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Abstract

Generally a Vehicle Routing Problem (VRP)
determines the optimal set of routes used by a fleet of
vehicles to serve a given set of customers on a prede-
fined graph; the objective is to minimize the total travel
cost (related to the travel times or distances) and
operational cost (related to the number of vehicles
used). In this paper we study a variant of the
predefined graph: given a weighted graph G and
vertices a and b, and given a set X of forbidden paths in
G, find the minimum total travel cost of a-b path P
such that no path in X is a subpath of P. Path P is
allowed to repeat vertices and edges. We use integer
programming model to describe the problem. A
feasible neighbourhood approach is proposed to solve
the model.

Keywords: Vehicle routing problem, forbidden path,
integer programming, feasible neighbourhood search

1. Introduction

The Vehicle Routing Problem (VRP) is defined on a
given graph G = (V, A), where V ={Vv,Vy,.. .V} is
a set of vertices and A < {(vi, vj) 1 i # j, Vi, vj € V} is the
arc set. An optimal set of routes, composed of a cyclic
linkage of arcs starting and ending at the depot, is
selected to serve a given set of customers at vertices.
The problem aims at minimizing the total travel cost
(proportional to the travel times or distances) and
operational cost (proportional to the number of vehicles
used). This problem was first introduced by Dantzig
and Ramser in 1959 to solve a real-world application
concerning the delivery of gasoline to service stations.

A comprehensive overview of the Vehicle Routing
Problem can be found in Toth and Vigo (2002) which
discusses problem formulations, solution techniques,
important variants and applications.

This paper discusses a variant of VRP in which
there may be forbidden route. Forbidden sub-route
involving pairs of edges occur frequently (“No left
turn”) and can occur dynamically due to rush hour
constraints, lane closures, construction, etc. Longer
forbidden subpaths are less common, but can arise, for
example if heavy traffic makes it impossible to turn left
soon after entering a multi-lane roadway from the right.
If we are routing a single vehicle it is more natural to
find a detour from the point of failure when a forbidden
path is discovered.

Logically, a model whereby an algorithm identifies
a potential path, and then this path is tried out on the
actual network. In case of failure, further tests can be
done to pinpoint a minimal forbidden subpath. Because
such tests are expensive, a routing algorithm should try
out as few paths as possible. In particular it is
practically impossible to identify all forbidden paths
ahead of time—we have an exponential number of
possible paths to examine in the network. Therefore we
impose an assumption of having no a priori knowledge
of the forbidden paths, and of identifying forbidden
paths only by testing feasibility of a path.

In terms of graph the problem can be defined as :
given a graph G(V, A), and vertices s and t, and given a
set X of forbidden paths in G, find optimal set of route
P such that no path in X is a subpath of P. Routes in X
are called exceptions, and the desired route is called a
shortest exception avoiding route. We allow an
exception avoiding route to be non-simple graph, i.e.,
to repeat vertices and edges. In fact the problem
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becomes hard if the solution is restricted to simple
Szeider (2003) . This problem has been called the
Shortest Path Problem with Forbidden Paths by
Villeneuve and Desaulniers (2005); Ahmed and Lubiw
(2009).

2. Preliminary

We are given an directed graph G(V, A) with n = |V|
vertices and m = |A| edges where each edge e € A has a
positive weight denoting its length. We are also given a
source vertex s € V, a destination vertex t € V , and a
set X of route in G. The graph G together with X
models a vehicle routing network in which a vehicle
cannot follow any route in X because of the physical
constraints .. We want to find a shortest route from s to
t that does not contain any route in X as a subpath—we
make the goal more precise as follows. A route is a
sequence of vertices each joined by an edge to the next
vertex in the sequence. Note that we allow a route to
visit vertices and edges more than once. If a route does
not visit any vertex more than once, we explicitly call it
a simple route. A simple directed route from vertex v to
vertex w in G is called a forbidden route or an
exception if a vehicle cannot follow the route from v to
w because of the physical constraints. Given a set X of
forbidden route, a route (vi, Vo, V3, . . ., V)) is said to
avoid A if (vi, vi+ 1,...,v)) ¢ Aforalli, jsuch that 1 <
i<j<Il A route P from s to t is called a shortest A-
avoiding route if the length of P is the shortest among
all A-avoiding route from s to t. We will use the term
“exception avoiding” instead of “X-avoiding” when A
is equal to X, the set of all forbidden paths in G.

