

Interactive Genetic Algorithms and their

Application in Fashion Design

Nazanin Alsadat Tabatabaei Anaraki, B.Sc
Graduate Faculty of Texas Tech University in

Partial Fulfillment of the Requirements for

the Degree of Master of Science

2500 Broadway, Lubbock, TX 79409, USA

INTRODUCTION

Fashion design is an industry closely connected to

our lives and it is one of the most important representations

of human civilization. People used to either make their own

clothes or buy them from small local producers. However,

the Industrial Revolution enabled the shift to mass

production. In order for the clothing industry to compete

with other industries, it should utilize modern technologies.

Since most consumers are not professional

designers, those who desire custom-made clothing contact

a designer to help them with the process. This approach,

however, is not efficient in terms of time and cost, and it

often does not reflect the consumer’s personal taste as much

as desired.

This paper proposes a design system using the

Interactive Genetic Algorithm (IGA) to overcome these

problems. The system is designed in the Rhinoceros 3D

software, using python . The user will find the design that

appeals to her the most by exploring this evolutionary

environment and evaluating the designs in each step until

the satisfactory result is achieved.

The remainder of the thesis is organized as

follows: in Section 2, I introduce the background and

current methods used in fashion design as well as the

concept of the applications of IGA. Section 3 gives the

overview of the system. The system implementation and

user interface are given in Section 4. The effectiveness of

the pro-posed methodology is analyzed by experiments in

Section 5. Finally, conclusions are summarized in Section

6.

BACKGROUND

Fashion Design Aid System

Today, advances in information technology along

with the globalization of the world’s economy have made a

major change in the production process of many industries.

The fashion industry, which is closely connected to our

lives, has also shifted from small local production to mass

production and then to make-to-order [1].

The fashion industry’s main concern is to respond

to clients’ demands rapidly but at minimal cost [2, 3]. To

achieve this goal, computer-aided fashion design can be

used to enhance the efficiency of product development.

Although there are different systems available for fashion

design, such as Adobe Illustrator and AutoCAD, avail-able

for fashion design, they are usually for professionals only

and hard for non-professionals to use.

Appearance style is a metaphor for identity:

through this kind of personal interpretation of or resistance

to fashion, individuals announce who they are and who they

hope to become [4]. Hence, a fashion design system that

helps an ordinary person design her appealing fashion is

very useful.

But what is “the most appealing fashion design”?

People have different opinions on this matter, and the image

they have in mind is often ambiguous and fuzzy. Therefore,

it is difficult to design human evaluation functions. To

reflect such human sensibility, this study proposes using

Interactive Genetic Algorithm (IGA). IGA differs from the

conventional Genetic Algorithms (GA) in its evaluation of

the fitness function [5]. In conventional GA, the objective

function is numerically defined, while in IGA, the fitness

function is replaced by a human user. IGA “interacts” with

users and incorporates the emotion and preference of the

user in the process of evolution; therefore, the user’s

subjective evaluation determines the fitness of the solution

[6]. IGA has been applied to optimization [7,8], designing

the layout and lighting of rooms [9], fashion [10], web sites

[11], data mining [12,13], and music composition [14], all

according to the users’ preferences.

International Journal of Engineering Research & Technology (IJERT)

ISSN: 2278-0181http://www.ijert.org

IJERTV6IS090050
(This work is licensed under a Creative Commons Attribution 4.0 International License.)

Published by :

www.ijert.org

Vol. 6 Issue 09, September - 2017

365

Abstract - These days, consumers can make their choice from

a wide variety of clothes provided in the market; however,

some prefer to have their clothes custom-made. Since most of

these consumers are not professional designers, they contact a

designer to help them with the process. This approach,

however, is not efficient in terms of time and cost and it does

not reflect the consumer’s personal taste as much as desired.

This study proposes a design system using interactive genetic

algorithm (IGA) to overcome these problems. IGA differs

from traditional genetic algorithm (GA) by leaving the fitness

function to the personal preference of the user. The proposed

system uses user’s taste as a fitness value to create a large

number of design options, and it is based on an encoding

scheme describing a dress as a two-part piece of clothing. The

system is designed in the rhinoceros 3d software, using python,

which provides good speed and interface options. The

assessment experiments with several subjects indicated that

the proposed system is effective.

Genetic Algorithm and Interactive Genetic Algorithm

Interactive genetic algorithms are a subset of

genetic algorithms. Genetic algorithms, first explored by

John Holland, are used to solve optimization and search

problems by emulating principles of biological evolution

[15]. GAs set variables up as genes and combine them to

make designs. GAs then iteratively evaluate designs against

a fitness test and select the best designs from a group to be

used to make the next generation, these designs are subject

to mutation and combination of traits, similar to biological

evolution [16]. Instead of improving a single design, as seen

in Fig. 1, a population of solutions is examined to find the

best solutions, which are then recombined or mutated to

generate a new population of (better) solutions. The general

GA process is as follows [17]:

o Step 1: Initialize the population of chromosomes.

o Step 2: Calculate the fitness for each individual in

the population using a fitness function.

o Step 3: Reproduce individuals to form a new

population according to each individual’s fitness.

o Step 4: Perform crossover and mutation on the

population.

o Step 5: Go to step (2) until a particular condition

is satisfied.

Here is the pseudocode [18]:

BEGIN

Create a random set of initial solutions

LOOP:

Choose a subset of good solutions

according to some ‘‘fitness measure’’.

