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Abstract 
This paper presents an integrated approach to aggregate production planning (APP) that combines possibilistic linear 

programming (PLP) with the throughput accounting system for profit maximization. APP involves making strategic 

decisions on production levels, inventory management, and resource allocation to meet customer demand while 

minimizing costs and maximizing profitability. However, the inherent uncertainties and complexities of real-world 

production environments pose significant challenges to traditional planning models. To address these challenges, this 

paper proposes the integration of PLP with fuzzy goal programing and the throughput accounting system at the very end, 

using data received from Rich Pharmaceuticals Ltd, the study's findings were derived using Lingo version 18 software 

(RPL). The model incorporates possibility distributions of input parameters, allowing decision-makers to consider the 

uncertainties and imprecisions in demand forecasts, production costs, and capacity constraints. By maximizing profit 

while considering risk tolerance, it also enables more realistic and reliable production planning decisions 

Key Words: Aggregate production planning, fuzzy demands, capacity utilization, Decision maker, throughput 

accounting 

1. INTRODUCTION

Production planning, which aims to effectively organize and coordinate all production processes in 

such a manner that it meets the objectives of the organizations, is one of the most alluring and crucial 

topics in manufacturing systems. The key elements of production planning involve figuring out the 

best output, inventory levels, and other crucial production factors for coping with demand 

volatility during a specified planning period (Ramezanian, et. Al. 2012). 

Aggregate production planning (APP) is a medium-term production decision in a manufacturing 

organization that establishes the production rate, inventory level, amount of subcontractors, and 

workforce level in a particular time according to a number of constraints. "Aggregate" refers to 

the preparation done for two or more manufacturing categories. Determining output levels 

across all categories to meet current, specific demands is the goal of aggregate production planning. 

APP governs the best way to meet forecast demand in the intermediate future, often from 6 to 24 

months ahead, by adjusting regular and overtime production rates, inventory levels, labor levels, 

subcontracting and backordering rates, and other controllable variables (Wang et al., 2005). The 

primary inputs of APP are market demands and the manufacturing plan to meet those expectations. 

(Leung et al., 2003). 

2. PRIOR WORKS' LITERATURE
The APP literature has been examined in three primary headings: traditional, uncertainty-based, and 
multi-objective. Saad (1982) categorizes conventional decision models into six categories for solving 
APP issues. However, the goals and model inputs when any of these APP models are used generally are 
assumed to be deterministic/crisp, but the linear programming (LP) method is the most acceptable 
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presently. According to Fung et al. (2003), an APP is a strategy for figuring out the necessary levels of 
labor, inventory, and production to meet all market demands. Junior and Filho (2012) reviewed the 

works on production planning and control for remanufacturing. Karmarkar and Rajaram (2012) 
discussed a rivalry version of APP model with capacity constraints. In real-world APP problems, input 
data or related parameters, such as market demand, available resources and capacity, and germane 
operating costs, frequently are imprecise/fuzzy owing to some information being inadequate or 
unobtainable; Thus, the Fuzzy Aggregate Production Planning (FAPP) is enabled. 

Fuzzy mathematics programming has since evolved into a number of fuzzy optimization techniques 
for resolving APP problems. Currently, fuzzy techniques are often efficient in the area of decision 
making. Essentially every type of decision-making, including multi-objective, multi-person, and multi-
stage decision-making, has used fuzzy methodologies (Tamiz,1996). Additionally, applications of fuzzy 
theory in management, business, and operational research are included in other studies related to 
fuzzy decision making (Zimmermann, 1991). 

In order to tackle multi-product APP choice problems in a fuzzy environment, Wang and Liang (2004a) 
more recently created a fuzzy multi-objective linear programming model using the piecewise linear 
membership function. The model can yield an effective compromise solution and the decision maker’s 
overall levels of satisfaction. Additional research on fuzzy APP problem solving may be found in Wang 
and Fang (1997), Tang et al. (2000, 2003), Wang and Fang (2001). To optimize profit, minimize repair 
costs, and maximize machinery usage, Leung and Chan (2009) created a preemptive goal 
programming approach for the APP problem.  

When there are multiple objectives and goals that conflict, decision-makers and production managers 
must make difficult decisions about which objectives and goals should take precedence. The goal 
programming (GP) method may be suggested as a workable and useful solution to address this 

problem. Numerous multi-objective production planning problems have been solved using fuzzy 
mathematical programming, particularly the fuzzy goal programming (FGP) method. 

Management accounting must increasingly rely on advanced analytic tools like technique of goal 

programing to assist it carry out duties as the operational environment of firms becomes more 
complicated (ACCA, 2016). Performance of APP models is often measured by revenue, cost, or profit. 
However according to Goldratt (1990), companies should assess their success by throughput rather 
than using cost as a metric. The Theory of Constraints is the name of this Goldratt recommendation 
(TOC). Three appropriate measures—throughput, inventory, and operating expense—are suggested 
to be used as benchmarks for an organization based on the TOC concept. The main international 
metrics, such as net profit and return on investment, can be linked to these three metrics. Moreover, 
they are also capable of being converted into productivity and inventory turnover. These 

organizational management tools are highly beneficial. As a result, these three metrics are used to 
create and assess APP models. 

Surprisingly, just one study group has documented this novel accounting theory's lower performance 
when compared to mainstream applications, despite the fact that it has been accepted to be a part of 
alternative accounting procedures (Lea & Fredendall, 2002; Lea & Min, 2003; Lea, 2007). In fact, 
Hilmola & Lättilä's (2008) research indicated that profits might potentially rise relative to the initial 
scenario, although this necessitates a significant degree of cycle time variation together with effort in 
process buffers in front of resource constraints. 
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Neither cost accounting nor TA should be completely abandoned. Throughput accounting (TA) is not 
always a direct assault on cost accounting. Yet, TA offers a different perspective on accounting metrics, 

a different way to address problems, and a different way to operate the business at a far greater level 
of success and profitability. If you will, the accounting standards are updated by TA to better reflect 
the state of company today. 

2.1     Definitions for the Financial Aspects of the Theory of Constraints 
There are three main performance measures used by throughput accounting. These measurements 
are a condensed technique that breaks down accounting into three straightforward measures: 

Throughput(TP): The rate at which inventory is changed into sales. If you make lots of products and 
put them in a warehouse, that is not throughput, it’s inventory. The products, or services, only count as 

throughput when they are sold to the customer and new money comes back into the business 
organization. 

Investment/Inventory(IN): the money that the system used to convert inventory to throughput. 
Formerly known as just inventory, this is now most commonly known as inventory/investment. This 
broader definition includes buildings, machines, and any other equipment used to produce things that 
you intend to sell, with the knowledge that any or all of these assets may ultimately be converted into 
cash. 
Operating Expense(OE): the entire sum of money used to produce throughput. All money spent that 
does not go under one of the other two categories, such as rent, electrical, phone, benefits, and salary, 
falls under this category. The sum total of all company expenses, excluding totally variable expenses. 
Expenses usually categorized here are direct and indirect labor, depreciation, supplies, interest 
payments, and overhead. all costs that are not totally variable are lumped together into the Operating 
Expenses category. 

The Financial Aspects of the Theory of Constraints 
In other to cover an aspect of the theory of constraints that deals directly with the work of the 
accountant, there is an area and it will be referred to as throughput accounting. 
The use of profitability analysis at the system level rather than gross margin analysis at the product 
level is a fundamental idea of throughput accounting. In a conventional cost accounting system, 
expenses from every stage of manufacturing are tallied and variously assigned to certain goods. This 

results in a gross margin that is deducted from product pricing and used to assess whether a product 
is profitable enough to create. At the product level, throughput accounting almost ignores gross margin 
analysis. The manufacturing process is instead seen as a single system whose total profitability must 
be optimized. 

The amount of money spent on a system to increase its capacity is known as investment, and 

throughput accounting lays a lot of attention on it. The following formulae are used by throughput 
accounting in conjunction with throughput, entirely variable costs, and operational expenditures for a 
variety of accounting decisions: 

 Throughput (𝑇𝑃) =  Revenue (𝑅) −  Totally Variable Expenses(TVE)

 Net Profit(NP) =  Throughput(𝑇𝑃) −  Operating Expenses(OE)

 Return on Investment (RoI) =  Net Profit / Investment

 Productivity(Pr) =  Throughput / Operational Expense

 Inventory Turns(IT) =  Throughput / Inventory Value
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Goldratt's strategy demanded a shift in emphasis in order to redefine accounting principles. The goal 
for managers should be to increase throughput while lowering operating costs and inventories. The 

latter two, however, must be maintained at a certain minimum level to prevent a decrease in 
throughput, thus there is very little room for reduction in those two areas. These might be viewed as 
restrictions on the suggested model. The weakest link in the system chain is a constraint (Dettemer, 
1997). There are three different kinds of constraints: material, resource, and policy (paradigm) 
(Woeppel, 2001). Moreover, financial limitations are crucial for real-world issues (Fung, et al., 2003). 

3. METHOD AND PROCEDURE
Assumptions and Problem Definition 
Following the findings of a real-world case study, the following presumptions are made for the 
mathematical model of the suggested APP problem. 
 Production planning is done in a time horizon of T time periods (∀ 𝑡 = 1,2, … , 𝑇).
 There is a Batch production system capable of producing all kinds of 𝑁 types of products.
 Market demand can be fulfilled or backordered, however no backorder in the last 𝑡 is allowed.
 There are two working shifts; Regular time production and Over time production
 A warehouse is allowed for holding final products.
 In advance, the holding cost of inventories are determined and well known.
 The workforce accommodates various skill levels (𝑘 − 𝑙𝑒𝑣𝑒𝑙𝑠).
 Workers salary is independent of unit production cost.
 At each period T, Production quantity is considered more of the safety stock for finished products.
 Hiring and firing of Manpower based on product demand is eligible and there is an allowable limit.
 In each period T, the shortage of production is recovered by overtime production in each shift.
 In each period T, the nominal and actual capacity of production machines is not the same due to

unforeseen failures. So, the actual capacity of production is usually reduced by a fixed failure
percentage.

 If an unforeseen failure occurs during a shift the repair process is completed in the next. This may
stop, reduce, or decrease the production rate during maintenance actions

 The impreciseness and uncertainty of real-world problem and confliction of different objectives
are modeled using fuzzy goals.

