoising application, error 

between the original image and  denoised image should 

be reduced. This minimisation process will be taken care 

in optimisation frame work. So bringing the filtering or 

denoising algorithm into this frame work gives an 

advantage when compared to conventional methods. 

Since the objective of operators like denoising, 

reconstruction etc are to bring out the appropriate image 

or by minimising error this is largely supported or 

achieved through convex optimization framework. 

Consider a function F which represents an image 

processing problem like denoising ,restoration etc for a 

set of feasible solution can be found through 

optimization. Functions are of different types, widely 

used functions for optimisation are convex and concave 

because of its simplicity in finding the optimal minimum. 

Convex function is defined as if every line segment 

joining two points its graph is never below the graph.in 

order to find the solution for a convex/concave functions, 

constrained or unconstrained optimization can be used. In 

unconstrained optimisation search limit extends from    -

. But in constrained optimisation search limit is 

restricted, according to the subjected to condition. 

CONVEX FUNCTION 

A function can be defined as the relation between the set 

of input (domain) and set of output (codomain). Cube is 

an appropriate example for explaining convex set . All 

the points inside the cube constitute a convex set (S). 

 

 

 

                              Figure:(1) 

But in a non convex set, some of point lies outside the 

region R 

Figure:(2) 

Consider the point R, which divides the  line segment x1 

and x2 joining the function which belongs to the convex 

set in the ratio of  ,(1- ) is shown in figure. 

 

 

                                Figure:(3) 
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1 2(1 )

(1 )

x x
R

 

 

 


 
                    (1) 

1 2(1 )R x x                                        (2) 

    is always lies in the convex set. This constitutes a 

function value. Function is said to be convex if and only 

if function F :X R   set X in a vector space ,for any 

two points  1x  and 2x  in X and  (0,1) . 

1 2 1 2( (1 ) ) ( ( ) (1 )( ))f x x f x fx       
   

(3) 

Since every point on a convex function are differentiable 

a convex function have unique gradient in every point 

except at minimum point. 

1 2 3

( ) ( ) ( ) ( )
( ) , , ............

n

f x f x f x f x
f x

x x x x

   
 

   
         (4) 

Using Taylor series expansion the mathematical 

interpretation of convex function can be depicted as  

0 0 0( ) ( ( ) '( ))f x f x x x f x                    (5) 

For higher dimension  

0 0 0( ) ( ) ( ) ( )Tf x f x f x x x  
             

 (6) 

The function ( )f x should be convex if satisfies the 

condition 

0 0 0( ) ( ) ( ) ( )Tf x f x f x x x                (7) 

CONSTRAINED AND UNCONSTRAINED 

OPTIMIZATION 

Optimization problems are of two types –constrained and 

unconstrained optimization. Generally optimization is the 

method of finding maximum or minimum of a function. 

Consider a „ n ‟variable function 1 2( , ,..... )nf x x x =

( )F X In order to find the solution of a function f we 

have to find a point 0X . 

0

0

( ) ( )

( ) ( )

f x f x

f x f x




                                           

(8) 

The first inequality equation stands for minimizing the 

function and the latter equation stands for maximizing 

the function. For solving the unconstrained problems we 

use root finding algorithm .In unconstrained problems 

the search space is not related with any constraints. But 

in constrained optimization search space is related with 

equality and inequality constraints.An unconstrained 

minimization problem is 

   Minimize f(x)                                            (9) 

Where the minimization is over all 
nx R . A 

constrained optimization problem is defined as follows 

                   Minimize           f(x)                  (10) 

Subject to         

( ) 0

( ) 0

g x

h x



                            (11) 

Where ( )f x is the objective function to be minimized,

( )g x is the set of inequality constraints and ( )h x  is 

the  set of equality constraints. Generally constrained 

optimization problems are Basis Pursuit Problem and TV 

Denoising Problem. To efficiently solve this kind of 

problems we use Bregman  Iterative Algorithm. Basis 

Pursuit problem  deals with finding the solution for linear 

systems of equations of the form P q  . 

Consider the linear system of equations 

11 1 22 2 1 1 1

21 1 22 2 2 2 2

1 1 2 2

..........

...........

.

.

...........

n n

n n

m m mn n n

P P P q

P P P q

P P P q

  

  

  

   

   

   

         (12) 
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The above system can be written in the form of  where

P q  ,P
mxnR  nR  and q

mR .Here 

assume the rows of P are linearly independent .So the 

system of equation has infinite solution .Using minimal 

L
1

 norm we can find the solution for linear system of 

equations and can be represented as 

1
min

subject toP q


                                        

(13) 
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              Where  
1

 =

1

n

i

i




  

There are many problems while solving the constrained 

equation (1), because of imposing constraints for search 

direction. So we go for unconstrained basis pursuit 

problem  ie; 

2

2 2

1
min || || || ||

2nR
P q


  


 

                    

(14) 

Where “µ” is a positive constant. These types of 

problems are used for Compressive Sensing.  