Perform recombination on randomly

chosen pairs of solutions.

Perform mutation on randomly chosen

solutions.

UNTIL (population is stable)

END

Fig.1. GA Process

To use GA for a problem, we should be able to

parameterize the problem. Each parameter is considered a

gene that can be represented through binary numbers. A

combination of several genes creates a chromosome. Each

singular representation of the chromosome within a

population is termed a genotype [19]. An individual’s

fitness is calculated through decoding its genotype. In order

to create new individuals for the next population, two

individuals are submitted to crossover. To perform a single

point crossover, as shown in Fig. 2, a crossover point is

selected in each parents’ genotype, then all data beyond that

point is swapped between the two parents. The two-point

crossover occurs by swapping everything between two

selected points in parents’ genotype. Fig.3 shows a visual

representation of the crossover operation.

Fig.2. Left: Single Point Crossover. Right: Two Points Crossover

International Journal of Engineering Research & Technology (IJERT)

ISSN: 2278-0181http://www.ijert.org

IJERTV6IS090050
(This work is licensed under a Creative Commons Attribution 4.0 International License.)

Published by :

www.ijert.org

Vol. 6 Issue 09, September - 2017

366

Fig.3. Visual Representation of Crossover Operation

To introduce more diversity, and potentially find

drastically new solutions, mutation is utilized [19](Fig.4).

Mutation occurs according to a user-definable mutation

probability that is typically set to low. In the mutation

process, as seen in Fig. 5, one point of the individual’s

genotype is modified.

Fig.4. Visual Representation of Mutation Operation. In this example, those offspring marked with a star are those that required more than one mutation to

produce.

Fig.5. Mutation Operation

IGAs are similar to GAs, except the fitness

function of the GA is replaced by a user evaluation of

solution options. Human subject selects the most successful

designs that will be used to create the next generation of

designs. Interactive Genetic Algorithms were originally

proposed by Dawkins [20] and led to works within

computer art community. One example of evolutionary art

is “Galapagos” exhibit by Karl Sims which allowed for

discovery of interesting figures in a population of three-

dimensional virtual organisms [21].

International Journal of Engineering Research & Technology (IJERT)

ISSN: 2278-0181http://www.ijert.org

IJERTV6IS090050
(This work is licensed under a Creative Commons Attribution 4.0 International License.)

Published by :

www.ijert.org

Vol. 6 Issue 09, September - 2017

367

 SYSTEM DESIGN

Types

GUD

A GUD (General Upper Design) is an integer in

{1..10}. Each GUD refers to one of the 10 different

definitions, designed with grasshopper for an upper body

design piece. As an example, Fig. 6 shows the grasshopper

definition for GUD number 9 and Fig.7 displays its

representation in the rhinoceros interface. To be able to

show this GUD, 3 initial values have been set for its list of

parameters. Fig. 8 shows GUD number 9 with a different

list of parameters. Parameters are discussed in more detail

in the following sections.

Fig.6. Grasshopper definition for GUD number 9

Fig.7. Representation of GUD number 9 in rhinoceros interface

Fig.8. Representation of GUD number 9 in rhinoceros interface with a different list of parameters

GLD

A GLD (General Lower Design) is an integer in

{1..10}. Each GLD refers to one of the 10 different

algorithms, designed with grasshopper for a lower body

design piece. As an example, Fig. 9 shows the grasshopper

definition for GLD number 7 and Fig.10 displays its

representation in the rhinoceros interface. To be able to

show this GUD, 3 initial values have been set for its list of

parameters. Fig. 11 shows GUD number 9 with a different

list of parameters. Parameters are discussed in more detail

in the fol-lowing sections.

International Journal of Engineering Research & Technology (IJERT)

ISSN: 2278-0181http://www.ijert.org

IJERTV6IS090050
(This work is licensed under a Creative Commons Attribution 4.0 International License.)

Published by :

www.ijert.org

Vol. 6 Issue 09, September - 2017

368

Fig.9. Grasshopper definition for GLD number 7

Fig.10. Representation of GLD number 7 in rhinoceros interface

Fig.11. Representation of GLD number 7 in rhinoceros interface with a different list of parameters

Individual

An individual refers to a 2 piece dress consisting of

Upper and Lower parts with spe-cific parameters. An

individual is a dictionary of the form {'upper':X, 'lower':Y,

'up-perParms': L1, 'lowerParms':L2} where

o X is a GUD

o Y is a GLD

o L1 is a list of integers. Each of its members is a

number in range(1,10).

o L2 is a list of numbers. Each of its members is a

number in range(1,10).

As an example, Fig.12 shows an individual with the

following dictionary: {‘upper’:9, ‘lower’:7,

‘upperParms’:[8,5.3,10],’lowerParms’:[5,9,0]}.

International Journal of Engineering Research & Technology (IJERT)

ISSN: 2278-0181http://www.ijert.org

IJERTV6IS090050
(This work is licensed under a Creative Commons Attribution 4.0 International License.)

Published by :

www.ijert.org

Vol. 6 Issue 09, September - 2017

369

Fig.12. An individual with the following dictionary: {‘upper’:9, ‘lower’:7, ‘up-perParms’:[8,5.3,10],’lowerParms’:[4,10,5]}

Fig.13 shows an individual with the following

dictionary: {‘upper’:9, ‘lower’:7, ‘up-

perParms’:[8,5.3,10],’lowerParms’:[5,18,0]}. By

comparing Fig.12 and Fig.13 we realize that a change in the

parameters in ‘lowerParms’ will result in a change in GLD.