 Linear membership functions are defined for fuzzy goals.
 FGP used to solve the problem.

3.1   Parameters, Indices, Decision Variables and Notations 
They are as stated in Tables 1 to 3 

Table 1:  Set of indices 

𝑡 Number of periods in the planning horizon;  𝑡 = 1,2, … , 𝑇 
𝑖 Number of product types; 𝑖 = 1,2, … , 𝐼 
𝑚 Raw material type; 𝑚 = 1,2, … ,𝑀 

𝑞 Types of shifts; 𝑞 ∈ 1,2 

𝑤 Types of warehouse; 𝑤 = 1,2, … ,𝑊 

𝑘 Skill levels of workers; 𝑘 = 1,2, … , 𝐾 

𝑗 Number of objective Functions;  𝑗 = 1,2,3 
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Table 2:   Notation for parameters 
Parameter  Definition 

𝑃𝑤𝑖 Fraction of the Product 𝑖 wasted during production in period 𝑡 
𝐼𝑤𝑖  Fraction of the Product 𝑖 wasting in inventory in period 𝑡 
𝐶𝑜𝑂𝑖𝑞 Cost of Overhead(fixed) Production; for product 𝑖 in shift 𝑞 

𝐷𝑜𝑃𝑖𝑡 Demand of product 𝑖 in period 𝑡 
𝐶𝑜𝐵𝑖𝑡 Cost of Backordering; for product 𝑖 in period 𝑡 
𝑆𝑅𝑒𝑖 Sales Revenue for product 𝑖 (₦/unit) 
𝐸𝑡 cumulative investment in tools and equipment in period t (currency unit) 
𝑃𝑟𝑇𝑡 Process time of product 𝑖 in period 𝑡 
𝐵𝑈𝐿𝑡 The Budget upper limit in period 𝑡 
AsP𝑖𝑡 Allowable shortage of product 𝑖 in period 𝑡 

𝐴𝑀𝑊𝑡 Available Maximum workforce in period 𝑡 

𝐴𝑀𝑊𝑡 Available Minimum workforce in period 𝑡 

𝑊𝑎𝑂 workforce that are available for overtime (in percentage) 
𝐶𝑜𝑊𝑘𝑡 Cost of workforce of level k in period 𝑡 
𝐶𝑜𝐻𝑘𝑡 Cost of Hiring workforce of level k in period 𝑡 

𝐶𝑜𝐹𝑘𝑡 Cost of firing workforce of level k in period 𝑡 

𝐶𝑜𝑀𝑚𝑡𝑤 Cost for raw material type 𝑚 in period 𝑡 in warehouse 𝑤 

𝐶𝑜𝑅𝑚𝑡𝑤 Holding cost for raw material type 𝑚 in period 𝑡 in warehouse 𝑤 
𝐶𝑜ℎ𝑃𝑖𝑡𝑤 Holding cost of unit of product 𝑖 in period 𝑡 
𝐹𝑜𝑊𝑡 fraction of the workforce variation in period 𝑡 
𝑀𝐻𝑖𝑡 Machine hours needed to produce unit of product 𝑖 in period 𝑡 
𝑀𝐶𝑖𝑡 Machine capacity that is lost due to interruption in period 𝑡 (in percentage) 
𝑀𝐶𝑟𝑡 Machine capacity that is lost due to repairs in period 𝑡 (in percentage) 
𝑀𝑚𝐶𝑞𝑡 The maximum of machine capacity that is available in shift 𝑞 in period 𝑡 

𝑀𝐶𝑜 The machine capacity that is available for overtime (in percentage) 
𝐴𝑟𝑇𝑖𝑡 Available Regular time in both shifts in period 𝑡 
𝑢𝑀𝑅𝑖𝑚 The units of type 𝑚 raw material required to produce unit of product 𝑖 
𝑆𝑆𝑃𝑖 product 𝑖 safety stock 
𝑆𝑆𝑅𝑚 Raw material type 𝑚 safety stock 

𝑀𝑆𝑊𝑚 The maximum available space of warehouse w 

𝑊ℎ𝐶𝑅𝑤𝑚𝑡 The capacity of warehouse 𝑤 for storage of raw-material type 𝑚 in period 𝑡 
𝑊ℎ𝐶𝑃𝑤𝑖𝑡 The capacity of warehouse 𝑤 for storage of finished-product 𝑖 in period 𝑡 
𝒟𝑑𝑖  The Due date of product 𝑖 
ℬ𝑖  Batch size of product 𝑖 
𝐷𝑟𝐹𝑖 Finished product 𝑖 Defect rate 
𝑃𝐶 Production Capacity 

Table 3: Decision variable Notation 

Decision variable Definition 

𝑋𝑖𝑞𝑡 Number of product i produced in shift q of period t 

𝑋𝛽
𝑖𝑞𝑡 Number batches of product i produced in shift q of period t 

𝐵𝑖𝑡 Backorder level of product i in period t 

𝑋𝑊𝑘𝑡 Number of available workers of level k in period t 

𝑋𝐻𝑘𝑡 Number of hired workers of level k in period t 

𝑋𝐹𝑘𝑡 Number of fired workers of level k in period t 

𝑋𝑅𝑚𝑡𝑤 Inventory level of raw material type m at the end of period t in warehouse w 

𝑋𝑃𝑖𝑡𝑤 Inventory level of finished-product i in period t in warehouse w 
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3.2  Model Formulation 

Total income less the cost of the materials you purchased is your throughput (TP). Equation (1) can be 
used to numerically express the throughput (TP). 

𝑇𝑃 =∑∑𝑆𝑅𝑒𝑖𝐷𝑜𝑃𝑖𝑡

𝑇

𝑡=1

𝐼 

𝑖=1

−∑∑𝑆𝑅𝑒𝑖𝐵𝑖𝑡

𝑇

𝑡=1

𝐼 

𝑖=1

− ∑ ∑∑𝐶𝑜𝑀𝑚𝑤𝑡𝑋𝑖𝑞𝑡

𝑇

𝑡=1

𝑊 

𝑤=1

𝑀

𝑚=1

 (1) 

The first two terms reflect total sales revenue based on total demands and lost sales at the conclusion 
of the planned horizon. The last term denotes the cost of materials, which includes the cost of materials 
needed for both regular and overtime production. 

The definition of inventory is "the entire money the system invests," which includes the money spent 
on all assets (such as structures, machinery, and fixtures) as well as on raw materials and parts 
(Woeppel, 2001). TOC inventory differs from traditional inventory in that it encompasses all assets in 
addition to raw materials, work-in-progress, and finished goods. 

𝐼𝑁 =
1

𝑇
[∑ ∑∑𝐶𝑜𝑅𝑚𝑤𝑡𝑋𝑅𝑚𝑤𝑡

𝑇

𝑡=1

𝑊 

𝑤=1

𝑀

𝑚=1

+∑𝐸𝑡

𝑇

𝑡=1

] (2) 

The APP can take assets like small machines, material handling equipment and other instruments into 
account. Strategic or long-range planning takes into account structures and huge machineries. 
The capacity of a machine or system can be increased and a bottleneck reduced by investing in tools 
and equipment. Equation (2) represents the typical inventory investment (IN) in terms of TOC. 
Whereas the second term indicates the investment in tools and equipment, the first term represents 
the investment in raw materials. 

OE =∑∑𝐶𝑜𝑊𝑘𝑡𝑋𝑊𝑘𝑡

𝑇

𝑡=1

𝐾 

𝑘=1

+∑∑𝐶𝑜𝐻𝑘𝑡𝑋𝐻𝑘𝑡

𝑇

𝑡=1

𝐾 

𝑘=1

+∑∑𝐶𝑜𝐹𝑘𝑡𝑋𝐹𝑘𝑡

𝑇

𝑡=1

𝐾 

𝑘=1

+∑∑∑𝐶𝑜ℎ𝑃𝑖𝑤𝑡𝑋𝑃𝑖𝑤𝑡

𝑇

𝑡=1

𝑊 

𝑤=1

𝐼

𝑖=1

+∑ ∑∑𝐶𝑜𝑅𝑚𝑤𝑡𝑋𝑅𝑚𝑤𝑡

𝑇

𝑡=1

𝑊 

𝑤=1

𝑀

𝑚=1

+∑∑𝐶𝑜𝐵𝑖𝑡𝐵𝑙𝑡

𝑇

𝑡=1

𝐼 

𝑖=1

+∑ ∑ ∑𝐶𝑜𝑂𝑖𝑞𝑋𝑖𝑞𝑡

𝑇

𝑡=1𝑞∈{1,2}

𝐼

𝑖=1

(𝟑) 

The entire amount of money needed to convert inventory into throughput is referred to as operating 
expenses. All direct and indirect payroll expenses, purchases, overhead and time related expenses are 
involved. Equation (3) represents operating expense (OE). It covers all labour, overtime, holding 
expenses for inventory, backordering and fixed overhead costs. 

3.3  Aggregate Production Planning Considering Throughput Accounting 
Often, the objective function of APP problems is chosen to be the revenue, cost, or profit function. The 
profit function is the most desirable of these objective functions (Phruksaphanrat et al., 2006). Thus, 
the objective function of the suggested APP model is the Net Profit (NP). Throughput (TP) minus 
Operational expenses(OE) equals Net Profit (NP). The profit function includes two TOC metrics. 

