
Intelligent Wordprocessor Using Tree-Based

Machine Learning Ranking Models

Naveena.R
1
, Saigeetha.S

2
, Rajalakshmi.S

3
,

Department of Computer Science and Engineering

 Parisutham Institute of Technology and Science, Thanjavur.

Abstract- Machine learning is a type of Artificial

Intelligence which aggrandize the Computers to learn

themselves from a given set of data.This paper focuses

on generating some automatic keywords using Best-

First trees which is used for ranking.Most recursive

words are given a higher order priority and ranking

using the technique called prediction.The direction of

the respective text is usually obtained using a technique

called vectorization. Using these techniques the

efficiency and performance of the system is enhanced.

Keywords- Machinelearning, prediction, Vectorization,

Best-First trees, Automatic keywords.

I. INTRODUCTION

Tree based models have become an efficient method for

the process of ranking.When combined with Machine

learning the Tree based models becomes more efficient and

provides results more effectively. The document ranking is

also better exploited using the machine learning technique

called ―learning to rank‖ approach[1].Using the tree-based

models,runtime optimization is performed by making

predictions,specially using gradient-boosted regression

trees for learning to rank[2]. Our experimentation focus on

an individual tree, the runtime execution of which involves

checking a predicate in an interior node, following the left

or right branch depending on the result of the predicate,

and repeating until a leaf node is reached. We assume that

the predicate at each node involves a feature and a

threshold: if the feature value is less than the threshold, the

left branch is taken; otherwise, the right branch is taken. Of

course, trees with greater branching factors and more

complex predicate checks can be converted into an

equivalent binary tree, so our formulation is entirely

general. Note that our discussion is agnostic with respect to

the prediction at the leaf node. This implementation has

two advantages: simplicity and flexibility. However, we

have no control over the physical layout of the tree nodes

in memory, and hence no guarantee that the data

structures exhibit good reference locality. Prediction with

this implementation essentially boils down to pointer

1chasing across the heap: when following either the left or

the right pointer to the next tree node, the processor is

likely to be stalled by a cache miss. The contribution of this

work lies in novel implementations of tree-based models

that are highly-tuned to modern processor architectures,

taking advantage of cache hierarchies and superscalar

processors. We illustrate our techniques on three separate

learning-to-rank datasets and show significant performance

improvements over standard implementations.

II. ARCHITECTURE

Fig.1.System Architecture Diagram

 Here,the user input is given to the wordprocessor,then

the process of data optimization takes place where logical

schema is formed from the given data schema.Data

optimization is very important in database management and

also in data warehouse management.The next process is the

vectorization,which generally used to exploit the modern

processor architecture in a better way and using this

process,the direction of the words that is needed to be

displayed id obtained.The final block is the process of

prediction,which is a supervised learning task where the

data are used directly to predict the words.This process

helps in finding the related words that are needed to be

displayed.If the word is a new one,it is fed to the block of

learning and ranking,where the new word is learnt and the

ranked,then the usual process takes place.

USER INPUT

WORD

PROCESSOR

DATA

OPTIMIZATION

VECTORIZATION

 PREDICTION

LEARNING

RANKING

 DATA

 SET

VECTORIZATION

International Journal of Engineering Research & Technology (IJERT)

ISSN: 2278-0181

Published by, www.ijert.org

NCRTET-2015 Conference Proceedings

Volume 3, Issue 04

Special Issue - 2015

1

III. RELATED WORK

In this section, we present a sample of previous

work on parallel machine learning most related to our

work. The related work falls into three categories: i)parallel

decision trees, ii)parallelization of boosting, and

iii)parallelization of web search ranking using other

approaches such as bagging.[3] Parallel decision tree

learning uses a decision tree as a predictive model which

maps observations about an item to conclusions about the

item's target value. It is one of the predictive modelling

approaches used in statistics, data mining and machine

learning.The process is done parallely. Most of the

previous work on parallelizing boosting focuses on

parallel construction of the weak learners [4] or on the

original AdaBoost algorithm [5, 6] instead of gradient

boosting. MultiBoost [7] combines wagging with

AdaBoost, which can be performed in parallel, but inherits

AdaBoost’s sensitivity to noise.

