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Abstract 

 
Generally a Vehicle Routing Problem (VRP) 

determines the optimal set of routes used by a fleet of 

vehicles to serve a given set of customers on a prede-

fined graph; the objective is to minimize the total travel 

cost (related to the travel times or distances) and 

operational cost (related to the number of vehicles 

used). In this paper we study a variant of the 

predefined graph: given a weighted graph G and 

vertices a and b, and given a set X of forbidden paths in 

G, find the minimum total travel cost of  a-b path P 

such that no path in X is a subpath of P. Path P is 

allowed to repeat vertices and edges. We use integer 

programming model to describe the problem. A 

feasible neighbourhood approach is proposed to solve 

the model. 

 

Keywords: Vehicle routing problem, forbidden path, 

integer programming, feasible neighbourhood search 

 

 

1.  Introduction 
The Vehicle Routing Problem (VRP) is defined on a 

given graph G = (V, A), where        V = {v1,v2,.. . ,vn} is 

a set of vertices and A  {(vi, vj) : i  j, vi, vj  V} is the 

arc set. An optimal set of routes, composed of a cyclic 

linkage of arcs starting and ending at the depot, is 

selected to serve a given set of customers at vertices. 

The problem  aims at minimizing the total travel cost 

(proportional to the travel times or distances) and 

operational cost (proportional to the number of vehicles 

used).  This problem was first introduced by Dantzig 

and Ramser in 1959 to solve a real-world application 

concerning the delivery of gasoline to service stations. 

A comprehensive overview of the Vehicle Routing 

Problem can be found in Toth and Vigo (2002)  which 

discusses problem formulations, solution techniques, 

important variants and applications.  

This  paper discusses a variant of VRP in which 

there may be forbidden route. Forbidden sub-route 

involving pairs of edges occur frequently (―No left 

turn‖) and can occur dynamically due to rush hour 

constraints, lane closures, construction, etc. Longer 

forbidden subpaths are less common, but can arise, for 

example if heavy traffic makes it impossible to turn left 

soon after entering a multi-lane roadway from the right. 

If we are routing a single vehicle it is more natural to 

find a detour from the point of failure when a forbidden 

path is discovered. 

Logically, a model whereby an algorithm identifies 

a potential path, and then this path is tried out on the 

actual network. In case of failure, further tests can be 

done to pinpoint a minimal forbidden subpath. Because 

such tests are expensive, a routing algorithm should try 

out as few paths as possible. In particular it is 

practically impossible to identify all forbidden paths 

ahead of time—we have an exponential number of 

possible paths to examine in the network. Therefore we 

impose an assumption of having no a priori knowledge 

of the forbidden paths, and of identifying forbidden 

paths only by testing feasibility of a path. 

In terms of graph the problem can be defined as : 

given a  graph G(V, A), and vertices s and t, and given a 

set X of forbidden paths in G, find optimal set of route 

P such that no path in X is a subpath of P. Routes  in X 

are called exceptions, and the desired route is called a 

shortest exception avoiding route. We allow an 

exception avoiding route to be non-simple graph, i.e., 

to repeat vertices and edges. In fact the problem 
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becomes hard if the solution is restricted to simple 

Szeider (2003) . This problem has been called the 

Shortest Path Problem with Forbidden Paths by 

Villeneuve and Desaulniers (2005); Ahmed and Lubiw 

(2009). 

 

 