Inventory is the final factor, which should also be taken into account. According to TOC, inventory 
refers to all financial investments made by the system, including those made in tools and equipment. 
It is incorporated into the model as constraints. 
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Maximize Net Profit (NP) 

𝑍 =∑∑𝑆𝑅𝑒𝑖𝐷𝑜𝑃𝑖𝑡

𝑇

𝑡=1

𝐼 

𝑖=1

−∑∑𝑆𝑅𝑒𝑖𝐵𝑖𝑡

𝑇

𝑡=1

𝐼 

𝑖=1

− ∑ ∑∑𝐶𝑜𝑀𝑚𝑤𝑡𝑋𝑖𝑞𝑡

𝑇

𝑡=1

𝑊 

𝑤=1

𝑀

𝑚=1

− [∑∑𝐶𝑜𝑊𝑘𝑡𝑋𝑊𝑘𝑡

𝑇

𝑡=1

𝐾 

𝑘=1

+∑∑𝐶𝑜𝐻𝑘𝑡𝑋𝐻𝑘𝑡

𝑇

𝑡=1

𝐾 

𝑘=1

+∑∑𝐶𝑜𝐹𝑘𝑡𝑋𝐹𝑘𝑡

𝑇

𝑡=1

𝐾 

𝑘=1

+∑∑∑𝐶𝑜ℎ𝑃𝑖𝑤𝑡𝑋𝑃𝑖𝑤𝑡

𝑇

𝑡=1

𝑊 

𝑤=1

𝐼

𝑖=1

+

∑ ∑∑𝐶𝑜𝑅𝑚𝑤𝑡𝑋𝑅𝑚𝑤𝑡

𝑇

𝑡=1

𝑊 

𝑤=1

𝑀

𝑚=1

+∑∑𝐶𝑜𝐵𝑖𝑡𝐵𝑙𝑡

𝑇

𝑡=1

𝐼 

𝑖=1

+∑ ∑ ∑𝐶𝑜𝑂𝑖𝑞𝑋𝑖𝑞𝑡

𝑇

𝑡=1𝑞∈{1,2}

𝐼

𝑖=1

]

 (4) 

Constraints 
The Labor-force Constraints are considered as follows: 

 ∑𝑋𝑊𝑘𝑡

𝐾

𝑘=1

≤ 𝐴𝑀𝑊𝑡 ,  ∀𝑡  (5) 

 ∑𝑋𝑊𝑘𝑡

𝐾

𝑘=1

≥ 𝐴𝑀𝑊𝑡 ,  ∀𝑡  (6) 

𝑋𝑊𝑘𝑡 = 𝑋𝑊𝑘(𝑡−1) + 𝑋𝐻𝑘𝑡 − 𝑋𝐹𝑘𝑡 ,      ∀𝑘, ∀𝑡, 𝑡 > 1  (7) 

𝑋𝑊𝑘𝑡 − 𝑋𝑊𝑘(𝑡−1) ≤ 𝐹𝑜𝑊𝑡 ∗ 𝑋𝑊𝑘𝑡 ,      ∀𝑘, ∀𝑡, 𝑡 > 1  (8) 

Constraints (5) attests that the total labor utilized during period t does not exceed the total workforce 

that is available. In a similar vein, (6) guarantees that in period t, the employed workforce exceeds the 

available minimum workforce. Set of Constraints (7) is a workforce level balance equation that assures 
that the workforce with skill level k available during a given period is equal to the workforce with the 
same skill level k during the previous period plus the change in workforce level during the current 
period. The change in workforce level in each planning period cannot be greater than a benchmark 
number of workers in the present period, according to constraint number seven. 

Time Constraints 

 ∑𝑃𝑟𝑇𝑖𝑡 ∗  𝑋𝑖𝑞𝑡

𝐼

𝑖=1

≤∑𝐴𝑟𝑇𝑞𝑡 ∗  𝑋𝑊𝐾𝑡

𝐾

𝑘=1

 ,  ∀𝑡,   𝑞 = 1  (9) 

 ∑𝑃𝑟𝑇𝑖𝑡 ∗  𝑋𝑖𝑞𝑡

𝐼

𝑖=1

≤∑𝐴𝑟𝑇𝑞𝑡 ∗ 𝑊𝑎𝑂 ∗ 𝑋𝑊𝐾𝑡

𝐾

𝑘=1

 ,  ∀𝑡,   𝑞 = 2  (10) 

The relationships mentioned above make sure that each working shift's necessary production time is 
less than or equal to the available regular production time and overtime. 

Inventory Constraints 

𝑋𝑃𝑖𝑤𝑡 = 𝑋𝑃𝑖𝑤(𝑡−1) + ∑ 𝑋𝑖𝑞𝑡
𝑞∈{1,2}

− 𝐵𝑖𝑡 − 𝐷𝑜𝑃𝑖𝑡  ,      ∀𝑖, ∀𝑤,    𝑡 > 1 (11)
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𝑋𝑅𝑚𝑤𝑡 = 𝑋𝑅𝑚𝑤(𝑡−1) + ∑ 𝑋𝑖𝑞(𝑡−1)
𝑞∈{1,2}

− 𝑢𝑅𝑀𝑖𝑚,      ∀𝑖, ∀𝑤,    𝑡 > 1  (12) 

𝑆𝑆𝑅𝑚 ≤ ∑ 𝑋𝑅𝑚𝑤𝑡
𝑤∈𝑊

,  ∀𝑚, ∀𝑡,  (13) 

Constraints (11) ensures that the amount of finished product type 𝐼 in period 𝑡 in warehouse 𝑤 is equal 
to the amount of finished product type 𝐼 in period 𝑡 − 1 in warehouse w plus the quantity of produced 
finished goods type I in period t in both working shifts, less the amount of product type 𝐼 in period 𝑡 
that is on backorder and the quantity of produced finished goods type I in period t in both working 
shifts. A set of limitations (12) assures that there is a balance between raw materials, and (13) 
guarantees that the safety stock of raw materials in warehouses is satisfied. 

Production Constraint 

𝑆𝑆𝑃𝑖 ≤ ∑ 𝑋𝑖𝑞𝑡
𝑞∈{1,2}

,  ∀𝑖, ∀𝑡,  (14) 

𝐷𝑜𝑃𝑖𝑡 ≤ (1 −
𝐷𝑟𝐹𝑖
𝛽𝑖

) ∗ ∑ 𝑋𝑖𝑞𝑡
𝑞∈{1,2}

+ 𝑋𝑃𝑖(𝑡−1),      ∀𝑖, ∀𝑡,    𝑡 > 1  (15) 

Set of constraints (14), which is written for all product types and all periods of planning, guarantee the 
satisfaction of safety stock of finished-products in working shifts. Set of constraints (15) represents 
the total production of non-defected final products plus the inventory of finished-product in previous 
period should be greater than or equal to demand of the finished-product in current period.  

Machine capacity Constraints 

 ∑𝑀𝐻𝑖𝑡 ∗  𝑋𝑖𝑞𝑡

𝐼

𝑖=1

≤ 𝑀𝑚𝐶𝑞𝑡 −𝑀𝐶𝑖𝑡 ∗ 𝑀𝑚𝐶𝑞𝑡,  ∀𝑡,   𝑞 = 1  (16) 

 ∑𝑀𝐻𝑖𝑡 ∗  𝑋𝑖𝑞𝑡

𝐼

𝑖=1

≤ 𝑀𝐶𝑜 ∗ 𝑀𝑚𝐶𝑞𝑡 −𝑀𝐶𝑟𝑡 ∗ 𝑀𝐶𝑜 ∗ 𝑀𝑚𝐶𝑞𝑡,  ∀𝑡,   𝑞 = 2  (17) 

Constraints (16) and (17) pledge that in regular time and overtime, the machine capacity is assured. 

Warehouse Capacity Constraint 

∑𝑋𝑃𝑖𝑤𝑡

𝑊

𝑤=1

≤ ∑𝑊ℎ𝑐𝑃𝑤𝑖𝑡

𝑊

𝑤=1

,   ∀𝑖, ∀𝑡,  (18) 

∑ ∑𝑋𝑅𝑚𝑤𝑡

𝑊

𝑤=1

𝑀

𝑚=1.

≤ ∑ ∑𝑊ℎ𝑐𝑅𝑚𝑤𝑡

𝑀

𝑚=1

𝑊

𝑤=1

,    ∀𝑡,  (19) 

∑𝑊ℎ𝑐𝑃𝑤𝑖𝑡

𝑊

𝑤=1

+ ∑𝑊ℎ𝑐𝑅𝑚𝑤𝑡

𝑊

𝑤=1

≤ 𝑀𝑆𝑊ℎ𝑚,   ∀𝑖, ∀𝑡, (20)
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The first two constraints (18) and (19) gives the restrictions of actual inventories of finished products 
and raw materials. While (20) guarantees that each warehouse at each period will not be able to allow 
storage capacity of products an raw materials beyond its maximum warehouse available space.  

Backorder, Budget limit and Non-negativity Constraints 
 There is backorder obeying the following; 

∑𝐵𝑖𝑡

𝑊

𝑤=1

≤ ∑ 𝐴𝑠𝑃𝑖𝑡

𝑊

𝑤=1

∗ 𝐷𝑜𝑃𝑖𝑡    ∀𝑖,    𝑡 ≠ 𝑇  (21) 

𝐵𝑖𝑇 = 0,  ∀𝑖  (22) 

 𝑂𝐸 ≤∑𝐵𝑈𝐿𝑡

𝑇

𝑡=1

  (23) 

 𝑋𝑖𝑞𝑡, 𝑋𝛽𝑖𝑞𝑡, 𝐵𝑖𝑡, 𝑋𝑅𝑚𝑡𝑤, 𝑋𝑃𝑖𝑤𝑡 ≥ 0,  ∀𝑖, ∀𝑞, ∀𝑡, ∀𝑚, ∀𝑤  (24) 

 𝑋𝐿𝑘𝑡, 𝑋𝐻𝑘𝑡, 𝑋𝐹𝑘𝑡    ≥ 0,  ∀𝑡, ∀𝑘, ∀𝑙  (25) 

Constraints (21) represent the backorder level at the end of period t cannot exceed the certain percent-
age of the demand which determines the upper limit of shortage. While (22) assure that there is no 
possibility for backordering at the end of time horizon or last period. A restriction on the available 
budget for each planning period is shown using (23), which ensures that the operating Cost (i.e., Eq. 
(3)) cannot go beyond the predetermined budget for the time horizon. (24) and (25) both present non-
negativity requirements on decision variables. 

