

Integrating Hadoop with Relational Databases

using Sqoop

B Nandana Kumar1 L Bujji Babu2

Assistant Professor Assistant Professor

DNR College of Engg. Tech. DNR College of Engg. Tech.

Abstract:- Apache Sqoop is a tool designed for efficiently

transferring bulk data between Apache Hadoop and external

data stores such as relational databases, enterprise data

warehouses. Sqoop is used to import data from external data

stores into Hadoop Distributed File System or related Hadoop

eco-systems like Hive and HBase. Similarly, Sqoop can also be

used to extract data from Hadoop or its eco-systems and

export it to external data stores such as relational databases,

enterprise data warehouses. Sqoop works with relational

databases such as Teradata, Netezza, Oracle, MySQL,

Postgres etc.

Performing analytics on large, diverse data sets is a natural fit

for Apache Hadoop. The whole point of the Hadoop File

System (HDFS) is that it excels at providing a massively

scalable, diverse data store that, when combined with the

many analytic tools available on the Hadoop platform — from

Map Reduce to Mahout and others — gives you a lean, mean,

analytics machine when you hitch your data store wagon to

Apache Hadoop.

Keywords: Sqoop, Hive, Netezza, HDFS, Map Reduce

INTRODUCTION:

Sqoop is a tool designed to transfer data between Hadoop

and relational databases or mainframes. You can use Sqoop

to import data from a relational database management

system (RDBMS) such as MySQL or Oracle or a

mainframe into the Hadoop Distributed File System

(HDFS), transform the data in Hadoop MapReduce, and

then export the data back into an RDBMS. Sqoop

automates most of this process, relying on the database to

describe the schema for the data to be imported. Sqoop

uses MapReduce to import and export the data, which

provides parallel operation as well as fault tolerance. This

rosy picture presents a slight problem, however: It turns out

that most of the world’s structured data is already stored in

relational database management systems (RDBMSs), and

it’s common practice to leverage structured query language

(SQL, for short) for data transformation, processing, and

analysis — and SQL is decidedly not a natural fit for

Apache Hadoop. Sqoop was first announced in 2009 by

Aaron Kimball as a database import tool for Hadoop, and

three years later (March 2012, to be exact), Sqoop became

a top-level Apache project. The glory of Sqoop lies in the

fact that it not only allows you to import relational data but

also provides an export mechanism. The result is that

Sqoop can provide an efficient mechanism for loading an

RDBMS table by exporting data stored in HDFS, a use

case perfectly suited for scenarios where you make use of

Hadoop as an enterprise data warehouse (EDW)

preprocessing engine. Sqoop has grown a lot since

The Principles of Sqoop Design:
When it comes to Sqoop, a picture is often worth a

thousand words, so check out Figure 1-1, which gives you

a bird’s-eye view of the Sqoop architecture.

Figure1-1. Sqoop design

The idea behind Sqoop is that it leverages map tasks —

tasks that perform the parallel import and export of

relational database tables right from within the Hadoop

MapReduce framework. This is good news because the

MapReduce framework provides fault tolerance for import

and export jobs along with parallel processing! You’ll

appreciate the fault tolerance if there is a failure during a

large table import or export because the MapReduce

framework will recover without requiring you to start the

process all over again. Sqoop can import data to Hive and

HBase. Note, however, that the arrows to Hive and HBase

point in only one direction in Figure1-1. Data stored in any

relational database with JDBC support can be directly

imported into the Hive or HBase systems with Sqoop.

Exports, however, are performed from data stored in

HDFS. Therefore, if you need to export your Hive tables,

you point Sqoop to HDFS directories that store your Hive

HBase Hadoop HDFS Hive

RDBMS/DWNo SQL

Support
(Oracle, My SQL Postgree SQL,

DB2,SQL Server, Netezza,

TeraData, Couchbase, etc..)

Hadoop Map Tasks Sqoop client

International Journal of Engineering Research & Technology (IJERT)

ISSN: 2278-0181

Published by, www.ijert.org

ICACC - 2016 Conference Proceedings

Volume 4, Issue 34

Special Issue - 2016

1

tables. If you need to export HBase tables, you first have to

export them to HDFS and then execute the Sqoop export

command.