 Our initial goal in building PLANET was to develop a

scalable tree learner with accuracy comparable to a

traditional in-memory algorithm, but capable of handling

much more training data. We believe our experience in

building and deploying PLANET provides lessons

in using MapReduce for other non-trivial mining and

data processing tasks. The strategies we developed for

handling tree learning should be applicable to other

problems requiring multiple iterations, each requiring one

or more applications of MapReduce. CSS-trees can

improve searching performance by making good use of

cache lines. As the gap between CPU and memory speed is

widening, we expect the improvement that can be achieved

by exploiting the cache will be even more

significant.Cache conscious searching behavior is just one

step towards efficiently utilizing the cache in database

systems.[8]

 The two optimization techniques central to our approach

borrow from previous work. Using a technique called

predication [9], [10], originally from compilers, we can

convert control dependencies into data dependencies.

However, as compiler researchers know well, predication

does not always help under what circumstances it is

worthwhile for our machine learning application is an

empirical question we examine. Another optimization that

we adopt, vectorization, was pioneered by database

researchers [11], [12] the basic idea is that instead of

processing a tuple at a time, a relational query engine

should process a vector (i.e., batch) of tuples at a time to

take advantage of pipelining and to mask memory

latencies. We apply this idea to prediction with tree-based

models and are able to obtain many of the same

benefits.[1].

 Essen et al. [13] compared multi-core, GPU, and FPGA

implementations of compact random forests. They also

take advantage of predication, but there are minor

differences that make our implementation more optimized.

Furthermore, neither of these two papers take advantage of

vectorization, although it is unclear how vectorization

applies to GPUs, since they are organized using very

different architectural principles.

IV. PROPOSED WORK:

Our system focus on an individual tree, the runtime

execution of which involves checking a predicate in an

interior node, following the left or right branch depending

on the result of the predicate, and repeating until a leaf

node is reached. We assume that the predicate at each node

involves a feature and a threshold: if the feature value is

less than the threshold, the left branch is taken; otherwise,

the right branch is taken. Of course, trees with greater

branching factors and more complex predicate checks can

be converted into an equivalent binary tree, so our

formulation is entirely general. Note that our discussion is

agnostic with respect to the prediction at the leaf node. This

implementation has two advantages: simplicity and

flexibility. However, we have no control over the physical

layout of the tree nodes in memory, and hence no guarantee

that the data structures exhibit good reference locality.

Prediction with this implementation essentially boils down

to pointer chasing across the heap: when following either

the left or the right pointer to the next tree node, the

processor is likely to be stalled by a cache miss.

A. algorithm

a. back propagation

A Back Propagation network learns by example.You

give the algorithm examples of what you want the network

to do and it changes the network's weights so that, when

training is finished, it will give you the required output for

a particular input.

 In decision trees, the overfitting can occur when the size

of the tree is too large compared to the number of training

data. Many methods for decision tree pruning have been

proposed, and all of them remove some nodes from the tree

to reduce its size. However, some removed nodes may have

a significance level or some contribution in classifying new

data. Therefore, instead of absolutely removing nodes, our

proposed method employs a back propagation neural

network to give weights to nodes according to their

significance.

 Backpropagation, an abbreviation for "backward

propagation of errors", is a common method of

training artificial neural networks used in conjunction with

International Journal of Engineering Research & Technology (IJERT)

ISSN: 2278-0181

Published by, www.ijert.org

NCRTET-2015 Conference Proceedings

Volume 3, Issue 04

Special Issue - 2015

2

an optimization method such as gradient descent. The

method calculates the gradient of a loss function with

respects to all the weights in the network. The gradient is

fed to the optimization method which in turn uses it to

update the weights, in an attempt to minimize the loss

function.

 Back propagation requires a known, desired output for

each input value in order to calculate the loss function

gradient. It is therefore usually considered to be

a supervised learning method, although it is also used in

some unsupervised networks such as auto encoders. It is a

generalization of the delta rule to multi-layered feed

forward networks, made possible by using the chain rule to

iteratively compute gradients for each layer. Back

propagation requires that the activation function used by

the artificial neurons (or "nodes") be differentiable.