3.4  Possibilistic Programming on APP Problem with Imprecise Costs 
The Net-Profit APP decision problem that has already been looked at may be summarized as follows. 
Suppose that over a planning horizon of T, a corporation produces N various products to satisfy 
market demand. On a medium time horizon, the environmental coefficients and associated 
parameters are often uncertain. As a result, across the planning horizon, related operational 
expenses and labor are imprecise. When dealing with such ambiguous APP decision problems, 
assigning a set of precise values for the environmental coefficients and associated parameters is 
problematic. The Net Profit APP objective function (4) can be restated as:  

𝑍 =∑∑𝑆𝑅𝑒𝑖𝐷𝑜𝑃𝑖𝑡

𝑇

𝑡=1

𝐼 

𝑖=1

−∑∑𝑆𝑅𝑒𝑖𝐵𝑖𝑡

𝑇

𝑡=1

𝐼 

𝑖=1

− ∑ ∑∑𝐶𝑜�̃�𝑚𝑤𝑡𝑋𝑖𝑞𝑡

𝑇

𝑡=1

𝑊 

𝑤=1

𝑀

𝑚=1

− [ ∑∑𝐶𝑜�̃�𝑘𝑡𝑋𝑊𝑘𝑡

𝑇

𝑡=1

𝐾 

𝑘=1

+∑∑𝐶𝑜�̃�𝑘𝑡𝑋𝐻𝑘𝑡

𝑇

𝑡=1

𝐾 

𝑘=1

+∑∑𝐶𝑜�̃�𝑘𝑡𝑋𝐹𝑘𝑡

𝑇

𝑡=1

𝐾 

𝑘=1

+∑∑∑𝐶𝑜ℎ�̃�𝑖𝑤𝑡𝑋𝑃𝑖𝑤𝑡

𝑇

𝑡=1

𝑊 

𝑤=1

𝐼

𝑖=1

+

∑ ∑∑𝐶𝑜�̃�𝑚𝑤𝑡𝑋𝑅𝑚𝑤𝑡

𝑇

𝑡=1

𝑊 

𝑤=1

𝑀

𝑚=1

+∑∑𝐶𝑜�̃�𝑖𝑡𝐵𝑙𝑡

𝑇

𝑡=1

𝐼 

𝑖=1

+∑ ∑ ∑𝐶𝑜�̃�𝑖𝑞𝑋𝑖𝑞𝑡

𝑇

𝑡=1𝑞∈{1,2}

𝐼

𝑖=1

]

 (26) 

This work uses Wang and Liang's (2005) Possibility Linear Programing (PLP) technique to solve the 
APP problem with uncertainty. Fortunately, possibility distribution offers a useful substitute for 
dealing with underlying confusing phenomena when assessing environmental coefficients and 
associated factors (Zadeh, 1978; Inuiguchi and Sakawa, 1996; Hsu and Wang, 2001). This is by 
adopting the triangular Fuzzy number (TFN) to the APP problem under Fuzzy operational expenses. 
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TFNs are used in this study to represent cost-related fuzzy data. Assuming the TFN of cost is 𝐶𝑜�̃� =
(𝐶𝑜𝑖

𝑝, 𝐶𝑜𝑖
𝑚, 𝐶𝑜𝑖

𝑜), in which 𝐶𝑜𝑖
𝑚 is the most possible value that certainly belongs to the set of available

data (with a membership value of 1 after it is normalized). The lower bound value 𝐶𝑜𝑖
𝑝 is the most

pessimistic value that has a small likelihood to belong to the set of available data (with a membership 
value of zero if normalized) and the upper bound value 𝐶𝑜𝑖

𝑜 is the most optimistic value with a small
likelihood to belong to the set of available values (with a membership value of zero if normalized). Let 
𝜇(𝐶𝑜�̃�) represent the arbitrary measurement of fuzzy cost in view of the Decision-maker, i.e.

membership function, that defines the degree of 𝑥 in the fuzzy space 𝐶𝑜�̃� and figure 1 depicts the
relationships of this function.  

Triangular possibility distributions may thus be used to model the imprecise data for the prior APP 
model, as seen below: 

𝐶𝑜�̃�𝑚𝑤𝑡 = (𝐶𝑜𝑀𝑚𝑤𝑡
𝑝

, 𝐶𝑜𝑀𝑚𝑤𝑡
𝑚 , 𝐶𝑜𝑀𝑚𝑤𝑡

𝑜  )    ∀𝑚, ∀𝑤, ∀𝑡

𝐶𝑜�̃�𝑘𝑡 = (𝐶𝑜𝑊𝑘𝑡
𝑝 , 𝐶𝑜𝑊𝑘𝑡

𝑚, 𝐶𝑜𝑊𝑘𝑡
𝑜  )    ∀𝑘, ∀𝑡

𝐶𝑜�̃�𝑘𝑡 = (𝐶𝑜𝐻𝑘𝑡
𝑝 , 𝐶𝑜𝐻𝑘𝑡

𝑚, 𝐶𝑜𝐻𝑘𝑡
𝑜  )    ∀𝑘, ∀𝑡

𝐶𝑜�̃�𝑘𝑡 = (𝐶𝑜𝐹𝑘𝑡
𝑝 , 𝐶𝑜𝐹𝑘𝑡

𝑚, 𝐶𝑜𝐹𝑘𝑡
𝑜  )    ∀𝑘, ∀𝑡

𝐶𝑜ℎ�̃�𝑖𝑤𝑡 = (𝐶𝑜ℎ𝑃𝑖𝑤𝑡
𝑝 , 𝐶𝑜ℎ𝑃𝑖𝑤𝑡

𝑚 , 𝐶𝑜ℎ𝑃𝑖𝑤𝑡
𝑜  )    ∀𝑖, ∀𝑤, ∀𝑡

𝐶𝑜�̃�𝑖𝑡 = (𝐶𝑜𝐵𝑖𝑡
𝑝, 𝐶𝑜𝐵𝑖𝑡

𝑚, 𝐶𝑜𝐵𝑖𝑡
𝑜  )    ∀𝑖, ∀𝑡

𝐶𝑜�̃�𝑖𝑞 = (𝐶𝑜𝑃𝑖𝑞
𝑝 , 𝐶𝑜𝑃𝑖𝑞

𝑚, 𝐶𝑜𝑃𝑖𝑞
𝑜  )    ∀𝑖, ∀𝑞

𝐶𝑜ℎ�̃�𝑖𝑤𝑡 = (𝐶𝑜ℎ𝑅𝑖𝑤𝑡
𝑝
, 𝐶𝑜ℎ𝑅𝑖𝑤𝑡

𝑚 , 𝐶𝑜ℎ𝑅𝑖𝑤𝑡
𝑜  )    ∀𝑖, ∀𝑤, ∀𝑡

3.4 Approach to Resolving the Imprecise Objective Function 

The imprecise objective function of the Net-Profit Possibility APP programing model in the preceding 
section has a triangular possibility distribution. Geometrically, this imprecise objective is fully defined 
by three corner points: (𝑍𝑝, 0), (𝑍𝑚, 1) and (𝑍𝑜 , 0). The imprecise objective can be maximized by 
pushing the three corner points towards the right. Because of the vertical coordinates of the critical 
points being fixed at either 1 or 0, the three horizontal coordinates are the only considerations. The 
new problem will be to solve; 

Maximize (𝑍𝑝, 𝑍𝑚, 𝑍𝑜)  (27), 

𝜇(𝐶𝑜�̃�)

𝐶𝑜𝑖 𝐶𝑜𝑖
𝑚

1 

𝐶𝑜𝑖
𝑝0 𝐶𝑜𝑖

𝑜

Fig. 1. A Triangular distribution of the fuzzy Cost. 
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where (𝑍𝑝, 𝑍𝑚, 𝑍𝑜)  is the vector of the objective functions 𝑍𝑝, 𝑍𝑚 and  𝑍𝑜 . It is important to make a 
minor change in order to maintain the possibility distribution's triangular shape (normal and convex). 
Instead of concurrently maximizing these three objectives, the new approach will maximize 𝑍𝑚, 
minimize (𝑍𝑚 − 𝑍𝑝) and maximize (𝑍𝑜 − 𝑍𝑚), where the first objective function 𝑍𝑚, is the basis of the 
last two objective functions, which are actually relative measures from it (see Figure 2). The three new 
objectives also support the earlier claim that doing so would shift the triangular possibility 
distribution towards the right.  

This suggested approach equates to maximizing the most possible value of the imprecise profit (at the 
point of possibility degree = 1). At the same time, it has minimized the inferior side of the possibility 
distribution. This means minimizing the region (I), which in the perspective is similar to "the danger 
of receiving reduced profit." Also, this has increased "the chance of generating larger profit," which is 
similar to area (II) of the probability distribution. Similar to Figure 2, it would be preferred to have the 
possibility distribution of B against that of A. thus the auxiliary problem of equation (27) then result 
to three brand-new, precise objective functions as shown below; 

𝑀𝑎𝑥 𝑍1 = 𝑍
𝑚

=∑∑𝑆𝑅𝑒𝑖𝐷𝑜𝑃𝑖𝑡

𝑇

𝑡=1

𝐼 

𝑖=1

−∑∑𝑆𝑅𝑒𝑖𝐵𝑖𝑡

𝑇

𝑡=1

𝐼 

𝑖=1

− ∑ ∑∑𝐶𝑜𝑀𝑚𝑤𝑡
𝑚 𝑋𝑖𝑞𝑡

𝑇

𝑡=1

𝑊 

𝑤=1

𝑀

𝑚=1

− [ ∑∑𝐶𝑜𝑊𝑘𝑡
𝑚𝑋𝑊𝑘𝑡

𝑇

𝑡=1

𝐾 

𝑘=1

+∑∑𝐶𝑜𝐻𝑘𝑡
𝑚𝑋𝐻𝑘𝑡

𝑇

𝑡=1

𝐾 

𝑘=1

+∑∑𝐶𝑜𝐹𝑘𝑡
𝑚𝑋𝐹𝑘𝑡

𝑇

𝑡=1

𝐾 

𝑘=1

+∑∑∑𝐶𝑜ℎ𝑃𝑖𝑤𝑡
𝑚 𝑋𝑃𝑖𝑤𝑡

𝑇

𝑡=1

𝑊 

𝑤=1

𝐼

𝑖=1

+

∑ ∑∑𝐶𝑜ℎ𝑅𝑖𝑤𝑡
𝑚 𝑋𝑅𝑚𝑤𝑡

𝑇

𝑡=1

𝑊 

𝑤=1

𝑀

𝑚=1

+∑∑𝐶𝑜𝐵𝑖𝑡
𝑚𝐵𝑙𝑡

𝑇

𝑡=1

𝐼 

𝑖=1

+∑ ∑ ∑𝐶𝑜𝑂𝑖𝑞
𝑚𝑋𝑖𝑞𝑡

𝑇

𝑡=1𝑞∈{1,2}

𝐼

𝑖=1

]