In the case of ‘GLD’:7, the list of ‘lowerParms’ controls the

size, shape and orienta-tion of the openings in the respective

design.

Fig.13. An individual with the following dictionary: {‘upper’:9, ‘lower’:7, ‘up-perParms’:[8,5.3,10],’lowerParms’:[5,18,0]}

International Journal of Engineering Research & Technology (IJERT)

ISSN: 2278-0181http://www.ijert.org

IJERTV6IS090050
(This work is licensed under a Creative Commons Attribution 4.0 International License.)

Published by :

www.ijert.org

Vol. 6 Issue 09, September - 2017

370

Fig.14 shows an individual with the following

dictionary: {‘upper’:9, ‘lower’:7, ‘up-

perParms’:[10,6,5],’lowerParms’:[5,9,0]}. By comparing

Fig.13 and Fig.14 we realize that a change in the parameters

in ‘upperParms’ will result in a change in GUD. In the case

of ‘GLD’:7, the list of ‘upperParms’ controls the shape and

number of vertical and horizontal divisions.

Fig.14. An individual with the following dictionary: {‘upper’:9, ‘lower’:7, ‘up-perParms’:[10,6,5],’lowerParms’:[5,9,0]}

Population

A population is a list of 6 individuals.

Report

A Report is a list of 2 integers in the form of [X,Y],

where X is an integer in {1..10} and Y is an integer in

{1..10}. In a report[X,Y] , X is the user’s favorite design in

a population and Y is the user’s second favorite design.

Functions

Crossover

Crossover is a random function from pairs of

individuals to individuals. The new individual consists of

either the upper part of the first and lower part of the second

parent, or the upper part of the second and lower part of the

first parent. If A is an individual with the dictionary:

{‘upper’:9, ‘lower’:7, ‘upperParms’:[8,5.3,10],

’lowerParms’: [5,9,0]} and B is an individual with the

dictionary: {‘upper’:10, ‘lower’:5, ‘upperParms’:[3,3,10],

’lowerParms’: [10,5,0.25]}, Fig 15. Shows possible

individual C produced by their crossover with the

following dictionary: {‘upper’:10, ‘lower’: 7,

‘upperParms’:[3,3,10],’lowerParms’:[5,9,0]. This

dictionary results in an individual with the upper design of

individual B and lower design of individual A. Fig. 16

demonstrates individual D which is another possible

individual produced by the crossover of A and B.

Individual D has the upper design of individual A and lower

design of individual B and is shown with the following

dictionary: {‘upper’:9, ‘low-er’:5, upperParms’: [3,3,10],

’lowerParms’:[5,9,0]}.

International Journal of Engineering Research & Technology (IJERT)

ISSN: 2278-0181http://www.ijert.org

IJERTV6IS090050
(This work is licensed under a Creative Commons Attribution 4.0 International License.)

Published by :

www.ijert.org

Vol. 6 Issue 09, September - 2017

371

Fig.15. Crossover of Individual A with the dictionary {‘upper’:9, ‘lower’:7, ‘upperParms’:[8,5.3,10], ’lowerParms’: [5,9,0]} and B with the dictionary:
{‘upper’:10, ‘lower’:5, ‘upperParms’:[3,3,10], ’lowerParms’: [10,5,0.25]} and their possible child C with the dictionary: {‘upper’:10, ‘lower’: 7,

‘upperParms’:[3,3,10],’lowerParms’:[5,9,0]

Fig.16. Cross over of Individual A with the dictionary {‘upper’:9, ‘lower’:7, ‘upperParms’:[8,5.3,10], ’lowerParms’: [5,9,0]} and B with the dictionary:
{‘upper’:10, ‘lower’:5, ‘upperParms’:[3,3,10], ’lowerParms’: [10,5,0.25]} and their possible child D with the dictionary: {‘upper’:9, ‘lower’:5, upperParms’:

[3,3,10], ’lowerParms’:[5,9,0]}

International Journal of Engineering Research & Technology (IJERT)

ISSN: 2278-0181http://www.ijert.org

IJERTV6IS090050
(This work is licensed under a Creative Commons Attribution 4.0 International License.)

Published by :

www.ijert.org

Vol. 6 Issue 09, September - 2017

372

Mutation

Mutation is a random function from individuals to

individuals, which changes a random element in either the

list of upperParms or lowerParms of an individual. The

process works as follows. The list of upperParm or

lowerParms of an individual is chosen at random. An

element from one of the 3 element in that list is chosen

randomly and replaced with a randomly generated number

in {0..10}

Fig.17 shows the individual we want to perform mutation on.

This individual has the following dictionary: {‘upper’:3, ‘lower’:4,

‘upperParms’: [9,10,1], ’lower-Parms’:[10,10,4]}.

Fig.17. An individual with the dictionary: {‘upper’:3, ‘lower’:4, ‘upperPArms: [9,10,1], ‘lowerParms’: [10,10,4]}

Performing mutation on Fig.17 can generate an

individual with the following diction-ary: {‘upper’:3,

‘lower’:4, ‘upperParms’: [9,10,1], ’lowerParms’:[10,10,6]}

(Fig.18). The mutation operation has changed the third

element in the list of lowerParms of that individual, causing

a change in the placement of the openings in the lower

design of that individual.