SCOOPING UP DATA WITH SQOOP:

Sqoop provides Hadoop with export and import capability

to and from any RDBMS or data warehouse (DW) that

supports the Java Database Connectivity (JDBC)

application programming interface (API) suite. All major

RDBMS and DW vendors generally provide JDBC-

compliant drivers for their products. In addition, Sqoop

releases are bundled with special connector technology for

a variety of popular products. As of this writing, Sqoop

version 1.4.4 provides special connectors for MySQL,

PostgreSQL, Oracle, Microsoft SQL Server, DB2, and

Netezza. These special connectors take advantage of

specific features within the individual database systems in

order to improve import/export performance and

functionality. Additionally, third-party connectors are

available that aren’t bundled with Sqoop for other NoSQL

data store and data warehouse providers (Couchbase and

Teradata from Cloudera, for example). Sqoop also includes

a generic JDBC connector that only supports the Java

JDBC API.

CONNECTORS AND DRIVERS:

Sqoop connectors generally go hand in hand with a JDBC

driver. Sqoop does not bundle the JDBC drivers because

they are usually proprietary and licensed by the RDBMS or

DW vendor. So there are three possible scenarios for

Sqoop, depending on the type of data management system

(RDBMS, DW, or NoSQL) you are trying to interact with.

Let’s take a look at each one:

✓ Your data management system is supported by one of

the bundled Sqoop connectors listed above. In this case,

you need to acquire the JDBC driver from your data

management system provider and install the .jar file

associated with it in your $SQOOP_HOME / lib directory.

$SQOOP_HOME is an environment variable that refers to

the directory pathname on your system where you install

Apache Sqoop.

✓ Sqoop does not include a connector for your database

management system. That means you need to download

one from a 3rd party vendor, along with a JDBC driver if

the connector requires one. (Couchbase and Teradata both

do, for example.)

✓ Your database management system does not provide

a Sqoop connector but a JDBC driver is available. In

this case, you leverage Sqoop’s generic JDBC connector

and download and install your vendor’s JDBC driver.

Importing Data with Sqoop:

It illustrates the steps in a typical Sqoop import operation

from an RDBMS or a data warehouse system. Nothing too

complicated here, just a typical Products data table from a

(typical) fictional company being imported into a typical

Apache Hadoop cluster from a typical data management

system (DMS).

Step1.Retrive table Metadata “Product”
 Table

 Step3: Execute Map tasks to import map

 data by leveraging the generated java

 “Products” class

step2: java generic class

Figure:1-2 The Sqoop import flow of execution

During Step 1, Sqoop uses the appropriate connector to

retrieve the Products table metadata from the target DMS.

(The metadata is used to map the data types from the

Products table to data types in the Java language.)

Step 2 then uses this metadata to generate and compile a

Java class that will be used by one or more map tasks to

import the actual rows from the Products table. Sqoop

saves the generated Java class to temp space or to a

directory you specify so that you can leverage it for the

subsequent processing of your data records. The Sqoop

generated Java code that is saved for you is like the gift

that keeps on giving! With this code, Sqoop imports

records from the DMS and stores them to HDFS using one

of three formats that you can pick: binary Avro data, binary

sequence files, or delimited text files. Afterwards, this code

is available to you for subsequent data processing.

Sequence files are a natural choice if you’re importing

binary data types and you’ll need the generated Java class

to serialize and desterilize your data later on perhaps for

MapReduce processing or exporting. (More on exporting

later - right now, we’re focusing on imports.) Avro data

based on Apache’s own serialization framework is useful if

you need to interact with other applications after the import

to HDFS. If you choose to store your imported data in

delimited text format, you may find the generated Java

code valuable later on as you parse and perform data

format conversions on your new data. Later in this chapter,

you’ll see that the generated code also helps you merge

data sets after Sqoop import operations and the final

example in this chapter illustrates how the generated Java

code can help avoid ambiguity when processing delimited

text data. Finally, during

Step 3, Sqoop divides the data records in the Products table

across a number of map tasks (with the number of mappers

optionally specified by the user) and imports the table data

into HDFS, Hive, or HBase.

Sqoop client

Map job

products

1-10

Hadoop HDFS

Map job
products

11-20

Map job
products

m-n

Hive
HBase

International Journal of Engineering Research & Technology (IJERT)

ISSN: 2278-0181

Published by, www.ijert.org

ICACC - 2016 Conference Proceedings

Volume 4, Issue 34

Special Issue - 2016

2

REFERENCES:

[1] HADOOP DUMMIES by Dirk deRoos, Paul C. Zikopoulos,

Bruce Brown, Rafael Coss, and Roman B. Melnyk

[2] HADOOP IN PRACTISE By Alex Holmes

[3] HADOOP: The Definitive Guideby Tom White

International Journal of Engineering Research & Technology (IJERT)

ISSN: 2278-0181

Published by, www.ijert.org

ICACC - 2016 Conference Proceedings

Volume 4, Issue 34

Special Issue - 2016

3