(28) 

0 
𝐶𝑜𝑖

𝑝 𝐶𝑜𝑖
𝑚 𝐶𝑜𝑖

𝑜 𝐶𝑜𝑖 

𝐵 𝐴 

1 

𝜇(𝐶𝑜�̃�)

Fig. 2: The Approach to Maximize the Net Profit 

𝐼𝐼 𝐼 
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𝑀𝑖𝑛 𝑍2 = (𝑍
𝑚 − 𝑍𝑝)

= ∑∑𝑆𝑅𝑒𝑖𝐷𝑜𝑃𝑖𝑡

𝑇

𝑡=1

𝐼 

𝑖=1

−∑∑𝑆𝑅𝑒𝑖𝐵𝑖𝑡

𝑇

𝑡=1

𝐼 

𝑖=1

− ∑ ∑∑(𝐶𝑜𝑀𝑚𝑤𝑡
𝑚 − 𝐶𝑜𝑀𝑚𝑤𝑡

𝑝
)𝑋𝑖𝑞𝑡

𝑇

𝑡=1

𝑊 

𝑤=1

𝑀

𝑚=1

− [ ∑∑(𝐶𝑜𝑊𝑘𝑡
𝑚 − 𝐶𝑜𝑊𝑘𝑡

𝑝
)𝑋𝑊𝑘𝑡

𝑇

𝑡=1

𝐾 

𝑘=1

+∑∑(𝐶𝑜𝐻𝑘𝑡
𝑚 − 𝐶𝑜𝐻𝑘𝑡

𝑝
)𝑋𝐻𝑘𝑡

𝑇

𝑡=1

𝐾 

𝑘=1

+∑∑(𝐶𝑜𝐹𝑘𝑡
𝑚 − 𝐶𝑜𝐹𝑘𝑡

𝑝
)𝑋𝐹𝑘𝑡

𝑇

𝑡=1

𝐾 

𝑘=1

+∑∑∑(𝐶𝑜ℎ𝑃𝑖𝑤𝑡
𝑚 − 𝐶𝑜ℎ𝑃𝑖𝑤𝑡

𝑝
)𝑋𝑃𝑖𝑤𝑡

𝑇

𝑡=1

𝑊 

𝑤=1

𝐼

𝑖=1

+

∑ ∑∑(𝐶𝑜ℎ𝑅𝑖𝑤𝑡
𝑚 − 𝐶𝑜ℎ𝑅𝑖𝑤𝑡

𝑝
)𝑋𝑅𝑚𝑤𝑡

𝑇

𝑡=1

𝑊 

𝑤=1

𝑀

𝑚=1

+∑∑(𝐶𝑜𝐵𝑖𝑡
𝑚 − 𝐶𝑜ℎ𝑅𝑖𝑤𝑡

𝑝
)𝐵𝑙𝑡

𝑇

𝑡=1

𝐼 

𝑖=1

+∑ ∑ ∑(𝐶𝑜𝑃𝑖𝑞
𝑚 − 𝐶𝑜𝑂𝑖𝑞

𝑝
)𝑋𝑖𝑞𝑡

𝑇

𝑡=1𝑞∈{1,2}

𝐼

𝑖=1

]

(29) 

𝑀𝑎𝑥 𝑍3 = (𝑍
𝑜−𝑍𝑚)

= ∑∑𝑆𝑅𝑒𝑖𝐷𝑜𝑃𝑖𝑡

𝑇

𝑡=1

𝐼 

𝑖=1

−∑∑𝑆𝑅𝑒𝑖𝐵𝑖𝑡

𝑇

𝑡=1

𝐼 

𝑖=1

− ∑ ∑∑(𝐶𝑜𝑀𝑚𝑤𝑡
𝑜 −𝐶𝑜𝑀𝑚𝑤𝑡

𝑚 )𝑋𝑖𝑞𝑡

𝑇

𝑡=1

𝑊 

𝑤=1

𝑀

𝑚=1

− [ ∑∑(𝐶𝑜𝑊𝑘𝑡
𝑜 − 𝐶𝑜𝑊𝑘𝑡

𝑚)𝑋𝑊𝑘𝑡

𝑇

𝑡=1

𝐾 

𝑘=1

+∑∑(𝐶𝑜𝐻𝑘𝑡
𝑜 − 𝐶𝑜𝐻𝑘𝑡

𝑚)𝑋𝐻𝑘𝑡

𝑇

𝑡=1

𝐾 

𝑘=1

+∑∑(𝐶𝑜𝐹𝑘𝑡
𝑜 − 𝐶𝑜𝐹𝑘𝑡

𝑚)𝑋𝐹𝑘𝑡

𝑇

𝑡=1

𝐾 

𝑘=1

+∑∑∑(𝐶𝑜ℎ𝑃𝑖𝑤𝑡
𝑜 −𝐶𝑜ℎ𝑃𝑖𝑤𝑡

𝑚 )𝑋𝑃𝑖𝑤𝑡

𝑇

𝑡=1

𝑊 

𝑤=1

𝐼

𝑖=1

+

∑ ∑∑(𝐶𝑜ℎ𝑅𝑖𝑤𝑡
𝑜 − 𝐶𝑜ℎ𝑅𝑖𝑤𝑡

𝑚 )𝑋𝑅𝑚𝑤𝑡

𝑇

𝑡=1

𝑊 

𝑤=1

𝑀

𝑚=1

+∑∑(𝐶𝑜ℎ𝑅𝑖𝑤𝑡
𝑜 −𝐶𝑜𝐵𝑖𝑡

𝑚)𝐵𝑙𝑡

𝑇

𝑡=1

𝐼 

𝑖=1

+∑ ∑ ∑(𝐶𝑜𝑃𝑖𝑞
𝑜−𝐶𝑜𝑂𝑖𝑞

𝑚)𝑋𝑖𝑞𝑡

𝑇

𝑡=1𝑞∈{1,2}

𝐼

𝑖=1

]

(30) 

Also, the fuzzy decision-making of Bellman and Zadeh (1970) and Zimmermann's fuzzy programming 
(1978) approach may be used to transform the auxiliary MOLP issue into an analogous single-goal LP 
problem. The three objective functions' Positive Ideal Solutions (PIS) and Negative Ideal Solutions 
(NIS) can be correspondingly described as follows. 

𝑍1
𝑃𝐼𝑆 = 𝑀𝑎𝑥𝑍𝑚;  𝑍1

𝑁𝐼𝑆 = 𝑀𝑖𝑛𝑍𝑚

𝑍2
𝑃𝐼𝑆 = 𝑀𝑖𝑛(𝑍𝑚 − 𝑍𝑝); 𝑍2

𝑁𝐼𝑆 = 𝑀𝑎𝑥(𝑍𝑚 − 𝑍𝑝)(𝑣𝑗
∗)

𝑍3
𝑃𝐼𝑆 = 𝑀𝑎𝑥(𝑍𝑜 − 𝑍𝑚); 𝑍3

𝑁𝐼𝑆 = 𝑀𝑖𝑛(𝑍𝑜 − 𝑍𝑚)

The corresponding linear membership function for each objective function is defined (see figure 3) by; 

𝜇(𝑍1(𝑥)) =

{

1  𝑍1(𝑥) ≤ 𝑍1
𝑃𝐼𝑆
 , 

𝑍1 − 𝑍1
𝑁𝐼𝑆

𝑍1
𝑃𝐼𝑆 − 𝑍1

𝑁𝐼𝑆
 𝑍1
𝑁𝐼𝑆 ≤ 𝑍1(𝑥) ≤ 𝑍1

𝑁𝐼𝑆 ,  (31) 

 0  𝑍1(𝑥) ≥ 𝑍1
𝑁𝐼𝑆 , 

𝜇(𝑍2(𝑥)) =

{

1  𝑍2(𝑥) ≤ 𝑍2
𝑃𝐼𝑆 , 

𝑍2
𝑁𝐼𝑆 − 𝑍2

𝑍2
𝑁𝐼𝑆 − 𝑍2

𝑃𝐼𝑆
 𝑍2
𝑃𝐼𝑆 ≤ 𝑍2(𝑥) ≤ 𝑍2

𝑁𝐼𝑆 ,  (32) 

 0  𝑍2(𝑥) ≥ 𝑍2
𝑁𝐼𝑆 , 

 and 𝜇(𝑍1(𝑥)) and 𝜇(𝑍3(𝑥)) are similar. 
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Lastly, the APP is solved following equivalent single-objective linear programming model. Hence, the 
associated FGP model with fuzzy cost for the Net-Profit APP problem (1)-(25) is formulate as follows: 

find      𝑥
𝑀𝑎𝑥𝑖𝑚𝑖𝑧𝑒   𝜇(𝑍𝑘(𝑥))

to satisfy;

𝜇(𝑍1(𝑥)) =
𝑍1 − 𝑍1

𝑁𝐼𝑆

𝑍1
𝑃𝐼𝑆 − 𝑍1

𝑁𝐼𝑆

𝜇(𝑍2(𝑥)) =
𝑍2
𝑁𝐼𝑆 − 𝑍2

𝑍2
𝑁𝐼𝑆 − 𝑍2

𝑃𝐼𝑆

𝜇(𝑍3(𝑥)) =
𝑍3 − 𝑍3

𝑁𝐼𝑆

𝑍3
𝑃𝐼𝑆 − 𝑍3

𝑁𝐼𝑆

𝜇 (𝑍𝑗(𝑥)) ∈ [0,1],   𝑗 = 1,2,3

𝐶𝑜𝑛𝑠𝑡𝑟𝑎𝑖𝑛𝑡𝑠 (5 to 25) 
𝑥𝑖 ≥ 0, 𝑖 = 1… . . 𝑛; 𝑗 = 1,2,3

 (33) 

4. Model implementation
Case description 
The case study of Rich Pharmaceuticals Limited(RPL) was utilized to show how useful the suggested 
methodology is. RPL is one of the leading producers of pharmaceuticals in Nigeria. RPL's goods are 
mostly sold in Southern and Middle belt of Nigeria, some parts of West and East Africa, they have 

recently experienced strong demand. RPL must monitor financial data and assess performance if it is 
to expand its company. The company's net profit margin is one statistic they have to pay attention to. 
RPL's business APP approach is to keep a stable labor force level over the planning horizon, allowing 
for the flexible meeting of demand through the use of inventories, overtime, and backorders. Due to 
the shortcomings of the graphical method, in which evaluation comparisons are only available for 
specific plans under specified conditions and indication for the optimal plan is ambiguous, RPL has 
been unable to reach the performance initially predicted. 