Fig.18. An individual, which is a mutation on the individual in Fig.17, with the dictionary: {‘upper’:3, ‘lower’:4, ‘upperPArms: [9,10,1], ‘lowerParms’:

[10,10,6]}

Performing mutation on Fig.17 can also generate

an individual with the following dictionary: {‘upper’:3,

‘lower’:4, ‘upperParms’: [9,10,1], ’lowerParms’:[10,5,6]}

(Fig.19). This time, the mutation operation has changed the

second element in the list of lowerParms of that individual,

causing a change in the horizontal division of the lower

design.

International Journal of Engineering Research & Technology (IJERT)

ISSN: 2278-0181http://www.ijert.org

IJERTV6IS090050
(This work is licensed under a Creative Commons Attribution 4.0 International License.)

Published by :

www.ijert.org

Vol. 6 Issue 09, September - 2017

373

Fig.19. An individual, which is a mutation on the individual in Fig.17, with the dictionary: {‘upper’:3, ‘lower’:4, ‘upperPArms: [9,10,1], ‘lowerParms’:
[10,5,4]}

Performing mutation on Fig.17 can also generate

an individual with the following dictionary: {‘upper’:3,

‘lower’:4, ‘upperParms’: [6,10,1], ’lowerParms’:[10,10,4]}

(Fig.20). This time, the mutation operation has changed the

first element in the list of upperParms of that individual,

causing a change in the horizontal placement of the spikes

on the upper design.

Fig.20. An individual with the dictionary: {‘upper’:3, ‘lower’:4, ‘upperPArms: [6,10,1], ‘lowerParms’: [10,10,4]}

Step

If x is the user's favorite dress in population p, y is

the user's second favorite dress in population p, and a,b,c,

and d are the remaining members of p, then step(p) is a new

population consisting of the following individuals:

1. X

2. a mutation of x

3. a mutation of the crossover of x and y

4. a crossover of x with a random member of {a,b,c,d}

5. a crossover of mutation of a random member of

{a,b,c,d} and a new individual

6. a new individual

The System Design

Fig. 21 shows the overview of the entire system.

To create the initial population, the system selects random

elements and combines them into 6 dress designs. User

gives his fitness value by selecting 2 of his favorite designs

in order of favorability. The system uses a pre-defined

parent selection to choose pairs of designs for divergent and

recombination. After applying crossover and mutation, the

results are displayed again and this loop continues until a

International Journal of Engineering Research & Technology (IJERT)

ISSN: 2278-0181http://www.ijert.org

IJERTV6IS090050
(This work is licensed under a Creative Commons Attribution 4.0 International License.)

Published by :

www.ijert.org

Vol. 6 Issue 09, September - 2017

374

desired design is found. As a summary, here is a

pseudocode description of the algorithm:

o step 1:Generation of the first population. The GUD,

GLD, upperParms and lowerParms of each individual

in this population are randomly selected.

o Step 2:display: The 6 individuals are presented to the

user through the user inter-face.

o Step 3:Happy with the result? If so, end. If not, go to

step 4.

o Step 4: Evaluation. In response to the presented

population, the user is asked to give a report based on

his subjective view. This evaluation will count as the

fitness function in the IGA process.

o Step 5:reproduction. According to the choice of the

user, either the convergent or divergent type of

reproduction is used to create a new population. Go to

step 2.

Fig.21. Flow diagram showing the system overview

The overall system algorithm in python is provided in

appendix A.

User’s Fitness Value

Some researchers have proposed IGA systems in

which users must rank each design within each set of a

generation, while others have argued that such ranking

causes user fatigue [19, 22, 23, 24]. Instead, they propose

that users should identify their most and least preferred

among a set because these are easier to identify than a whole

ranking. This consequently reduces fatigue and provides a

wealth of information [19]. For this research, 6 designs are

displayed in each generation and the user will select his/her

two favorite designs in each generation according to his

preference. However, in the last generation the user will

only select one final favorite design.

SYSTEM IMPLEMENTATION

The system is designed in the Rhinoceros and

grasshopper software because of the precise designing tool

they offer. Unfortunately, because of the current design

decisions of the python component in grasshopper, the

design of the system had to be transferred to Python shell,

while the display of the population remained in Rhinoceros.

Fig. 22 shows the user interface of the system (A demo of

the interface can be found at

https://www.youtube.com/watch?v=OJHHtnASRRU). The

system displays current population composed of six designs

(Fig. 23) in one screen. The number of the individual is

shown next to each individual model. To decrease user

fatigue, only 2 designs should be selected in each

population. The selected designs have a higher probability

to be used for recombination in the next generation.

International Journal of Engineering Research & Technology (IJERT)

ISSN: 2278-0181http://www.ijert.org

IJERTV6IS090050
(This work is licensed under a Creative Commons Attribution 4.0 International License.)

Published by :

www.ijert.org

Vol. 6 Issue 09, September - 2017

375

Fig.22. User Interface

Fig.23. Population Example

As seen in Fig.24 upper left part of the screen shows the Python shell that lets the user interact with the system by

providing the numbers of individuals for the report, stating if they want a new population to be generated, or if they want to end

the loop.