3. Vehicle Routing Problem

In the late fifties, Dantzig and Ramser (1959)
introduced the VRP, which can be viewed as an m-TSP
with customer demands and vehicle capacity. An
example of such a VRP is shown in Figure 1. The VRP
introduced in Dantzig and Ramser (1959), strictly
speaking, is called Capacitated Vehicle Routing
Problem (CVRP), and is one of the simplest vehicle
routing problems.

Figure 1: An example of the VRP.

3.1 Problem formulation of VRP

Given a graph G(V, A) with nodes V = C U {0} and
arcs A, where C is the set of customers, and O is the
depot. Moreover, we have a set R of resources which
e.g. can be load and/or time. Each resource r € R has a

resource window [&/,b"] that must be met upon
arrival to node i € V , and a consumption t ,rj >0 for
using arc (i, j) € A. A resource consumption at a node i
e C is modeled by a resource consumption at edge (i,
j), and hence usually tgj >0 forall j € C. A global
capacity limit Q can be modeled by imposing a
resource window [0, Q] for the depot node 0.

The VRP can now be stated as: Find a set of routes
starting and ending at the depot node O satisfying all
resource windows, such that the cost is minimized and
all customers C are visited.

A solution to the VRP will consist of a number of
routes

0—i; > —i, >0,

0—i >---—ii >0,

0—i >--—i, >0

where n is the number of vehicles, and k; is the length
of the j’th route.

3.2 Model

In the following let c;; be the cost of arc (i, j) € A,
X;j be the binary variable indicating the use of arc (i, j)

e A, and t ,rj (the resource stamp) be the consumption

of resource r € R at the beginning of arc (i, j) € A. Let
8'(i) and & (i) be the set of outgoing respectively
ingoing arcs of node i € V. Combining the two index
model from Bard et al. [3] with the constraints ensuring
the time windows for the ATSP by Ascheuer et al. [1] a
mathematical model can be formulated as follows:

min - Xj)ea €y Xy @)
s.t. Xspestm Xy = 1 Viec (2
Tepes-m X = Depesto Xy Vi €V (3)

Z(s,j)ea*(i)ﬁ}lr + tjrixij) =
Z(s,j)eé"’(i) 7;‘{ Vre R, ViecC (4)

T, =0

o= Vr € R, V(i,j) € A (6)
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x; €{0,1} v(i,j)ead (7)

The objective (1) sums up the cost of the used arcs.
Constraints (2) ensure that each customer is visited

4. Theysplationbésif) approach (5)
Consider a mixed integer linear programming
(MILP) problem with the following form

exactly once, and (3) are the flow conservation Minimize P = ¢ x (15)
constraints. Constraints (4) and (5) ensure the resource
windows are satisfied. It is assumed that the bounds on Subjectto Ax<b (16)
the depot are always satisfied. Note, that no sub-tours
can be present since only one resource stamp per arc x>0 @an
exists and the arc weights are positive for all (i, j) € A :
ieC. Xj integer for some j € J (18)

For a one dimensional resource such as load a
stronger lower bound of the LP relaxation can be
obtained by replacing (4) to (6) with

Z(i,j)ey(S)Xiizr(S)’ where r(S) is a minimum

number of vehicles needed to service the set S. All
though this model can not be directly solved it is
possible to overcome this problem by only including
the constraints that are violated. For more details on
how to separate the constraint and calculate the value
of r(S) the reader is refered to Toth and Vigo [33].

