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Abstract- Machine learning is a type of  Artificial 

Intelligence which aggrandize the Computers to learn 

themselves from a given set of data.This paper focuses 

on generating some automatic keywords using Best-

First trees which is used for ranking.Most recursive 

words are given a higher order priority and ranking 

using the technique called prediction.The direction of 

the respective text is usually obtained using a technique 

called vectorization. Using these techniques the 

efficiency and performance of the system is enhanced. 
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I. INTRODUCTION 

 

Tree based models have become an efficient method for  

the process of ranking.When combined with Machine 

learning the Tree based models becomes more efficient and 

provides results more effectively. The document ranking is 

also better exploited using the machine learning technique 

called ―learning to rank‖ approach[1].Using the tree-based 

models,runtime optimization is performed by making 

predictions,specially using gradient-boosted regression 

trees for learning to rank[2]. Our experimentation focus on 

an individual tree, the runtime execution of which involves 

checking a predicate in an interior node, following the left 

or right branch depending on the result of the predicate, 

and repeating until a leaf node is reached. We assume that 

the predicate at each node involves a feature and a 

threshold: if the feature value is less than the threshold, the 

left branch is taken; otherwise, the right branch is taken. Of 

course, trees with greater branching factors and more 

complex predicate checks can be  converted into an 

equivalent binary tree, so our formulation is entirely 

general. Note that our discussion is agnostic with respect to 

the prediction at the leaf node. This implementation has 

two advantages: simplicity and flexibility. However, we 

have no control over the physical layout of the tree nodes 

in memory, and hence no   guarantee that the data 

structures exhibit good reference locality. Prediction with 

this implementation essentially boils down to pointer 

1chasing across the heap: when following either the left or 

the right pointer to the next tree node, the processor is 

likely to be stalled by a cache miss. The contribution of this 

work lies in novel implementations of tree-based models 

that are highly-tuned to modern processor architectures, 

taking advantage of cache hierarchies and superscalar 

processors. We illustrate our techniques on three separate 

learning-to-rank datasets and show significant performance 

improvements over standard implementations.                                   

 

II. ARCHITECTURE 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

 

 
 

 

 
 

Fig.1.System Architecture Diagram 

 

     Here,the user input is given to the wordprocessor,then 

the process of data optimization takes place where logical 

schema is formed from the given data schema.Data 

optimization is very important in database management and 

also in data warehouse management.The next process is the 

vectorization,which generally used to exploit the modern 

processor architecture in a better way and using this 

process,the direction of the words that is needed to be 

displayed id obtained.The final block is the process of 

prediction,which is a supervised learning task where the 

data are used directly to predict the words.This process 

helps in finding the related words that are needed to be 

displayed.If the word is a new one,it is fed to the block of 

learning and ranking,where the new word is learnt and the 

ranked,then the usual process takes place. 
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III. RELATED WORK 

 

In this section, we present a sample of previous 

work on parallel machine learning most related to our 

work. The related work falls into three categories: i)parallel 

decision     trees, ii)parallelization of boosting, and 

iii)parallelization of web search ranking using other 

approaches such as bagging.[3] Parallel decision tree 

learning uses a decision tree as a predictive model which 

maps observations about an item to conclusions about the 

item's target value. It is one of the predictive modelling 

approaches used in statistics, data mining and machine 

learning.The process is done parallely. Most of the 

previous work on  parallelizing    boosting     focuses on 

parallel construction of the weak learners [4] or on the 

original AdaBoost algorithm [5, 6] instead of gradient 

boosting. MultiBoost [7] combines   wagging with    

AdaBoost, which can be performed in parallel, but inherits 

AdaBoost’s sensitivity to noise.  

     Our initial goal in building PLANET was to develop a 

scalable tree learner with accuracy comparable to a 

traditional in-memory algorithm, but capable of handling 

much more training data. We believe our experience in 

building and deploying PLANET    provides     lessons        

in     using MapReduce for other non-trivial mining and    

data     processing tasks. The strategies we developed for 

handling tree learning should be applicable to other 

problems requiring multiple iterations, each requiring one 

or more applications of MapReduce. CSS-trees can 

improve searching performance by making good use of 

cache lines. As the gap between CPU and memory speed is 

widening, we expect the improvement that can be achieved 

by exploiting the cache will be even more 

significant.Cache conscious searching behavior is just one 

step towards efficiently utilizing the cache in database 

systems.[8]  

     The two optimization techniques central to our approach 

borrow from previous work. Using a technique called 

predication [9], [10], originally from compilers, we can 

convert control dependencies into data dependencies. 