2. Preliminary 
We are given an directed graph G(V, A) with n = |V| 

vertices and m = |A| edges where each edge e  A has a 

positive weight denoting its length. We are also given a 

source vertex s  V , a destination vertex t  V , and a 

set X of route in G. The graph G together with X 

models a vehicle routing network in which a vehicle 

cannot follow any route in X because of the physical 

constraints .. We want to find a shortest route from s to 

t that does not contain any route in X as a subpath—we 

make the goal more precise as follows. A route is a 

sequence of vertices each joined by an edge to the next 

vertex in the sequence. Note that we allow a route to 

visit vertices and edges more than once. If a route does 

not visit any vertex more than once, we explicitly call it 

a simple route. A simple directed route from vertex v to 

vertex w in G is called a forbidden route or an 

exception if a vehicle cannot follow the route from v to 

w because of the physical constraints. Given a set X of 

forbidden route, a route (v1, v2, v3, . . . , vl) is said to 

avoid A if (vi, vi + 1, . . ., vj)  A for all i, j such that 1 ≤ 

i < j ≤ l. A route P from s to t is called a shortest A-

avoiding route if the length of P is the shortest among 

all A-avoiding route from s to t. We will use the term 

―exception avoiding‖ instead of ―X-avoiding‖ when A 

is equal to X, the set of all forbidden paths in G. 

 

3. Vehicle Routing Problem 
In the late fifties, Dantzig and Ramser (1959) 

introduced the VRP, which can be viewed as an m-TSP 

with customer demands and vehicle capacity. An 

example of such a VRP is shown in Figure  1. The VRP 

introduced in Dantzig and Ramser (1959), strictly 

speaking, is called Capacitated Vehicle Routing 

Problem (CVRP), and is one of the simplest vehicle 

routing problems. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1: An example of the VRP. 

 

 

 

3.1 Problem  formulation of VRP 
 

Given a graph G(V, A) with nodes V = C  {0} and 

arcs A, where C is the set of customers, and 0 is the 

depot. Moreover, we have a set R of resources which 

e.g. can be load and/or time. Each resource r  R has a 

resource window [ ,r r

i ia b ] that must be met upon 

arrival to node i  V , and a consumption 0r

ij t  for 

using arc (i, j)  A. A resource consumption at a node i 

 C is modeled by a resource consumption at edge (i, 

j), and hence usually 0 0r

j t  for all j  C. A global 

capacity limit Q can be modeled by imposing a 

resource window [0, Q] for the depot node 0. 

The VRP can now be stated as: Find a set of routes 

starting and ending at the depot node 0 satisfying all 

resource windows, such that the cost is minimized and 

all customers C are visited. 

A solution to the VRP will consist of a number of 

routes 
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where n is the number of vehicles, and kj is the length 

of the j’th route. 

 

 

3.2 Model 
 

In the following let cij be the cost of arc (i, j)  A, 

xij be the binary variable indicating the use of arc (i, j) 

 A, and 
r

ijt  (the resource stamp) be the consumption 

of resource r  R at the beginning of arc (i, j)  A. Let 


+
(i) and 

−
(i) be the set of outgoing respectively 

ingoing arcs of node i  V. Combining the two index 

model from Bard et al. [3] with the constraints ensuring 

the time windows for the ATSP by Ascheuer et al. [1] a 

mathematical model can be formulated as follows: 

min      𝑐𝑖𝑗 𝑥𝑖𝑗(𝑖 ,𝑗 )∈𝐴                                     (1) 

 

𝑠. 𝑡.      𝑥𝑖𝑗 = 1(𝑠,𝑗 )∈𝛿+(𝑖)                              ∀ 𝑖 ∈ 𝐶     (2)  

 

            𝑥𝑖𝑗 =  𝑥𝑖𝑗(𝑠,𝑗 )∈𝛿+(𝑖)(𝑠,𝑗 )∈𝛿−(𝑖)       ∀ 𝑖 ∈ 𝑉    (3) 

 

              𝑇𝑗𝑖
𝑟 + 𝑡𝑗𝑖

𝑟𝑥𝑖𝑗  ≤(𝑠,𝑗 )∈𝛿−(𝑖)

             𝑇𝑗𝑖
𝑟

(𝑠,𝑗 )∈𝛿+(𝑖)                     ∀ 𝑟 ∈ 𝑅, ∀ 𝑖 ∈ 𝐶     (4) 

  i  V (3) 

           𝑎𝑖
𝑟𝑥𝑖𝑗 ≤ 𝑇𝑗𝑖

𝑟 ≤ 𝑏𝑖
𝑟𝑥𝑖𝑗    ∀ 𝑟 ∈ 𝑅, ∀ (𝑖, 𝑗) ∈ 𝐴     (5)  

 

             𝑇𝑖𝑗
𝑟 ≥ 0                      ∀ 𝑟 ∈  𝑅, ∀ (𝑖, 𝑗)  ∈  𝐴    (6) 

  r  R,  i  C (4) 
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𝑥𝑖𝑗 ∈  0, 1                                   ∀  𝑖, 𝑗  ∈ 𝐴      (7)  r  R,   (i, j)  A (5)  r  R,   (i, j)  A (6)  (i, j)  A (7) 

 

The objective (1) sums up the cost of the used arcs. 