B. Methodology

a. Machine Learning

Machine learning is a scientific discipline that explores the

construction and study of algorithms that can learn from

data. Such algorithms operate by building a model based

on inputs and using that to make predictions or decisions,

rather than following only explicitly programmed

instructions. In particular, we define machine learning as a

set of methods that can automatically detect patterns in

data, and then use the uncovered patterns to predict future

data, or to perform other kinds of decision making under

uncertainty (such as planning how to collect more data!).

 Machine learning is usually divided into two main

types. In the predictive or supervised learning approach,

the goal is to learn a mapping from inputs x to outputs y,

given a labeled set of input-output pairs D = {(xi, yi)}N

i=1. Here D is called the training set, and N is the number

of training examples.

 There is a third type of machine learning, known as

reinforcement learning, which is somewhat less commonly

used. This is useful for learning how to act or behave when

given occasional reward or punishment signals.

Reinforcement learning is concerned with how

an agent ought to take actions in an environment so as to

maximize some notion of long-term reward. Reinforcement

learning algorithms attempt to find a policy that

maps states of the world to the actions the agent ought to

take in those states. Reinforcement learning differs from

the supervised learning problem in that correct input/output

pairs are never presented, nor sub-optimal actions

explicitly corrected.

V. PERFORMANCE EVALUATION

The focus of our work is on efficiency. Our

primary evaluation metric is 1) Data Optimization 2)

Vectorization 3) Prediction 4) Learning & Ranking

A. Data Optimization

The synthetic data consist of randomly generated trees

and randomly generated feature vectors. Each intermediate

node in a tree has two fields: a feature id and a threshold on

which the decision is made. Each leaf is associated with a

regression value. Construction of a random tree of depth d

begins with the root node. We pick a feature id at random

and generate a random threshold to split the tree into left

and right subtrees.This process is recursively performed to

build each subtree until we reach the desired tree depth.

When we reach a leaf node, we generate a regression value

at random.These data are optimized and given to our

system as input.

B. Vectorization

The idea is to work on v instances (feature vectors) at

the same time, so that while the processor is waiting for

memory access for one instance, useful computation can

happen on another. This takes advantage of pipelining and

multiple dispatch in modern superscalar processors. The

effectiveness of vectorization depends on the relationship

between time spent in actual computation and memory

latencies. For example, if memory fetches take only one

clock cycle, then vectorization cannot possibly help. The

longer the memory latencies, the more we would expect

vectorization (larger batch sizes) to help. However, beyond

a certain point, once memory latencies are effectively

masked by vectorization, we would expect larger values of

v to have little impact. In fact, values that are too large start

to become a bottleneck on memory bandwidth and cache

size.

C. Prediction

VPRED:Predication eliminates branches but at the cost

of introducing data hazards. Each statement in PRED

requires an indirect memory reference. Subsequent

instructions cannot execute until the contents of the

memory location are fetched—in other words, the

processor will simply stall waiting for memory references

to resolve. Therefore, predication is entirely bottlenecked

on memory access latencies. This takes advantage of

multiple dispatch and pipelining in modern processors

(provided that there are no dependencies between

dispatched instructions, which is true in our case). Thus,

while the processor is waiting for the memory access from

International Journal of Engineering Research & Technology (IJERT)

ISSN: 2278-0181

Published by, www.ijert.org

NCRTET-2015 Conference Proceedings

Volume 3, Issue 04

Special Issue - 2015

3

the predication step on the first instance, it can start

working on the second instance. In fact, we can work on v

instances in parallel.

D. Learning & Ranking

We are given training, validation, and test data as well

as a tree-based learning-to-rank model. Using the training

and validation sets we learn a complete tree ensemble.

Evaluation is then carried out on test instances to determine

the speed of the various algorithms. These end-to-end

process gives us insight on how different implementations

compare in a real-world application. We used three

standard learning-to-rank datasets: LETOR-MQ2007,

MSLR-WEB10K,4 and the Yahoo! Webscope Learning-to-

Rank Challenge dataset. All three datasets are pre-folded,

providing training, validation, and test instances. This can

be incorporated into the learning algorithm as a penalty on

tree topologies, much in the same way that regularization is

performed on the objective in standard machine learning.

Thus, it is to jointly learn models that are both fast and

good, as in the ―learning to efficiently rank‖ framework.