However, as compiler researchers know well, predication 

does not always help under what circumstances it is 

worthwhile for our machine learning application is an 

empirical question we examine. Another optimization that 

we adopt, vectorization, was pioneered by database 

researchers [11], [12]  the basic idea is that instead of 

processing a tuple at a time, a relational query engine 

should process a vector (i.e., batch) of tuples at a time to 

take advantage of pipelining and to mask memory 

latencies. We apply this idea to prediction with tree-based 

models and are able to obtain many of the same 

benefits.[1].  

     Essen et al. [13] compared multi-core, GPU, and FPGA 

implementations of compact random forests. They also 

take advantage of predication, but there are minor 

differences that make our implementation more optimized. 

Furthermore, neither of these two papers take advantage of 

vectorization, although it is unclear how vectorization 

applies to GPUs, since they are organized using very 

different architectural principles. 

 

IV. PROPOSED WORK: 

 

Our system focus on an individual tree, the runtime 

execution of which involves checking a predicate in an 

interior node, following the left or right branch depending 

on the result of the predicate, and repeating until a leaf 

node is reached. We assume that the predicate at each node 

involves a feature and a threshold: if the feature value is 

less than the threshold, the left branch is taken; otherwise, 

the right branch is taken. Of course, trees with greater 

branching factors and more complex predicate checks can 

be converted into an equivalent binary tree, so our 

formulation is entirely general. Note that our discussion is 

agnostic with respect to the prediction at the leaf node. This 

implementation has two advantages: simplicity and 

flexibility. However, we have no control over the physical 

layout of the tree nodes in memory, and hence no guarantee 

that the data structures exhibit good reference locality. 

Prediction with this implementation essentially boils down 

to pointer chasing across the heap: when following either 

the left or the right pointer to the next tree node, the 

processor is likely to be stalled by a cache miss. 

 

A.  algorithm 

 

a. back propagation  

A  Back Propagation network learns by example.You 

give the algorithm examples of what you want the network 

to do and it changes the network's weights so that, when 

training is finished, it will give you the required output for 

a particular input. 

     In decision trees, the overfitting can occur when the size 

of the tree is too large compared to the number of training 

data. Many methods for decision tree pruning have been 

proposed, and all of them remove some nodes from the tree 

to reduce its size. However, some removed nodes may have 

a significance level or some contribution in classifying new 

data. Therefore, instead of absolutely removing nodes, our 

proposed method employs a back propagation neural 

network to give weights to nodes according to their 

significance. 

     Backpropagation, an abbreviation for "backward 

propagation of errors", is a common method of 

training artificial neural networks used in conjunction with 
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an optimization method such as gradient descent. The 

method calculates the gradient of a loss function with 

respects to all the weights in the network. The gradient is 

fed to the optimization method which in turn uses it to 

update the weights, in an attempt to minimize the loss 

function. 

     Back propagation requires a known, desired output for 

each input value in order to calculate the loss function 

gradient. It is therefore usually considered to be 

a supervised learning method, although it is also used in 

some unsupervised networks such as auto encoders. It is a 

generalization of the delta rule to multi-layered feed 

forward networks, made possible by using the chain rule to 

iteratively compute gradients for each layer. Back 

propagation requires that the activation function used by 

the artificial neurons (or "nodes") be differentiable. 

B.  Methodology 

a. Machine Learning 

Machine learning is a scientific discipline that explores the 

construction and study of algorithms that can learn from 

data. Such algorithms operate by building a model based 

on inputs and using that to make predictions or decisions, 

rather than following only explicitly programmed 

instructions. In particular, we define machine learning as a 

set of methods that can automatically detect patterns in 

data, and then use the uncovered patterns to predict future 

data, or to perform other kinds of decision making under 

uncertainty (such as planning how to collect more data!).  

     Machine learning is usually divided into two main 

types. In the predictive or supervised learning approach, 

the goal is to learn a mapping from inputs x to outputs y, 

given a labeled set of input-output pairs D = {(xi, yi)}N 

i=1. Here D is called the training set, and N is the number 

of training examples. 

     There is a third type of machine learning, known as 

reinforcement learning, which is somewhat less commonly 

used. This is useful for learning how to act or behave when 

given occasional reward or punishment signals. 