1 

𝜇(𝑍2(𝑥)) 𝑍2(𝑥) 

0 𝑍2
𝑃𝐼𝑆 𝑍2

𝑁𝐼𝑆

Figure 3: Linear Membership form 

𝜇(𝑍1(𝑥)) 

1 

0 𝑍1
𝑁𝐼𝑆 𝑍1

𝑃𝐼𝑆

𝑍1(𝑥) 
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Alternately, the DM can use a mathematical programming technique to create an aggregate production 
schedule for RPL factory. Based on company reports, the planning horizon spans for six months, May 
to October. The model includes two types of standard products. Production expenses for overtime are 
capped at 30% of production expenses for regular hours. Additionally, it is assumed that each product 
has no beginning inventory and no backorders at the last period. The inventory's maximum allowed 
storage area is 3000𝑚3. In a day, there are two working shifts. 8 hours are allotted for regular 
production per shift, while 3 hours allotted for overtime production. To produce these products, 10 
types of raw materials are required. Repairs are done just in shift 2 (i.e., overtime) and the overall 
operating cost is as stated on Table 4 below. When demand for a certain period exceeds production 
capacity during regular hours and inventory levels are likewise insufficient to meet this demand, 
production is continued during overtime. 

The purpose of the APP decision issue for the industrial instance that is addressed here is to develop 
a multiple fuzzy goals programming model for determining the optimal approach to adjust output 
rates, hiring and firing, inventory levels, overtime, and backorders in order to meet the targeted 
maximum profit using the Throughput accounting process. This APP choice is expected to reduce 
overall manufacturing costs, shorten the process, and increase sales and profit. 

Table 4:  Related operating cost data 
Period 𝐶𝑜�̃�(₦

/unit) 
𝐶𝑜�̃�(₦
/unit) 

𝐶𝑜�̃�(₦
/unit) 

𝐶𝑜�̃�(₦
/unit) 

𝐶𝑜ℎ�̃�(₦
/unit) 

𝐶𝑜ℎ�̃�(₦/unit) 𝐶𝑜�̃�(₦
/unit) 

𝐶𝑜�̃�(₦
/unit) 

1 45, 80, 140 35, 64, 100 10, 30, 55 15, 40, 60 0.5, 2, 4 800, 1400, 1600 1.5, 2, 4.5 5, 7, 11 

2 45, 80, 135 35, 64, 100 10, 30, 55 15, 40, 60 0.5, 2, 4 850, 1400, 1600 1.5, 2, 4.5 5, 7, 10 

3 48, 80, 140 35, 64, 100 10, 30, 55 15, 40, 60 0.5, 2, 4 800, 1400, 1500 1, 2, 4.5 5.5, 7, 10 

4 47, 80, 140 35, 64, 100 10, 30, 55 15, 40, 60 0.5, 2, 4 850, 1400, 1500 1, 2, 4.5 5.5, 7, 11 

5 47, 80, 145 35, 64, 100 10, 30, 55 15, 40, 60 0.5, 2, 4 850, 1400, 1500 1.5, 2, 4.5 5, 7, 11 

6 47, 80, 140 35, 64, 100 10, 30, 55 15, 40, 60 0.5, 2, 4 800, 1400, 1600 1.5, 2, 4.5 5, 7, 10 

4.1  Results of the Study 
The following is a description of the RPL case's solution process using the suggested APP-PP technique: 
First Stage: Create the PP model for the APP choice issue in accordance with Equations (4) to (25). 
Second Stage: Triangular possibility distributions are used to model the imprecise data as shown in 
Tables 4. 
Third Stage: According to Equations (28) to (30) of the supplementary MOLP problem, create three 
new precise objective functions. In order to get the initial solutions for each of the objective functions, 
the original issue is solved using the standard single-objective LP method under the presumption that 
the DM provided the most likely value of the triangular distribution of each Fuzzy number as the 
precise value. LINGO 18.0 solver is used to solve the model. The objective values of the initial solutions 
using the model are 𝑀𝑎𝑥 𝑍1 = 2403267, 𝑀𝑖𝑛 𝑍2 = 1291303 and  𝑀𝑎𝑥 𝑍2 = 2773881 

Fourth Stage: The PIS and NIS of the three new objective functions (𝑍1
𝑃𝐼𝑆, 𝑍1

𝑁𝐼𝑆) = (2403267, 898202)
(𝑍2

𝑃𝐼𝑆, 𝑍2
𝑁𝐼𝑆) = (1291303 , 1977990) and (𝑍3

𝑃𝐼𝑆, 𝑍3
𝑁𝐼𝑆) = (2773881, 1262890). The fuzzy aspiration

levels can be quantified using the linear and continuous membership function. According to Eq. (31) 
and (32), the relevant linear membership functions can be defined as shown below. 
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𝜇(𝑍1(𝑥)) =

{

1  𝑍1(𝑥) ≥ 898202

𝑍1(𝑥)−898202

2403267−898202
 898202 ≤ 𝑍1(𝑥) ≤ 2403267

 0  𝑍1(𝑥) ≤ 2403267

 

𝜇(𝑍1(𝑥)) =

{

1       𝑍2(𝑥) ≤ 1291303 

1977990 − 𝑍2(𝑥)

1977990 − 1291303 
 1291303 ≤ 𝑍2(𝑥) ≤ 1977990

     0       𝑍2(𝑥) ≥ 1977990

 

𝜇(𝑍3(𝑥)) =

{

1       𝑍3(𝑥) ≥ 1262890

𝑍3(𝑥) − 1262890

2773881 − 1262890
 1262890 ≤ 𝑍3(𝑥) ≤ 1262890

     0       𝑍3(𝑥) ≤ 1262890

 

Equation (33), in addition, may be used to create the full equivalent single-objective LP model for the 
RPL situation.  
Fifth Stage: Applying the FGP-APP gives the compromise solution a 𝑍1 = 1721542, 𝑍2 = 1604372,
𝑍3 = 2085002s. As will be determined by the triangular possibility distribution, (₦117170, 
₦1721542, ₦3806544) is present in the improved profit as a result, and the overall degree of DM 
satisfaction is 0.5440876.  

The following are important managerial ramifications for using the suggested PLP method in practise. 
First off, the suggested PLP method produces a productive compromise solution. 

𝑍1(𝑥) 

0    898202    2403267 

1 

𝜇(𝑍1(𝑥)) 

 1291303    1977990 

1 

𝜇(𝑍2(𝑥)) 

0 

𝑍2(𝑥) 

𝑍3(𝑥) 

0    1262890    2773881 

1 

𝜇(𝑍3(𝑥)) 

Initial Solution  Improved Solution 

1291303       2403267           2773881 

117170       1721542         3806544 

 

0 
𝜋 

𝐵 𝐴 

1 

𝜇(𝜋) 

Fig. 2: The Approach to Maximize the Net Profit 

𝐼𝐼 𝐼 
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The crisp ordinary LP model was used to resolve the APP choice problem that was posed in the RPL 
instance. This study made the assumption that the DM had defined the most likely value of each 
imprecise data's probability distribution as the exact values. As a result, 2403267 was the ideal value 
while using LP to maximize earnings. The better findings were (117170, 1721542, and 3806544), in 
contrast to the suggested PLP technique. These numbers suggest that, in comparison to the ideal target 
value achieved by the LP model, the PLP solutions are an effective compromise option. The new PLP 
technique is then used in a fuzzy environment with an acceptable level of DM satisfaction to produce 
an enhanced APP plan. Notably, the objective values utilizing the suggested method should be 
approximate because the unit cost and associated factors are inherently approximate. On the other 
hand, the analytical outcomes show that it is irrational to replace the uncertain data with the highest 
conceivable value or the mean of the probability distribution. 
Furthermore, the suggested PLP technique identifies the total level of DM satisfaction under the 
suggested strategy of maximizing the maximum value, reducing the risk of gaining greater profits, and 
minimizing the probability of receiving lower profits. 

Considering the various fuzzy goal values (𝑍1, 𝑍2 𝑎𝑛𝑑 𝑍3), the suggested model gives the overall levels 
of DM satisfaction (𝜆 value). Each goal is fully satisfied if the answer is 𝜆 =  1. If  𝜆 =  0, none of the 
goals are satisfied. If  0 < 𝜆 <  1, all of the goals are satisfied at some level. For instance, the initial 
calculation of the overall DM satisfaction (𝜆) with the goal values  𝑍1 = 1721542, 𝑍2 = 1604372,
𝑍3 = 2085002 was 0. 5440876. The 𝜆 value can be adjusted to look for a set of superior compromise 
options if the DM did not accept the initial overall degree of this satisfaction value. Furthermore, the 𝜆 
value can be adjusted to seek a set of better APP compromise solutions since the DM may not accept 
the initial overall degree of this satisfaction value.  

It is quite difficult to apply these types of production/distribution models to actual situations. When 
the scale of the model is increased, the NP-hard issues that these models defined make it practically 
difficult to find the best solutions under normal circumstances. More proposed models in this area that 
are supported by numerical examples and apply the case studies to actual supply chains are offered 
(Mula et al., 2010). 

5. Conclusion
This paper examined the integration of probabilistic linear programming (PLP) and throughput 
accounting system in the context of aggregate production planning (APP) for profit maximization. 
Companies may develop a comprehensive strategy for production planning that takes into account 
system restrictions and profitability by integrating these two techniques. 

It is clear from the study done in this paper that PLP offers a strong framework for dealing with the 
uncertainties and imprecisions present in APP decision-making processes. PLP lets decision-makers 

to make well-informed decisions that strike a balance between risk and reward by considering 
probability distributions of input parameters. With the use of this strategy, planning outputs will be 
more realistic and trustworthy since imprecise and uncertain variables, such as demand projections, 
production costs, and capacity restrictions, may be modelled. 