The second type of problem is total variation denoising. 

The removal noise from an original image is called 

denoising. The problem is of the form  

( )
min || || ( )BV
BV

X


 
 


                              (15)

 

Where || ||BV  is not a smooth convex function and it 

is added with strictly  convex function  ( )X  .  BV is 

the bounded variation of the form 
nR .To find the 

BV norm of a function has high computation cost and 

can be replaced by 1L  norm of the gradient ie; 

1|| || || ||BV    and ( )X   can be replaced by  

2
( )

|| || || ||
2min

BV

q



 

 

                      (16) 

Here   should be greater than zero. 

In older days we were using interior point method. 

Consider a medium sized problem, using interior point 

algorithm requires upto 100 iteration for computing the 

solution with a relative tolerance of about 0.01 . So we 

go for Bregman Iterative Algorithm. 

BREGMAN METHOD 

Bregman is a highly specific and efficient algorithm for 

deblurring, denoising, segmentation etc. To solve general 

1L  regularization problem use the equation 

2argmin | ( ) | || ||
u

d P q                    (17) 

To split the 1 2L and L  component, introduce a new 

term to solve the constrain problem

1
,

min || || ( )
d

d X



        (18) 

2 2

1
min || || || ||

2nR
P q


  


                         (19) 

Add a penalty term to make the constrained problem to 

unconstrained problem. By combining both  (18) and 

(19) we get  

1 2
,

arg min || || ( ) || ( ) ||
2u d

d X d d


   
    (20)    

Let 1|| || ( )d X   be ( , )E d  

 then the equation becomes  

2
,

arg min ( , ) || ( ) ||
2u d

E d d d


                (21). 

Now we can define the Bregman Distance 

Bregman Distances  

For a smooth differentiable convex function, gradient is 

possible . But for a non-differential function the concept 

sub-gradient comes into play. At a point A there can be 

many P, where P is the sub gradient. Set of all sub-

gradients form Sub differential. 

( )kp d  .                                (22) 

 It forms a convex set 

 
Figure:(4) 

( ) ( ) ,k k kd d p       (23) 

P is the sub-gradient at 
k   

d(φ) 

φk 

( ) , kp d p        
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In multi-dimensional, 

( ) ( ) ,k kd d p              (24) 

BregmanDistanceFunction

 

               Figure: (5) 

The function at P can be plotted as in figure 

 

 

                  Figure:(6) 

Where  ( ) ,k k kd p      is the equation of 

the sub gradient at  
k  

The distance is always positive. At  
k  , 

kp

jD = 0 

as seen from the graph. 

Similarly for other u values   
kp

jD 0  

Our aim is to minimize  

1
,

min || || ( )
d

d X



                                       (25) 

1
1( ) ( , ) ( )

kp k

k d
B XD   


             (26) 

Such that replace the semi convex function d( ) with 

Bregman distance ( , )
kp k

dD  
.
We make an 

argument that ( )kB   is  greater than zero. 

1
1( , )

kp k

dD  



 is a distance function with minimum 

zero .This is strictly convex function. Therefore 

1 arg min ( , ) ( )
kpk k k

d
XD



                  (27) 

At 
k  one of the sub-gradient is zero, 0 ( )kd 

then,  

1 1 1( ) ( ) ( ) , ( ) 0k k k

kB d d p X              
  

(28) 

( )kB   is differentiating with respect to 
k

 

10 ( ) ( )k k kd p X                          (29) 

This (29) is not a regular function and to make it a 

regular function  

10 ( ) ( )k k kd p X                          (30) 

Now it is easy to find the minimum value. 

1 ( ) ( )k k kp X d                                 (31) 

The gradient at k is  

1 ( )k k kp p X                                       (32) 

d(φ) 

( , )kD    

( , )kd  

 

 

φk 

( ) , kp d p      
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The gradient at k+1 is obtained by subtracting the 

derivative of strictly convex function at k+1 from 

previous gradient p at k. 

1 1( )k k kp p X                                     (33) 

Bregman Algorithm 

K=0,
0 , 

0p =0 

While 
k  not converge 

1 1arg min ( , ) ( )
kk p k

jD X       

1 1 1( ) ( )k k k kp p X d       

1k k   

end while 

, p  are the variables used in Bregman algorithm. K is 

the number of iteration. Successive iterations are given as

1 1,k kp  
. The algorithm runs in a while loop k is 

incrementing for successive iterations and it ends when  

k  converges. 