International Journal of Engineering Research & Technology (IJERT)

ISSN: 2278-0181http://www.ijert.org

IJERTV6IS090050
(This work is licensed under a Creative Commons Attribution 4.0 International License.)

Published by :

www.ijert.org

Vol. 6 Issue 09, September - 2017

376

Fig.24. Python shell user interface

User can input her measurements in the grasshopper interface (Fig.25). There is a button provided to display the population in

the Rhinoceros interface.

Fig.25. Grasshopper Interface

User can select a design to view in the right part of

the screen and can rotate and zoom in the selected

individual (Fig.26). To get more detail on a selected

individual, its genes are shown in the grasshopper interface.

This design can be exported and saved for further use (e.g.

3D printing) with a click of a button provided in the

grasshopper interface.

International Journal of Engineering Research & Technology (IJERT)

ISSN: 2278-0181http://www.ijert.org

IJERTV6IS090050
(This work is licensed under a Creative Commons Attribution 4.0 International License.)

Published by :

www.ijert.org

Vol. 6 Issue 09, September - 2017

377

Fig.26. Selected view

IGAs can help enhance creativity because they can

operate in both divergent and convergent ways [19]. We

have implemented both operations in order to find new and

interesting design concepts while retaining the

characteristics that the user already liked. To model

convergence, we gave a high probability to the designs

selected by the user to become parents for the population of

the new generation. Then, we applied a low mutation rate

on the created designs. This process allows users to con-

verge toward a design that is appealing to them.

Mistuned GAs may cause drastic diverge from

their intended goal which increases in each generation.

Thus, high mutation rates should be avoided in order to

prevent random mutation during the process. In this system

we managed to explore the design environment without

diverging drastically from the main goal, while expecting

unique inspiring designs.

EXPERIMENTAL OVERVIEW

Experimental Overview Number 1

To examine the performance of the system, we

implemented it in both convergent and divergent process.

In the convergent process, we allocated a lower mutation

rate and a higher probability of the selected designs being

used for creating the next population. For the divergent

process, we allocated a higher mutation rate and a lower

probability of the selected designs being used for the

creation of the next population. This system allows for the

implementation of both of these processes simultaneously.

Our tests showed that the first 4-6 generations were

considered divergent, and after that the generations tend to

be more convergent. For This experiment, I modified the

system, such that in each generation, the user would decide

whether he wants the new population to have a higher

randomness and mutation value (for exploring different

designs) or a lower one that would let them converge

toward a specific design of their choice. This experiment

showed the improved system to be somewhat effective.

(Fig.27) However, some users tend to use the divergent

operator too often, which did not allow the system to be as

convergent as it is intended to be. For further exploration of

this system, we propose focusing on the limitation of the

use of this operator to prevent this situation.

International Journal of Engineering Research & Technology (IJERT)

ISSN: 2278-0181http://www.ijert.org

IJERTV6IS090050
(This work is licensed under a Creative Commons Attribution 4.0 International License.)

Published by :

www.ijert.org

Vol. 6 Issue 09, September - 2017

378

Fig.27. The result of the experimental overview number 1

Experimental Overview Number 2

We examined user satisfaction with our system by

testing a group of 8 experiment subjects. They were asked

to design an avant-garde dress that they would wear on a

fashion runway using our proposed system and another

online fashion design system. They were then asked to

report which one of the systems they found more effective.

Fig.28 shows the results of this experiment. The subjects

were also asked to provide comments about both of these

tools. They called the designs in the existing fashion tools

mundane and not fashionable. However, they suggested an

improvement on the proposed system to make it work

faster. In addition, they asked for an easier interface,

however, the interface was not an important part of this

project, since the focus was mainly on the algorithms and

system behind this program. They also asked for designs to

be more realistic and suitable for daily use (instead of

designs suitable for fashion runway).They stated that they

would not necessarily prefer the proposed system over the

online fashion aid system for a dress suitable for daily use.

However, this was not the aesthetic measure that was

decided to use in this project. We wanted the designs to be

more structural and inspired by architecture, rather than

normal designs for daily use. In conclusion, the experiments

showed a promising result on the application of IGA for a

fashion design aid system for non-professionals.

Fig.28. The result of the experimental overview number 2

International Journal of Engineering Research & Technology (IJERT)

ISSN: 2278-0181http://www.ijert.org

IJERTV6IS090050
(This work is licensed under a Creative Commons Attribution 4.0 International License.)

Published by :

www.ijert.org

Vol. 6 Issue 09, September - 2017

379

Experimental Overview Number 3

We examined user satisfaction with the proposed

IGA system in contrast to the basic GA system by testing a

group of 8 experiment subjects. We asked the subjects to

design a cool-looking costume, using the proposed IGA

system. They were asked to do the same thing also by using

the basic GA system, which does not ask for the user input

to create each population. Instead, in each generation, the

basic GA system generates the new population by random.

They had to find their favorite design in less than 10

generations. The results showed the IGA system to be more

effective than basic GA system.

Fig.29. The result of the experimental overview number 3

Experimental Overview Number 4

It is difficult to show the convergence of IGA with

quantitative analysis because it is operated based on

human’s evaluation. We have requested 5 subjects to find

cool looking and elegant design using the system for 10

generations. They were asked to rank their favorite design

in each generation from 1 to 5. Fig.30 shows the changes of

the grade on average. This figure shows the steady

improvement of the result over generations. The cool

looking case shows better results than the elegant one,

because the meaning of ‘elegant’ might be more complex

and various than that of ‘cool-looking, or it might be that

the proposed system can produce dresses with cool looking

value rather than elegance.