The throughput accounting system's integration also improves the decision-making process by 
revealing how production choices affect the system's overall profitability. The throughput accounting 
method aids in locating production bottlenecks, optimizing resource allocation, and prioritizing tasks 
that are most important for generating profits by focusing on throughput, operating costs, and 
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investment. Organizations may better connect their production planning choices with their financial 
goals thanks to this integration, which ultimately boosts performance and profitability. A proactive 

and flexible approach to production planning is encouraged by the joint use of PLP and the throughput 
accounting system. Companies can efficiently adjust to shifting market circumstances, consumer 
needs, and resource availability by taking into account both the uncertainties of the external 
environment and the internal limits of the system. With this strategy, capacity planning, production 
scheduling, and inventory management can all be done more precisely, which lowers costs, boosts 
customer satisfaction, and boosts overall profitability. 

The difficulties in using PLP and the throughput accounting system in aggregate production planning, 
however, must be recognized. The availability of precise and trustworthy data and the computational 
difficulty of solving PLP models are important problems that require careful consideration. 
Additionally, a thorough comprehension of the system's limitations, precise cost allocation, and the 
capacity to recognize and measure throughput drivers properly are necessary for the effective 

integration of the throughput accounting system. 
In conclusion, a strong framework for planning aggregate output that attempts to maximize profit is 
provided by the combination of probabilistic linear programming and the throughput accounting 
system. Utilizing the advantages of these approaches, businesses may examine production choices in 
a more thorough and accurate manner, improving their financial performance and competitiveness. 
By enabling proactive and profit-focused production planning, the combination of PLP and the 
throughput accounting system gives a strategic edge as businesses negotiate increasingly complicated 
and uncertain business situations. 

International Journal of Engineering Research & Technology (IJERT)

ISSN: 2278-0181http://www.ijert.org

IJERTV12IS060105
(This work is licensed under a Creative Commons Attribution 4.0 International License.)

Published by :

www.ijert.org

Vol. 12 Issue 06, June-2023

www.ijert.org
www.ijert.org
www.ijert.org


References 
ACCA. (2016). Drivers of change and future skills. Retrieved from https://www.accaglobal. 

com/content/dam/membersbeta/docs/ea-patf-drivers-of-changeand-future-skills.pdf 
Baykasoglu, A. (2001), MOAPPS 1.0: aggregate production planning using the multiple-objective tabu          

search, International Journal of Production Research,39(16), 3685-3702. 
Bellman, R.E., Zadeh, L.A., 1970. Decision-making in a fuzzy environment. Management Science 17, 

141–164. 
Boppana, V.C. and Slomp, J. (2002) Production Planning Under Dynamic Product Environment: A Multi-

objective Goal Programming Approach, Research Report, No. 02A12, University of Groningen. 
Netherlands. 

Bowman, E.H., 1956. Production scheduling by the transportation method of linear programming. 
Operations Research 4, 100–103. 

Bowman, E.H., 1963. Consistency and optimality in managerial decision making. Management Science 
9, 310–321. 

Bragg, Steven M.(2007) Throughput accounting : a guide to constraint management, John Wiley & 
Sons, Inc., Hoboken, New Jersey, ISBN-13: 978-0-471-25109-5 

Bushuev, M. (2014), Convex optimization for aggregate production planning, International Journal of 
Pro-duction Research,52(4), 1050-1058. 

Campos L. and Verdegay J. L., (1989) Fuzzy Sets and Systems, 32 1-11. 
Charnes, A., Cooper, W. W., and Ferguson, R. O. (1955),Optimal estimation of executive compensation 

by linear programming, Management Science,1(2),138-151. 
Charnes, A., Cooper, W.W., 1961. Management Models and Industrial Applications of Linear 

Programming. Wiley, New York 
Chase, R and Jacobs, R. (2014) ‘Operation and Supply Chain Management. Global Case Edition’, New 

York: Mc Graw Hill. 
Chen, L. H. and Tsai, F. C. (2001), Fuzzy goal programming with different importance and priorities, 

European Journal of Operational Research,133(3), 548-556. 
Corominas, A., Lusa, A., and Olivella, J. (2012), A manufacturing and remanufacturing aggregate 

planning model considering a non-linear supply function of recovered products, Production 
Planning and Control,23(2/3), 194-204. 

Dai, L., Fan, L. and Sun, L. (2003) ‘Aggregate production planning utilizing a fuzzy linear programming’, 
Journal of Integrated Design and Process Science, Vol. 7, No. 4, pp.81–95. 

Dettmer, W.H. (1997). Goldratt’s theory of constraint: A systems approach to continuous improvement. Quality press, 

Eilon, Samuel. (1975). Five Approaches to Aggregate Production Planning. Iie Transactions. 7. 118-
131. 10.1080/05695557508974994.

Filho, O. S. (1999), An aggregate production planning model with demand under uncertainty, 
Production Planning and Control,10(8), 745-756. 

Fung, R. Y., Tang, J., and Wang, Q. (2003), Multiproduct aggregate production planning with fuzzy 
demands and fuzzy capacities, IEEE Transactions on Systems, Man and Cybernetics, Part A: 
Systems and Humans,33(3), 302-313. 

Ghasemy Yaghin, R., Torabi, S. A., and Fatemi Ghomi,S. M. T. (2012), Integrated markdown pricing 
andaggregate production planning in a two echelon sup-ply chain: a hybrid fuzzymultiple 
objective ap-proach,Applied Mathematical Modelling,36(12),6011-6030. 

Giannoccaro, I. and Pontrandolfo, P. (2001), Models for supply chain management: a taxonomy, 
Proceedings of the POM-2001 Conference: POM Mastery in the New Millennium, Orlando, FL, 
2001. 

Goldratt, E. M. (1990). Theory of constraints. North River Press, Massachusetts. 

International Journal of Engineering Research & Technology (IJERT)

ISSN: 2278-0181http://www.ijert.org

IJERTV12IS060105
(This work is licensed under a Creative Commons Attribution 4.0 International License.)

Published by :

www.ijert.org

Vol. 12 Issue 06, June-2023

www.ijert.org
www.ijert.org
www.ijert.org


Hannan, E. L. (1981), Linear programming with multiple fuzzy goals, Fuzzy Sets and Systems,6(3), 235-
248. 

Hilmola, O-P. & Lättilä, L. (2008). Throughput accounting and stochastic system behavior: Importance 
of low throughput products. International Journal of Applied Management Science, 1(2), 123-
142. 

Holt, C. C., Modigliani, F., and Simon, H. A. (1955), A linear decision rule for production and employment 
scheduling, Management Science,2(1), 1-30. 

Hossain, M.M., Nahar, K., Reza, S., & Shaifullah, K.M. (2016). Multi-period, Multi-product, Aggregate 
Production Planning under demand uncertainty by considering Wastage Cost and Incentives. 
https://www.semanticscholar.org/paper/Multi-period-%2C-Multi-product-%2C-Aggregate-
Production-Hossain-Nahar/3b72a55d180334313ef4681614267751cbdfece0#paper-header 

Hsu, H.M., Wang, W.P., 2001. Possibilistic programming in production planning of assemble-to-order 
environments. Fuzzy Sets and Systems 119, 59–70. 

Hwang C.L. and Masud A.S.(1979) Multiple Objective Decision Making (Springer-Verlag, Berlin-
Heidelberg.  

Hwang, C.L., Yoon, K., 1981. Multiple Attribute Decision Making: Methods and Applications. Springer, 
Berlin. 

Inuiguchi, M., Sakawa, M., 1996. Possible and necessary efficiency in possibilistic multiobjective linear 
programming problems and possible efficiency test. Fuzzy Sets and Systems 78, 231–241. 

Jain, A. and Palekar, U. S. (2005), Aggregate production planning for a continuous reconfigurable 
manufacturing process, Computers and Operations Research,32(5), 1213-1236. 

Jamalnia, A. and Feili, A. (2013), A simulation testing and analysis of aggregate production planning 
strategies, Production Planning and Control,24(6),423-448. 

Jamalnia, A. and Soukhakian, M. A. (2009), A hybrid fuzzy goal programming approach with different 
goal priorities to aggregate production planning, Computers and Industrial Engineering,56(4), 
1474-1486. 

Jime´nez, M. (1996) Ranking fuzzy numbers through the comparison of its expected intervals,” 
International Journal of Uncertainty, Fuzziness and Knowledge-Based Systems, vol. 4, no. 4, pp. 
379–388,. 

Jime´nez, M., Rodrı´guez, M.V., Arenas, M., Bilbao, A., 2005. Linear programming with fuzzy parameters: 
 An interactive method resolution. European Journal of Operational Research 177 (2007) 
1599–1609 

Jones, C.H., 1967. Parametric production planning. Management Science 13, 843–866. 
Karmarkar, U. S. and Rajaram, K. (2012), Aggregate production planning for process industries under 

oligopolistic competition, European Journal of Operational Research,223(3), 680-689. 
Khalili-Damghani, Kaveh & Shahrokh, Ayda. (2014). Solving a New Multi-Period Multi-Objective Multi-

Product Aggregate Production Planning Problem Using Fuzzy Goal Programming. Industrial 
Engineering and Management Systems. 13. 369-382. 10.7232/iems.2014.13.4.369. 

Kumar M. Vrat P. Shankar R. 2004 A fuzzy goal programming approach for vendor selection problem 
in a supply chain. Computers & Industrial Engineering, 46(1), 69 EOF 85 EOF. 

Lai, Y.J., Hwang, C.L., 1992b. Fuzzy Mathematical Programming: Methods and Applications. Springer, 
Berlin. 

Lea, B-R & Min, H. (2003). Selection of management accounting systems in Just-In-Time and Theory of 
Constraints-based manufacturing. International Journal of Production Research, 41(13), 2879-
2910. 

International Journal of Engineering Research & Technology (IJERT)

ISSN: 2278-0181http://www.ijert.org

IJERTV12IS060105
(This work is licensed under a Creative Commons Attribution 4.0 International License.)