SPLIT- BREGMAN ALGORITHM 

Split Bregman algorithm is a suitable technique in 

solving  convex minimisation problems which are of 

non- differentiable in  nature. Optimisation problems of 

following format can be solved by using the split 

Bregman algorithm : :d R X R 

Constrained functioncan be defined as, 

1
min ( ) ( )d X


 



                                   (34) 

Replace ( )d   by P  therefore the equation can be 

written as  

1min || || ( )P X


 
                                  (35)

 

Now take d P  

Therefore the objective function  

1
,

min || || ( )
d

d X


  

subject to d P
 where 

,d s 

Applying Lagrangian multiplier in above equation  we 

can write  

1 2
,

min || || ( ) || ||
2d

d X d P



               (36) 

Now take 1( , ) || || ( )J d d X    

Now (36) can be written as  

2
,

min ( , ) || ||
2d

J d d P



                         (37) 

As in iterative Bregman replace J( ,d) by 

( , , , )
kp k k

jD d d   Therefore equation (37) can be 

rewritten as  

2
,

min ( , , , ) || ||
2

kp k k

j
d

D d d d P



         (38) 

(38) is in  the form of  

 

,
min ( , ) ( , )

d
J d X d


 

                                    (39)

 

While updating to the next iterative point   

1 1

2
,

( , ) min ( , , , ) || ||
2

kk k p k k

j
d

d D d d d P



       

                (40) 

From Bregman Iterative Algorithm  

1 1( )k k kp p X   
 

1 1

,

2

( , ) min ( , ) ,

|| ||
2

k k k k

d

k

d J d b d P

d P


   




      

  

1 1 1( )k k T k kp p P P d       
 

The 
1kp


 is the gradient at k+1 with variable 

  

Similarly  

1 1 1

2( || ||
2

k k k k

d dp p d P
d


  

  


)      (41) 
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The 1k

dP   is the gradient at k+1 with variable 

d. 

1 1 1( )k k k k

d dp p d P                        (42) 

1 1 1( )k k k k

d dp p P d     
                  

(43) 

Taking each term separately  

1

1

( )

( ).....

k T k

k T k k

p P d

P P P d

 

  





  

    

and so on  

1
1 1

1

k
k T i i T k

i

p P P d P b   


 



        (44) 

Since 

1

1

k
i i

i

P d




  =
1kb 

   is called residual vector. 

Similarly 

1
1 1

1

k
k i i k

d

i

p P d b  


 



    

Then, 

1 1

,

2

( , ) min ( , ) ( , ) ,

, || ||
2

k k k k k k

d

k k

d

d J d J d p

p d d d P




    




       

      (45) 

Substitute 
kp

T kP b   and 
k kp b  in (45),  

we get  

1 1

,

2

( , ) min ( , ) ( , ) ,

, || ||
2

k k k k k k

d

k k k

d J d J d b d P

b d d d P


    


 

       

     

(46) 

 

Since , ( ) ( )T k k T k T kP b P b        

( ) ( )k T kb P     

, ( )k kb P      

,k kb P P     

,k kb d P  
            

 (47)
 

Then, 

2
,

min ( , ) ( , ) || ||
2

k

d
J d b d P d P c




            (48) 

Here c= ( ( , ) , )k k k kJ d b d d       T 

Therefore the equation can be rewritten as 

2
,

min ( , ) || ||
2

k

d
J d d P b c




             (49) 

Solving the above equation we get  

1 1 1( )k k k kb b P d                               (50) 

Split-Bregman Algorithm 

0 00 0 0

2
1||

2

2
1 min ( ) || ( )

2 2

2
1 1min | | || ( )

2 2

1 1( )

1

d

Intialize k b

k kwhile tol do

k k kX d b

k k kd d d P b

k k k kb b P b

k k

end while





 


   






  

 

    

    

   

 

 

,b , d are the variablesin Split-Bregman. In addition 

to the variables used in Bregman an extra variable is 

introduced here for reducing the computational 

complexity. K is the present iteration, and successive 

iteration are given as k+1. The difference in the value of 

present and previous iteration is compared with the 

tolerance value, if it is greater than the tolerance value 

then the while loop continues, then while loop ends. 

 

EXPERIMENT AND RESULTS  

The experimental part of  Split- Bregman denoising is 

implemented using MATLAB.  The denoised output of a 

cameraman image which has been corrupted with some 

random noiseis given below.  The corresponding   PSNR 

of   28.3971   and  MSE of  94.0525 is obtained by using  
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weighting parameter for fidelity term mu is .050 and 

tolerance is 0.001. 

 

 

Figure (6): original 

 

Figure (7): noisy 

 

Figure (8): Denoised 

 

Figure (9):Difference 

 

 CONCLUSION 

In this paper we are trying to explore the fundamental  

theories and mathematical explanation of Bregman and 

Split-Bregman with the help convex function and 

constrained optimisation. After that explaining the 

denoising property of Split-Bregman using 

corresponding algorithms and the regarding results are 

depicted in above figure (6,7,8,9). 
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