3.3 Model for VRP with forbidden route

Given a set X of forbidden route, a route (vy, vy, Vs, .
.., V) is said to avoid A if (vi, vi+ 1, ..., v)) ¢ A forall
i,jsuchthat 1 <i<j<I Aroute P fromstotis called
a shortest A-avoiding route if the length of P is the
shortest among all A-avoiding route from s to t. We
will use the term “exception avoiding” instead of “X-
avoiding” when A is equal to X, the set of all forbidden
paths in G.

It is necessarily to assume that costumers are not in
the forbidden route.

The model can be written as :

min Z(i,j)eA;(i,j)EX Cij Xij (8)
S.t. Z(s,j)ES"'(i) xl-j =1 Vl (S C,l % X (9)
Y es—m) X = D pesti Xy LEX, Vi €V (10)

Ypes-oTi +Eix;) <
Soiest T igX,Vr ERViIiEC (11)

alx <T7<b[xij (i,j) € X,Vr €R,

A component of the optimal basic feasible vector (xg)x,
to MILP solved as continuous can be written as

(e )k = B — g (X = =g () = = U pom (X o (19)

Note that, this expression can be found in the final
tableau of Simplex procedure. If (xg)x is an integer
variable and we assume that g is not an integer, the
partitioning of By into the integer and fractional
components is given by

ﬂk:[ﬂk]'ka,OkaSl (20)

suppose we wish to increase (xg)x to its nearest integer,
([A1+1). Based on the idea of suboptimal solutions we
may elevate a particular nonbasic variable, say (Xn)j»,
above its bound of zero, provided o+ as one of the
element of the vector oy~ is negative. Let A « be
amount of movement of the non variable (xy);=, such
that the numerical value of scalar (xg)x is integer.
Referring to Eqn.(19), A j« can then be expressed as

(21)

while the remaining nonbasic stay at zero. It can be
seen that after substituting (21) into (19) for (xy);- and
taking into account the partitioning of ﬁ{ iven in (20),
we obtain (xg)x = [A] + 1. Thus, (Xg)x is now an integer.
It is now clear that a nonbasic variable plays an
important role to integerize the corresponding basic
variable. Therefore, the following result is necessary in
order to confirm that must be a non-integer variable to
work with in integerizing process.

v (ii]j)_e];l h (12) The_:orem 1. _Suppose the MILP problem (1_)-(4) _has an
optimal solution, then some of the nonbasic variables.
T) =0 x, L,)H)eXVvr eRV(,j))eA (13) (xn)j, J =1, ..., n, must be non-integer variables.
Proof.

x; € {0, 1} x, GNDEXY@ENHEA (14)

In the above model every vehicle assigned will not be
travelling along the forbidden route.

Solving problem as a continuous of slack variables
(which are non-integer, except in the case of equality
constraint). If we assume that the vector of basic
variables xg consists of all the slack variables then all
integer variables would be in the nonbasic vector xy
and therefore integer valued
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It is clear that the other components, (Xg)i., Of
vector xg will also be affected as the numerical value of
the scalar (xy)j« increases to Aj«. Consequently, if some
element of vector o, i.e., o~ for i # k, are positive,
then the corresponding element of xg will decrease, and
eventually may pass through zero. However, any
component of vector x must not go below zero due to
the non-negativity restriction. Therefore, a formula,
called the minimum ratio test is needed in order to see
what is the maximum movement of the nonbasic (Xy);-
such that all components of x remain feasible. This
ratio test would include two cases.