Constraints (2) ensure that each customer is visited 

exactly once, and (3) are the flow conservation 

constraints. Constraints (4) and (5) ensure the resource 

windows are satisfied. It is assumed that the bounds on 

the depot are always satisfied. Note, that no sub-tours 

can be present since only one resource stamp per arc 

exists and the arc weights are positive for all (i, j)  A : 

i  C. 

For a one dimensional resource such as load a 

stronger lower bound of the LP relaxation can be 

obtained by replacing (4) to (6) with 

( , ) ( )
( )iji j S

x r S
 

  , where r(S) is a minimum 

number of vehicles needed to service the set S. All 

though this model can not be directly solved it is 

possible to overcome this problem by only including 

the constraints that are violated. For more details on 

how to separate the constraint and calculate the value 

of r(S) the reader is refered to Toth and Vigo [33]. 

 

 

3.3 Model for VRP with forbidden route 
 

Given a set X of forbidden route, a route (v1, v2, v3, . 

. . , vl) is said to avoid A if (vi, vi + 1, . . ., vj)  A for all 

i, j such that 1 ≤ i < j ≤ l. A route P from s to t is called 

a shortest A-avoiding route if the length of P is the 

shortest among all A-avoiding route from s to t. We 

will use the term ―exception avoiding‖ instead of ―X-

avoiding‖ when A is equal to X, the set of all forbidden 

paths in G. 

It is necessarily to assume that costumers are not in 

the forbidden route. 

The model can be written as : 

 

min    𝑐𝑖𝑗 𝑥𝑖𝑗 𝑖 ,𝑗  ∈𝐴;(𝑖 ,𝑗 )∉𝑋            (8) 

 

𝑠. 𝑡.   𝑥𝑖𝑗 = 1(𝑠,𝑗 )∈𝛿+(𝑖)                 ∀ 𝑖 ∈ 𝐶, 𝑖 ∉ 𝑋         (9)  (8) 

 

 𝑥𝑖𝑗 =  𝑥𝑖𝑗(𝑠,𝑗 )∈𝛿+(𝑖)(𝑠,𝑗 )∈𝛿−(𝑖)    𝑖 ∉ 𝑋, ∀ 𝑖 ∈ 𝑉     (10) 

 

 (𝑇𝑗𝑖
𝑟 + 𝑡𝑗𝑖

𝑟𝑥𝑖𝑗 ) ≤(𝑠,𝑗 )∈𝛿−(𝑖)

 𝑇𝑗𝑖
𝑟

(𝑠,𝑗 )∈𝛿+(𝑖)                      𝑖 ∉ 𝑋, ∀ 𝑟 ∈ 𝑅, ∀ 𝑖 ∈ 𝐶   (11) 

 

𝑎𝑖
𝑟𝑥𝑖𝑗 ≤ 𝑇𝑗𝑖

𝑟 ≤ 𝑏𝑖
𝑟𝑥𝑖𝑗                𝑖, 𝑗 ∉ 𝑋, ∀ 𝑟 ∈ 𝑅,

∀ (𝑖, 𝑗) ∈ 𝐴                                                                (12) 

 

𝑇𝑖𝑗
𝑟 ≥ 0  𝑥𝑖𝑗           𝑖, 𝑗 ∉ 𝑋, ∀ 𝑟 ∈ 𝑅, ∀ (𝑖, 𝑗) ∈ 𝐴      (13) 

 

𝑥𝑖𝑗 ∈  0, 1  𝑥𝑖𝑗                      𝑖, 𝑗 ∉ 𝑋, ∀ (𝑖, 𝑗) ∈ 𝐴      (14) 

  

In the above model every vehicle assigned will not be 

travelling along the forbidden route. 