Fig.30. The result of the experimental overview number 4

International Journal of Engineering Research & Technology (IJERT)

ISSN: 2278-0181http://www.ijert.org

IJERTV6IS090050
(This work is licensed under a Creative Commons Attribution 4.0 International License.)

Published by :

www.ijert.org

Vol. 6 Issue 09, September - 2017

380

Future Development

An important aspect of human computer

interaction is the idea that a computer system should allow

the user to make use of their increased knowledge about the

system as they use it more frequently [25]. As users gain

more experience with the system, they grow some

understanding of how different parameters affect the

design. To use this knowledge, we propose an option in the

interface to adjust values of those parameters, which affect

not the absolute values of those parameters but how much

the algorithm explores those regions of parameter space, i.e.

the extent to which corresponding regions of the genome

are mutated [18]. In addition, an option to adjust the

exploration rate could be also useful. This option could

provide the user with control over the mutation and

crossover rate.

CONCLUSION

This study proposed a fashion design aid system

for non-professionals by using IGA. The proposed system,

which is designed in the Rhinoceros and grasshopper

software, with utilization of python shell uses user’s taste

as a fitness value to create a large number of design options.

The experimental tests showed that users are significantly

satisfied with the system; therefore using IGA for a fashion

design aid system is a proper choice.

We tested the performance of our system in both

convergent and divergent ways. The results showed the

system to be effective in both ways. These two concepts can

help enhance creativity. With an appropriate

implementation of both these operations, we can allow for

reaching to an appealing design, while exploring the unique

interesting designs in our system environment.

To improve our system, we propose to add an

option in the interface to adjust the parameters that affect

the design. In addition, an option to adjust the exploration

rate could be also useful. This option can provide the user

with control over the mutation and crossover rate.

We also suggest adding a mutation operator

allowing local exploration of a selected design. To further

improve this study, we propose to focus on limitation of this

operator, to prevent the system from being one-dimensional

and not being able to explore the design environment.

ACKNOWLEDGEMENTS

Firstly, I would like to express my sincere gratitude to

my advisor Prof. Flueckiger for the continuous support of

my Ph.D study and related research, for his patience,

motivation, and immense knowledge.

Besides my advisor, I would like to thank the rest of

my thesis committee. My sincere thanks goes to Dr.

Rushton who provided me extensive personal and

professional guidance and taught me a great deal about both

scientific research and life in general.

Nobody has been more important to me in the pursuit of this

project than the members of my family. I would like to

thank my parents, whose love and guidance are with me in

whatever I pursue. They are the ultimate role models. I am

also grateful to my other family members and friends who

have supported me along the way.

BIBLIOGRAPHY
[1] M’Hallah, R., Bouziri, A.: Heuristics for the combined cut order

planning two-dimensional layout problem in the apparel industry.

Int. Trans. Oper. Res. 23(1–2), 321–353 (2016)
[2] Guo, Z.X., Wong, W.K., Leung, S.Y.S., Fan, J.T., Chan, S.F.:

Mathematical model and genetic optimization for the job shop

scheduling problem in a mixed and multi-product assembly
environment: a case study based on the apparel industry. Comput.

Ind. Eng. 50, 202–219 (2006)

[3] Rose, D., Shier, D.: Cut scheduling in the apparel industry. Comput.
Oper. Res. 24, 3209– 3228 (2007)

[4] Kaiser, S.B.: Fashion and Cultural Studies. Berg, London (2012).

English edition
[5] Gonsalves, T., Kawai A.: Fourth International conference on

Computer Science & Information Technology, pp. 169–174 (2014)

[6] Hu, Z.-H., Ding, Y.-S., Zhang, W.-B., Yan, Q.: An interactive co-
evolutionary CAD system for garment pattern design. Comput.

Aided Des. 40(12), 1094–1104 (2008).

doi:http://dx.doi.org/10.1016/j.cad.2008.10.010

[7] Sakawa, M., Yauchi, K.: Interactive decision making for

multiobjective nonconvex programming problems with fuzzy

numbers through coevolutionary genetic algorithms. Fuzzy Sets
Syst. 114(1), 151–165 (2000)

[8] Sakawa, M., Nishizaki, I.: Interactive fuzzy programming for two-
level nonconvex programming problems with fuzzy parameters

through genetic algorithms. Fuzzy Sets Syst. 127(2), 185–197 (2002)

[9] Fukada, Y., Sato, K., Mitsukura, Y., Fukumi, M.: The room design
system of individual preference with IGA. In: International

Conference on Control, Automation and Systems, Seoul, Korea

(2007)
[10] Kim, H.S., Cho, S.B.: Application of interactive genetic algorithm to

fashion design. Eng. Appl. Artif. Intell. 13(6), 635–644 (2000)

[11] Oliver, A., Monmarche, N., Venturini, G.: Interactive design of web
sites with a genetic algorithm. In: Proceedings of the IADIS

International Conference WWW/Internet, Lisbon, Portugal, pp. 355–

362 (2002)
[12] Kim, H.-S., Cho, S.-B.: Application of interactive genetic algorithm

to fashion design. Eng. Appl. Artif. Intell. 13(6), 635–644 (2000)