1. A basic variable, (xg)i.« decreases to zero
(lower bound) first.
2. The basic variable, (xg)x increases to an
integer.
Specifically, corresponding to each of these two cases
above, one would compute

6, = min {i} (22)

i==k|aj*>0 aj*

& = Aj- (23)

How far one can release the nonbasic (xy);- from its
bound of zero, such that vector x remains feasible, will
depend on the ratio test 0" given below

0" =min(6y, 0,) (24)

obviously, if 6" = 0, one of the basic variable (Xg)i.x
will hit the lower bound before (xg)x becomes integer.
If 6 = 0,, the numerical value of the basic variable
(xg)x will be integer and feasibility is still maintained.
Analogously, we would be able to reduce the numerical
value of the basic variable (xg)x to its closest integer
[Ad. In this case the amount of movement of a
particular nonbasic variable, (xy)j+ corresponding to
any positive element of vector ¢, is given by

Ap =k (25)

akj

In order to maintain the feasibility, the ratio test 0

is still needed. Consider the movement of a particular

nonbasic variable, A, as expressed in Egns.(21) and

(25). The only factor that one needs to calculate is the

corresponding element of vectora. A vector ¢ can be
expressed as

a=B"a,j=1,..,n-m (26)

Therefore, in order to get a particular element of
vector o; we should be able to distinguish the
corresponding column of matrix [B]*. Suppose we

need the value of element -, letting v; be the k-th
column vector of [B]*, we then have
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v, =g, B! (27)

subsequently, the numerical value of oy~ can be
obtained from

akj* = VI aj* (28)

in Linear Programming (LP) terminology the operation
conducted in Egns. (27) and (28) is called the pricing
operation. The vector of reduced costs d; is used to
measure the deterioration of the objective function
value caused by releasing a nonbasic variable from its
bound. Consequently, in deciding which nonbasic
should be released in the integerizing process, the
vector dj must be taken into account, such that
deterioration is minimized. Recall that the minimum
continuous solution provides a lower bound to any
integer-feasible solution. Nevertheless, the amount of
movement of particular nonbasic variable as given in
Egns. (21) or (25), depends in some way on the
corresponding element of vector «;. Therefore it can be
observed that the deterioration of the objective function
value due to releasing a nonbasic variable (xy)j- SO as to
integerize a basic variable (xg)x may be measured by
the ratio

dy

akj*

(29)

where |a] means the absolute value of scalar a. In order
to minimize the deterioration of the optimal continuous
solution we then use the following strategy for deciding
which nonbasic variable may be increased from its
bound of zero, that is,

. d
min
j

akj*

k

},j:l,...,n—m (30)

From the “active constraint” strategy and the
partitioning of the constraints corresponding to basic
(B), superbasic (S) and nonbasic (N) variables we can

write
Xp
B S N b
XN |= (31)
| by
Xs
or
Bx, +Sxg + Nxy =b (32)
Xy = by (33)

The basis matrix B is assumed to be square and
nonsingular, we get
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Xg = B —Wxg —aXy (34) Expression (33) indicates that the nonbasic

variables are being held equal to their bound. It is

where evident through the “nearly” basic expression of Eqn.
(34), the integerizing strategy discussed in the previous
section, designed for MILP problem can be

-1

p=B"D (35) implemented. Particularly, we would be able to release
a nonbasic variable from its bound, Eqn. (33), and

W =B71s (36) exchange it with a corresponding basic variable in the
integerizing process, although the solution would be

o =BIN (37) degenerate.

Currently, we are in a position where particular
basic variable, (xg)x is being integerized, thereby a
corresponding nonbasic variable, (cy)+, is being
released from its bound of zero. Suppose the
maximum movement of (xy);~ satisfies

0" = A (38)

such that (xg)x is integer valued to exploit the manner
of changing the basis, we would be able to move (xy);~
into B (to replace (xg)x) and integer-valued (xg)y into S
in order to maintain the integer solution. We now have
a degenerate solution since a basic variable is at its
bound. The integerixing process continues with a new
set [B,S]. In this case, eventually we may end up with
all of the integer variables being superbasic.

5. Conclusion

This paper presents a VRP model in which there
are some forbidden route. The framework of the model
stems from VRP with time windows. Then we exclude
the forbidden route from the previous assigned route.
We solve the model using a feasible neighbourhood
search.
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