 

 

 

4. The solution basic approach 

Consider a mixed integer linear programming 

(MILP) problem with the following form 

 

 Minimize P = c
T
 x                 (15)  

 

Subject to Ax  b                                               (16) 

                 

    x  0                                    (17)        

                 

 xj integer for some j  J                      (18) 

 

A component of the optimal basic feasible vector (xB)k, 

to MILP solved as continuous can be written as 

 

1 1 ,( ) ( ) ( ) ( )B k k k N kj N j k n m N n mx x x x                 (19) 

 

Note that, this expression can be found in the final 

tableau of Simplex procedure. If (xB)k is an integer 

variable and we assume that k is not an integer, the 

partitioning of k into the integer and fractional 

components is  given by 

 

k = [k] + fk, 0   fk  1           (20) 

 

suppose we wish to increase (xB)k to its nearest integer, 

([]+1). Based on the idea of suboptimal solutions we 

may elevate a particular nonbasic variable, say (xN)j*, 

above its bound of zero, provided kj*, as one of the 

element of the vector j*, is negative. Let  j* be 

amount of movement of the non variable (xN)j*, such 

that the numerical value of scalar (xB)k is integer. 

Referring to Eqn.(19),  j* can then be expressed as  

 

*

*

1 k

f
kj

f




 


           (21) 

 

while the remaining nonbasic stay at zero. It can be 

seen that after substituting (21) into (19) for (xN)j* and 

taking into account the partitioning of k given in (20), 

we obtain (xB)k = [] + 1. Thus, (xB)k is now an integer. 

It is now clear that a nonbasic variable plays an 

important role to integerize the corresponding basic 

variable. Therefore, the following result is necessary in 

order to confirm that must be a non-integer variable to 

work with in integerizing process. 

 

Theorem 1. Suppose the MILP problem (1)-(4) has an 

optimal solution, then some of the nonbasic variables. 

(xN)j, j =1,  , n, must be non-integer variables. 

 

Proof.  
Solving problem as a continuous of slack variables 

(which are non-integer, except in the case of equality 

constraint). If we assume that the vector of basic 

variables xB consists of all the slack variables then all 

integer variables would be in the nonbasic vector xN 

and therefore integer valued 
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It is clear that the other components, (xB)ik, of 

vector xB will also be affected as the numerical value of 

the scalar (xN)j* increases to j*. Consequently, if some 

element of vector j*, i.e., j* for i  k, are positive, 

then the corresponding element of xB will decrease, and 

eventually may pass through zero. However, any 

component of vector x must not go below zero due to 

the non-negativity restriction. Therefore, a formula, 

called the minimum ratio test is needed in order to see 

what is the maximum movement of the nonbasic (xN)j* 

such that all components of x remain feasible. This 

ratio test would include two cases. 

1. A basic variable, (xB)ik decreases to zero 

(lower bound) first. 

2. The basic variable, (xB)k increases to an 

integer. 

Specifically, corresponding to each of these two cases 

above, one would compute 

*

1
| 0

*

min
j

i

i k
j






 

  
  

  

           (22) 

 

2 = j*              (23) 

 

How far one can release the nonbasic (xN)j* from its 

bound of zero, such that vector x remains feasible, will 

depend on the ratio test 
*
 given below 

 


*
  = min(1, 2)            (24) 

 

obviously, if 
*
 = 1, one of the basic variable (xB)ik 

will hit the lower bound before (xB)k becomes integer. 

If 
*
 = 2, the numerical value of the basic variable 

(xB)k will be integer and feasibility is still maintained. 