[13] Gong, D.-W., Hao, G.-S., Zhou, Y., Sun, X.-Y.: Interactive genetic

algorithms with multipopulation adaptive hierarchy and their

application in fashion design. Appl. Math. Comput. 185(2), 1098–

1108 (2007)
[14] Tokui, N., Iba, H.: Music composition with interactive evolutionary

computation. In: Proceedings of the Generative Art 2000,

International Conference on generative Art, Milan, Italy (2000)
[15] Holland, J.: Adaptation in Natural and Artificial System. The

University of Michigan Press, Ann Arbor (1975)

[16] Nathan-Roberts, D.: Using Interactive Genetic Algorithms to
Support Aesthetic Ergonomic Design. Dissertation, University of

Michigan. Ann Arbor, Michigan: ProQuest/UMI (inpress)

[17] Eberhart, R., Simpson, P., Dobbins, R.: Computational Intelligence
PC Tools. Waite Group Press, Corte Madera (1996)

[18] Johnson, C.B.: Exploring the sound-space of synthesis algorithms

using interactive genetic algorithms. In: Patrizio, A., Wiggins, G.A.,
Pain, H. (eds.) Proceedings of the AISB 1999 Symposium on

Artificial Intelligence and Musical Creativity. Brighton: Society for

the Study of Artificial Intelligence and Simulation of Behaviour
(1999)

[19] Kelly, J.C.: Interactive genetic algorithms for shape preference

assessment in engineering design. ProQuest (2008)

[20] Dawkins, R.: The Blind Watchmaker: Why the Evidence of

Evolution Reveals a Universe Without Design. Norton, New York

(1996)
[21] Frauenfelder, M.: Do-it-yourself darwin. Wired 6(10), 164 (1998)

[22] Buonanno, M.A., Mavris, D.N.: Small supersonic transport concept

evaluation using interactive evolutionary algorithms. In: Collection
of Technical Papers – AIAA 4th Aviation Technology, Integration,

and Operations Forum, ATIO, vol. 1, pp. 411–426, 20–23 September

2004

International Journal of Engineering Research & Technology (IJERT)

ISSN: 2278-0181http://www.ijert.org

IJERTV6IS090050
(This work is licensed under a Creative Commons Attribution 4.0 International License.)

Published by :

www.ijert.org

Vol. 6 Issue 09, September - 2017

381

[23] Cho, S.B.: Towards creative evolutionary systems with interactive

genetic algorithm. Appl. Intell.: Int. J. Artif. Intell. Neural Netw.

Complex Probl. Solving Technol. 16(2), 129–38 (2002)

[24] Kamalian, R., Zhang, Y., Takagi, H., Agogino, A.M.: Reduced

human fatigue interactive evolutionary computation for
micromachine design. In: Proceedings of 2005 International

Conference on Machine Learning and Cybernetics, vol. 9 (2005)

[25] Preece, J., Rogers, Y., Sharp, H., Benyon, D., Holland, S., Carey, T.:
Human-Computer Interaction. AddisonWesley, Essex (1994)

APPENDIX A

THE SYSTEM ALGORITHM

import random

#import time

a=[]

#random.seed(time.clock())

f = open('thesis.txt', 'r+')

#GUD.

#A GUD (General Upper Design) is an integer in {1..10}.

#Each GUD refers to one of the 10 different definitions,

designed with grasshopper for an upper body design piece.

#GLD.

#A GLD (General Lower Design) is an integer in {1..10}.

#Each GLD refers to one of the 10 different algorithms,

designed with grasshopper for a lower body design piece.

#Individual.

#An individual refers to a 2 piece dress consisting of Upper

and Lower parts with spe-cific parameters. An individual is

a dictionary of the form {'upper':X, 'lower':Y, 'up-

perParms': L1, 'lowerParms':L2} where

#X is a GUD

#Y is a GLD

#L1 is a list of integers. Each of its members is a number in

range(0.1,10).

#L2 is a list of numbers. Each of its members is a number

in range(0.1,10).

#Population.

#A population is a list of 6 individuals.

#Report.

#A Report is a 2-tuple of integers in the form of (X,Y),

where X is an integer in {1..10} and Y is an integer in

{1..10}.

#In a report(X,Y) , X is the user’s favorite design in a

population and Y is the user’s second favorite design.

#Crossover.

#Crossover is a random function from pairs of individuals

to individuals.

#The new individual consists of either the upper part of the

first and lower part of the second parent, or the upper part

of the second and lower part of the first parent.

#Crossover: individual*individual->individual

def crossover(individual1,individual2):

 X1= {'upper':individual1['upper'], 'lower':

individual2['lower'], 'upperParms':

individual1['upperParms'], 'lowerParms':

individual2['lowerParms'] }

 X2= {'upper': individual2['upper'], 'lower':

individual1['lower'], 'upperParms':

individual2['upperParms'], 'lowerParms':

individual1['lowerParms'] }

 return random.choice([X1,X2])

#Mutation is a random function from individuals to

individuals, which changes a random element in either the

list of upperParms or lowerParms of an individual.

#The process works as follows. The list of upperParm or

lowerParms of an individual is chosen at random.