Published by :

www.ijert.org

Vol. 12 Issue 06, June-2023

https://www.semanticscholar.org/paper/Multi-period-%2C-Multi-product-%2C-Aggregate-Production-Hossain-Nahar/3b72a55d180334313ef4681614267751cbdfece0#paper-header
https://www.semanticscholar.org/paper/Multi-period-%2C-Multi-product-%2C-Aggregate-Production-Hossain-Nahar/3b72a55d180334313ef4681614267751cbdfece0#paper-header
www.ijert.org
www.ijert.org
www.ijert.org


Lea, B-R. & Fredendall, L.D. (2002). The impact of management accounting, product structure, product 
mix algorithm, and planning horizon on manufacturing performance. International Journal of 
Production Economics, 79(3), 279-299. 

Lea, B-R. (2007). Management accounting in ERP integrated MRP and TOC environments. industrial 
Management & Data Systems, 107(8), 1188-1211. 

Lee A. H. I. Kang H. Y. Chang C. T. 2009 Fuzzy multiple goal programming applied to TFT-LCD supplier 
selection by downstream manufacturers. Expert Systems with Applications, 36(3, Part 2),.6318 
6325. 

Leung, S. C. and Chan, S. S. (2009), A goal programming model for aggregate production planning with 
resource utilization constraint, Computers and Industrial Engineering,56(3), 1053-1064. 

Leung, S. C. and Wu, Y. (2004), A robust optimization model for stochastic aggregate production 
planning, Production Planning and Control,15(5), 502-514. 

Leung, S. C., Wu, Y., and Lai, K. K. (2003), Multi-site aggregate production planning with multiple 
objectives: a goal programming approach, Production Planning and Control, 14(5), 425-436. 

Li, B., Wang, H., Yang, J., Guo, M., and Qi, C. (2013),A belief-rule-based inference method for aggregate 
production planning under uncertainty, International Journal of Production Research,51(1), 
83-105.

Liang T. 2006 Distribution planning decisions using interactive fuzzy multi-objective linear 
programming. Fuzzy Sets and Systems, 157(10), 1303 EOF 1316 EOF. 

Maleki H.R., M. Tata, Mashinchi M., (2000) Fuzzy Sets and Systems, 9 21-33. 
Mariyani, Dede. (2014) ‘Analisis Perencanaan Agregat Pada CV Sumber Rezeki’, Google Scholar, 2014, 

retrieved on May 2019, from http://ejurnal.untag-smd.ac.id/index.php/EKM /issue/view/46. 
Masud, A.S. and Hwang, C.L. (1980) ‘An aggregate planning model and application of three multiple 

objective decision methods’, International Journal of Production Research, Vol. 18, No. 6, 
pp.741–752. 

Mirzapour Al-E-Hashem, S. M. J., Malekly, H., and Aryanezhad, M. B. (2011), A multi-objective robust 
optimization model for multi-product multi-site aggregate production planning in a supply 
chain un-der uncertainty, International Journal of Production Economics,134(1), 28-42. 

Mirzapour Al-e-Hashem, S.M. J., Aryanezhad, M. B.,and Sadjadi, S. J. (2012),An efficient algorithm 
tosolve a multi-objective robust aggregate productionplanning in an uncertain 
environment,Internatio-nal Journal of Advanced Manufacturing Technol-ogy,58(5-8), 765-782. 

Mirzapour Al-e-Hashem, S.M. J., Baboli, A., and Saz-var, Z. (2013), A stochastic aggregate production 
planning model in a green supply chain: consider-ing flexible lead times, nonlinear purchase 
and shor-tage cost functions, European Journal of Operational Research,230(1), 26-41. 

Mula J, Peidro D, Diaz-Madronero M, Vicens E (2010). Mathematical Programming Models for Supply 
Chain Production and Transport Planning. Eur. J. Oper. Res., 204: 377-390. 

Mula, J., Poler, R., Garcia-Sabater, J. P., and Lario, F. C.(2006), Models for production planning under un-
certainty: a review, International Journal of Pro-duction Economics,103(1), 271-285. 

Nagarur, N.R., Vrat, P. and Duongsuwan, W. (1997) ‘Production planning and scheduling for injection 
moulding of pipe fittings: box study’, International Journal of Production Economics, Vol. 53, 
pp.157–170. 

Nam, S. J. and Logendran, R. (1992), Aggregate production planning: a survey of models and 
methodologies, European Journal of Operational Research,61(3), 255-272. 

Orlovsky S. A, (1980) Fuzzy Sets and Systems, 3 311-321. 
Phruksaphanrat, B., Ohsato, A. and Yenradee, P. (2006). A comment on the formulation of an aggregate 

production planning problem. The 2nd IEEE International Conference on Cybernetics and 
Intelligent Systems, pp. 292-297. 

International Journal of Engineering Research & Technology (IJERT)

ISSN: 2278-0181http://www.ijert.org

IJERTV12IS060105
(This work is licensed under a Creative Commons Attribution 4.0 International License.)

Published by :

www.ijert.org

Vol. 12 Issue 06, June-2023

http://ejurnal.untag-smd.ac.id/index.php/EKM%20/issue/view/46
www.ijert.org
www.ijert.org
www.ijert.org


Ramezanian, R., Rahmani, D., and Barzinpour, F. (2012), An aggregate production planning model for 
two phase production systems: solving with genetic algorithm and tabu search, Expert Systems 
with Ap-plications,39(1), 1256-1263. 

Ramezanian, R., Rahmani, D., Barzinpour, F.: An aggregate production planning model for two phase 
production systems: solving with genetic algorithm and tabu search. Expert Syst. Appl. 39, 
1256–1263 (2012) 

Ross T.J., (1995) Fuzzy logic with engineering Applications, New York: McGraw-Hill. 
Saad, G., 1982. An overview of production planning model: Structure classification and empirical 

assessment. International Journal of Production Research 20, 105–114. 
Şahin Merve, Recep Kızılasla, and Ömer F. Demirel. (2013) ‘Forecasting Aviation Spare Parts Demand 

Using Croston Based Methods and Artificial Neural…’, Proquest, retrieved on Aprill 22, 2019 
from https://search.proquest.com/docview/1692046357/fulltextPDF/F6192AA2D1D24E 

Sakallı, U. S., Baykoç, O. F., and Birgoren, B. (2010), A possibilistic aggregate production planning model 
for brass casting industry, Production Planning andControl,21(3), 319-338. 

Senthilkumar P. and G. Rajendran, (2010) On the solution of Fuzzy linear programming Problem, 
International journal of computational Cognition, 8(3) 45-47. 

Tabucanon, M.T. and Majumdar, S. (1989) ‘Production planning in a ship repair company in 
Bangladesh’, Proceedings of the International Conference on MCDM: Application in Industry and 
Service, Asian Institute of Technology, Bangkok, pp.47–61. 

Tamiz M., (1996) Multi-objective programming and goal programming theories and Applications, 
Germany : Springer-Verlag. 

Taubert, W.H., 1968. A search decision rule for the aggregate scheduling problem. Management 
Science 14, 343–359. 

Tonelli, F., Paolucci, M., Anghinolfi, D., and Taticchi, P.(2013), Production planning of mixed-model 
assembly lines: a heuristic mixed integer programming based approach, Production Planning 
andControl,24(1), 110-127. 

Torabi S. A. Hassini E. 2009 Multi-site production planning integrating procurement and distribution 
plans in multi-echelon supply chains: an interactive fuzzy goal programming approach. 
International Journal of Production Research, 47(19), 5475 EOF 5499 EOF.USA. 

Wang, R. C. and Liang, T. F. (2004), Application of fuzzy multi-objective linear programming to 
aggregate production planning, Computers and Industrial En-gineering,46(1), 17-41. 

Wang, R.C. and Fang, H.H. (2001) ‘Aggregate production planning with multiple objectives in a fuzzy 
environment’, European Journal of Operational Research, Vol. 133, pp.521–536. 

Wang, R.C., Liang, T.F., 2004a. Application of fuzzy multiobjective linear programming to aggregate 
production planning. Computers and Industrial Engineering 46 (1), 17–41. 

Wang, R.C., Liang, T.F., 2004b. Aggregate production planning with multiple fuzzy goals. International 
Journal of Advance Manufacturing Technology, in press. 

Wang, Reay-Chen & Liang, Tien-Fu. (2005). Applying possibilistic linear programming to aggregate 
production planning. International Journal of Production Economics. 98. 328-341. 
10.1016/j.ijpe.2004.09.011. 

Woeppel, M.J. (2001). Manufacturer’s guide to implementing the theory of constraints. St. Lucie Press, New York.

Woeppel, M.J. (2001). Manufacturer’s guide to implementing the theory of constraints. St. Lucie Press, New York.

Yaghoobi, M.A.,Tamiz, M., 2007. A method for solving fuzzy goal programming problems based on 
MINMAX approach. Eur. J. Oper. Res. 177, 1580–1590 

Zadeh L. A, (1965)  Inform. Contr., 8 338-353. 
Zadeh, L.A., 1978. Fuzzy sets as a basis for a theory of possibility. Fuzzy Sets and Systems 1, 3–28. 
Zadeh, L.A., 1978. Fuzzy sets as a basis for a theory of possibility. Fuzzy Sets and Systems 1, 3–28. 

International Journal of Engineering Research & Technology (IJERT)

ISSN: 2278-0181http://www.ijert.org

IJERTV12IS060105
(This work is licensed under a Creative Commons Attribution 4.0 International License.)

Published by :

www.ijert.org

Vol. 12 Issue 06, June-2023

www.ijert.org
www.ijert.org
www.ijert.org


Zhang, R., Zhang, L., Xiao, Y., and Kaku, I. (2012), The activity-based aggregate production planning 
with capacity expansion in manufacturing systems, Computers and Industrial 
Engineering,62(2), 491-503. 

Zimmermann H.J.( 1991) Fuzzy Set Theory and Its Applications, (2nd rev .ed). Boston: Kulwer,. 
Zimmermann, H.J., 1976. Description and optimization of fuzzy systems. International Journal of 

General Systems 2, 209–215. 
Zimmermann, H.-J., 1978. Fuzzy programming and linear programming with several objective 

functions. Fuzzy Sets and Systems 1, 45–56. 

International Journal of Engineering Research & Technology (IJERT)

ISSN: 2278-0181http://www.ijert.org

IJERTV12IS060105
(This work is licensed under a Creative Commons Attribution 4.0 International License.)

Published by :

www.ijert.org

Vol. 12 Issue 06, June-2023

www.ijert.org
www.ijert.org
www.ijert.org