Analogously, we would be able to reduce the numerical 

value of the basic variable (xB)k to its closest integer 

[k]. In this case the amount of movement of a 

particular nonbasic variable, (xN)j*, corresponding to 

any positive element of vector j’, is given by 

 

k
f

kj

f


               (25) 

 

In order to maintain the feasibility, the ratio test 
*
 

is still needed. Consider the movement of a particular 

nonbasic variable, , as expressed in Eqns.(21) and 

(25). The only factor that one needs to calculate is the 

corresponding element of vector. A vector j can be 

expressed as 

 

         j = B
-1

aj, j = 1, , n – m                  (26) 

 

Therefore, in order to get a particular element of 

vector j we should be able to distinguish the 

corresponding column of matrix [B]
-1

. Suppose we 

need the value of element kj*, letting 
T
kv  be the k-th 

column vector of [B]
-1

, we then have 

 

  
1T T

k kv e B              (27) 

 

subsequently, the numerical value of kj* can be 

obtained from 

 

* *
T

kj k jv a              (28) 

 

in Linear Programming (LP) terminology the operation 

conducted in Eqns. (27)  and (28) is called the pricing 

operation. The vector of reduced costs dj  is used to 

measure the deterioration of the objective function 

value caused by releasing a nonbasic variable from its 

bound. Consequently, in deciding which nonbasic 

should be released in the integerizing process, the 

vector dj must be taken into account, such that 

deterioration is minimized. Recall that the minimum 

continuous solution provides a lower bound to any 

integer-feasible solution. Nevertheless, the amount of 

movement of particular nonbasic variable as given in 

Eqns. (21) or (25), depends in some way on the 

corresponding element of vector j. Therefore it can be 

observed that the deterioration of the objective function 

value due to releasing a nonbasic variable (xN)j* so as to 

integerize a basic variable (xB)k may be measured by 

the ratio 

*

k

kj

d


              (29) 

 

where |a| means the absolute value of scalar a. In order 

to minimize the deterioration of the optimal continuous 

solution we then use the following strategy for deciding 

which nonbasic variable may be increased from its 

bound of zero, that is,  

 

*

min , 1, ,k

j
kj

d
j n m



  
  

  

             (30) 

 

From the ―active constraint‖ strategy and the 

partitioning of the constraints corresponding to basic 

(B), superbasic (S) and nonbasic (N) variables we can 

write 

 

b

N
N

S

x
bB S N

x
bI

x

 
    

     
     

             (31) 

 

or 

 

b S NBx Sx Nx b               (32) 

 

N Nx b              (33) 

 

The basis matrix B is assumed to be square and 

nonsingular, we get 

 

2836

International Journal of Engineering Research & Technology (IJERT)

Vol. 2 Issue 10, October - 2013

IJ
E
R
T

IJ
E
R
T

ISSN: 2278-0181

www.ijert.orgIJERTV2IS100911



B S Nx Wx x                (34) 

 

where 

 
1B b               (35) 

 
1W B S              (36) 

 
1B N               (37) 

 

Expression (33) indicates that the nonbasic 

variables are being held equal to their bound. It is 

evident through the ―nearly‖ basic expression of Eqn. 

(34), the integerizing strategy discussed in the previous 

section, designed for MILP problem can be 

implemented. Particularly, we would be able to release 

a nonbasic variable from its bound, Eqn. (33), and 

exchange it with a corresponding basic variable in the 

integerizing process, although the solution would be 

degenerate.  

Currently, we are in a position where particular 

basic variable, (xB)k is being integerized, thereby a 

corresponding nonbasic variable, (cN)j*, is being 

released from its bound of zero. Suppose the 

maximum movement of (xN)j* satisfies 

 


*
 = j*            (38) 

 

 

 

 

such that (xB)k is integer valued to exploit the manner 

of changing the basis, we would be able to move (xN)j* 

into B (to replace (xB)k) and integer-valued (xB)k into S 

in order to maintain the integer solution. We now have 

a degenerate solution since a basic variable is at its 

bound. The integerixing process continues with a new 

set [B,S]. In this case, eventually we may end up with 

all of the integer variables being superbasic. 

5. Conclusion 
This paper presents a VRP model in which there 

are some forbidden route. The framework of the model 

stems from VRP with time windows. Then we exclude 

the forbidden route from the previous assigned route.  

We solve the model using a feasible neighbourhood 

search. 
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