VI. CONCLUSION

:

In this paper we show how the efficiency can be improved

with data optimization, vectorization, predication, learning

and ranking as a whole in one paper which gives more

efficiency in the datasets environment rather than emerged

papers . The process of optimizing data can shorten

development, elimination of redundant data reduce costs

and ensure data security. Vectorization process is like

parallelism inside a single CPU core, achieved by applying

a CPU instruction to multiple data elements at once.

Vectorizing a loop can deliver a significant performance

boost and it also improves the scalability. The main

purpose of predication is to avoid jumps over very small

sections of program code, increasing the effectiveness

of pipelined execution and avoiding problems with the

cache. Predication and vectorization, coupled with a more

compact memory layout, can significantly accelerate the

runtime performance for tree-based models, both on

synthetic data and on real-world learning-to-rank datasets.

The learning and ranking is based on the priority of the

data. That is, the frequently searched words will be ranked

high and vice versa. We have given the current trend

towards machine learning in larger data sets, we expect our

algorithm to increase in both relevance and utility in the

foreseeable future.

REFERENCES

[1] N. Asadi and J. Lin, ―Training efficient tree-based models for

document ranking,‖ in Proc.34th ECIR , Moscow, Russia, 2013.

[2] Nima Asadi, Jimmy Lin, and Arjen P. de Vries ―Runtime

optimizations for tree based machine learning models‖, in 2014.

[3] S. Tyree, K. Q. Weinberger, and K.Agrawal, ―Parallel boosted

regression trees for web search ranking,‖ in Proc. 20th Int. Conf.

WWW, Hyderabad, India, 2011, pp. 387–396.

[4] B. Panda, J. S. Herbach, S. Basu, and R. J. Bayardo, ―PLANET:

Massively parallel learning of tree ensembles with mapreduce,‖

 in Proc. 35th Int. Conf. VLDB, Lyon, France, 2009, pp. 1426–1437.

[5] A. Lazarevic and Z. Obradovic. Boosting algorithms

for parallel and

distributed learning. Distributed and

Parallel Databases, 11(2):203–

229, 2002.

[6] N. Uyen and T. Chung. A new framework for

distributed boosting

algorithm. Future Generation

Communication and Networking,

1:420–423, 2007.

[7] G. Webb. Multiboosting: A technique for combining

boosting and

wagging. Machine learning,

40(2):159–196, 2000.

[8] J. Rao and K. A. Ross, ―Cache conscious indexing for decisionsupport

in main memory,‖ in Proc. 25th Int. Conf. VLDB,

Edinburgh, U.K.,

1999, pp. 78–89.

[9] D. I. August, W. W. Hwu, and S. A. Mahlke, ―A framework for

balancing control flow and predication,‖ in Proc. 30th MICRO,

North Carolina, NC, USA, 1997, pp. 92–103.

[10] H. Kim, O. Mutlu, Y. N. Patt, and J. Stark, ―Wish branches:

Enabling
adaptive and aggressive predicated execution,‖ IEEE

Micro, vol. 26,

no. 1, pp. 48–58, Jan./Feb. 2006.

[11] M. Zukowski, P. Boncz, N. Nes,

and S. Héman,

―MonetDB/X100—
A DBMS in the CPU cache,‖ IEEE Data

Eng. Bull., vol. 28, no. 2,

pp. 17–22, Jun. 2005

[12] P. A. Boncz, M. Zukowski, and N. Nes, ―MonetDB/X100:
Hyperpipelining

query execution,‖ in Proc. 2nd Biennial CIDR, Pacific

Grove, CA, USA,

2005.

[13] B. V. Essen, C. Macaraeg, M. Gokhale, and R. Prenger,

―Accelerating a random forest classifier: Multi-core, GP-GPU, or

 FPGA?‖ in Proc. IEEE 20th Annu. Int. Symp. FCCM, Toronto, ON,

 Canada, 2012, pp. 232–239.

Naveena.R

 Saigeetha.S

 Rajalakshmi.S

International Journal of Engineering Research & Technology (IJERT)

ISSN: 2278-0181

Published by, www.ijert.org

NCRTET-2015 Conference Proceedings

Volume 3, Issue 04

Special Issue - 2015

4