Reinforcement learning is concerned with how 

an agent ought to take actions in an environment so as to 

maximize some notion of long-term reward. Reinforcement 

learning algorithms attempt to find a policy that 

maps states of the world to the actions the agent ought to 

take in those states. Reinforcement learning differs from 

the supervised learning problem in that correct input/output 

pairs are never presented, nor sub-optimal actions 

explicitly corrected. 

 

 

V. PERFORMANCE EVALUATION 

 

The focus of our work is on  efficiency. Our 

primary evaluation metric is 1) Data Optimization 2) 

Vectorization 3) Prediction 4) Learning & Ranking 

 

A.  Data Optimization 

The synthetic data consist of randomly generated trees 

and randomly generated feature vectors. Each intermediate 

node in a tree has two fields: a feature id and a threshold on 

which the decision is made. Each leaf is associated with a 

regression value. Construction of a random tree of depth d 

begins with the root node. We pick a feature id at random 

and generate a random threshold to split the tree into left 

and right subtrees.This process is recursively performed to 

build each subtree until we reach the desired tree depth. 

When we reach a leaf node, we generate a regression value 

at random.These data are optimized and given to our 

system as input. 

 

B. Vectorization 

 

The idea is to work on v instances (feature vectors) at 

the same time, so that while the processor is waiting for 

memory access for one instance, useful computation can 

happen on another. This takes advantage of pipelining and 

multiple dispatch in modern superscalar processors. The 

effectiveness of vectorization depends on the relationship 

between time spent in actual computation and memory 

latencies. For example, if memory fetches take only one 

clock cycle, then vectorization cannot possibly help. The 

longer the memory latencies, the more we would expect 

vectorization (larger batch sizes) to help. However, beyond 

a certain point, once memory latencies are effectively 

masked by vectorization, we would expect larger values of 

v to have little impact. In fact, values that are too large start 

to become a bottleneck on memory bandwidth and cache 

size. 

C. Prediction 

 

VPRED:Predication eliminates branches but at the cost 

of introducing data hazards. Each statement in PRED 

requires an indirect memory reference. Subsequent 

instructions cannot execute until the contents of the 

memory location are fetched—in other words, the 

processor will simply stall waiting for memory references 

to resolve. Therefore, predication is entirely bottlenecked 

on memory access latencies. This takes advantage of 

multiple dispatch and pipelining in modern  processors 

(provided that there are no dependencies between 

dispatched instructions, which is true in our case). Thus,  

while the processor is waiting for the memory access from 
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the predication step on the first instance, it can start 

working on the second instance. In fact, we can work on v 

instances in parallel. 

D. Learning & Ranking 

 

We are given training, validation, and test data as well 

as a tree-based learning-to-rank model. Using the training 

and validation sets we learn a complete tree ensemble. 

Evaluation is then carried out on test instances to determine 

the speed of the various algorithms. These end-to-end 

process  gives us insight on how different implementations 

compare in a real-world application. We used three 

standard learning-to-rank datasets: LETOR-MQ2007, 

MSLR-WEB10K,4 and the Yahoo! Webscope Learning-to-

Rank Challenge dataset. All three datasets are pre-folded, 

providing training, validation, and test instances. This can 

be incorporated into the learning algorithm as a penalty on 

tree topologies, much in the same way that regularization is 

performed on the objective in standard machine learning. 

Thus, it is  to jointly learn models that are both fast and 

good, as in the ―learning to efficiently rank‖ framework. 

 

VI. CONCLUSION 

: 

In this paper we show how the efficiency can be improved 

with data optimization, vectorization, predication, learning 

and ranking as a whole in one paper which gives more 

efficiency in the datasets environment rather than emerged 

papers . The process of optimizing data can shorten 

development, elimination of redundant data reduce costs 

and ensure data security.  Vectorization process is like 

parallelism inside a single CPU core, achieved by applying 

a CPU instruction to multiple data elements at once. 

Vectorizing a loop can deliver a significant performance 

boost and it also improves the scalability. The main 

purpose of predication is to avoid jumps over very small 

sections of program code, increasing the effectiveness 

of pipelined execution and avoiding problems with the 

cache. Predication and vectorization, coupled with a more 

compact memory layout, can significantly accelerate the 

runtime performance for tree-based models, both on 

synthetic data and on real-world learning-to-rank datasets. 

The learning and ranking is based on the priority of the 

data. That is, the frequently searched words will be ranked 

high and vice versa. We have given the current trend 

towards machine learning in larger data sets, we expect our 

algorithm to increase in both relevance and utility in the 

foreseeable future. 
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