#An element from one of the 3 element in that list is chosen

ran-domly and replaced with a randomly generated number

in {0..10}

#mutation: individual->individual

def mutation(individual):

A=[individual['upperParms'][0],individual['upperParms'][1

],individual['upperParms'][2]]

B=[individual['lowerParms'][0],individual['lowerParms'][1

], individual['lowerParms'][2]]

 X1= random.randint(0,1)

 X2= random.randint(0,2)

 if X1==0:

 A[X2]=random.uniform(0.1,10)

 else:

 B[X2]=random.uniform(0.1,10)

 return {'upper': individual ['upper'],

'lower':individual['lower'], 'upperParms': A,

'lowerParms':B}

#initPopulation() is a random function that produces a list

of 6 individuals.

#initPopulation:list of individuals

def initPopulation():

 individuals=[]

a={'upper':random.randint(1,10),'lower':random.randint(1,

10),

'upperParms':[random.uniform(0.1,10),random.uniform(0.

1,10),random.uniform(0.1,10)],

'lowerParms':[random.uniform(0.1,10),random.uniform(0.

1,10),random.uniform(0.1,10)]}

b={'upper':random.randint(1,10),'lower':random.randint(1,

10),

'upperParms':[random.uniform(0.1,10),random.uniform(0.

1,10),random.uniform(0.1,10)],

'lowerParms':[random.uniform(0.1,10),random.uniform(0.

1,10),random.uniform(0.1,10)]}

c={'upper':random.randint(1,10),'lower':random.randint(1,

10),

'upperParms':[random.uniform(0.1,10),random.uniform(0.

1,10),random.uniform(0.1,10)],

'lowerParms':[random.uniform(0.1,10),random.uniform(0.

1,10),random.uniform(0.1,10)]}

International Journal of Engineering Research & Technology (IJERT)

ISSN: 2278-0181http://www.ijert.org

IJERTV6IS090050
(This work is licensed under a Creative Commons Attribution 4.0 International License.)

Published by :

www.ijert.org

Vol. 6 Issue 09, September - 2017

382

d={'upper':random.randint(1,10),'lower':random.randint(1,

10),

'upperParms':[random.uniform(0.1,10),random.uniform(0.

1,10),random.uniform(0.1,10)],

'lowerParms':[random.uniform(0.1,10),random.uniform(0.

1,10),random.uniform(0.1,10)]}

e={'upper':random.randint(1,10),'lower':random.randint(1,

10),

'upperParms':[random.uniform(0.1,10),random.uniform(0.

1,10),random.uniform(0.1,10)],

'lowerParms':[random.uniform(0.1,10),random.uniform(0.

1,10),random.uniform(0.1,10)]}

f={'upper':random.randint(1,10),'lower':random.randint(1,

10),

'upperParms':[random.uniform(0.1,10),random.uniform(0.

1,10),random.uniform(0.1,10)],

'lowerParms':[random.uniform(0.1,10),random.uniform(0.

1,10),random.uniform(0.1,10)]}

 individuals.extend([a,b,c,d,e,f])

 return individuals

#Step.

#step is a function from population*report which generates

a new population according to the beginning population and

report(x,y),

#where report consists of the user's favorite designs in that

beginning population.

#step:Population*report->Population

def step(population,report):

 individuals=[]

 y=population

 removes=[report[0],report[1]]

 y=[i for j, i in enumerate(y) if j not in removes]

 #y is now the list of all other individuals in the beginning

population except the favorites.

 a=population[report[0]-1]

 b=mutation(population[report[0]-1])

 c=mutation(crossover(population[report[0]-

1],population[report[1]-1]))

d=mutation(crossover(random.choice([population[report[0

]-1],population[report[1]-1]]),random.choice(y)))

e=crossover(mutation(random.choice(y)),{'upper':random.

randint(1,10),'lower':random.randint(1,10),

'upperParms':[random.uniform(0.1,10),random.uniform(0.

1,10),random.uniform(0.1,10)],

'lowerParms':[random.uniform(0.1,10),random.uniform(0.

1,10),random.uniform(0.1,10)]})

f={'upper':random.randint(1,10),'lower':random.randint(1,

10),

'upperParms':[random.uniform(0.1,10),random.uniform(0.

1,10),random.uniform(0.1,10)],

'lowerParms':[random.uniform(0.1,10),random.uniform(0.

1,10),random.uniform(0.1,10)]}

 individuals.extend([a,b,c,d,e,f])

 return individuals

###

##########

population=initPopulation()

print("Check the rhino window to view the beginning

population.")

f.write(str(population))

f.close()

while True:

 x=input("\nHave you found your final individual (y/n)?")

 if x=='y':

 print("\nIn the grasshopper window choose your final

design to be shown in the main view,then bake it and

enjoy!\n")

 ex=input("Type 'y' when you are ready to exit?")

 if x=='y':

 break;

 elif x=='n':

 print("\nTo continue you need to select 2 of your

favorie designs.\n")

 report=[0,0]

 report[0]=int(input("The number of your first favorite

design?"))

 report[1]=int(input("\nThe number of your second

favorite design?"))

 population=step(population,report)

 f = open('thesis.txt', 'r+')

 f.write(str(population))

 f.close()

 print("\nCheck the rhino window to view the new

population.")

International Journal of Engineering Research & Technology (IJERT)

ISSN: 2278-0181http://www.ijert.org

IJERTV6IS090050
(This work is licensed under a Creative Commons Attribution 4.0 International License.)

Published by :

www.ijert.org

Vol. 6 Issue 09, September - 2017

383

