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INTRODUCTION 

Fashion design is an industry closely connected to 

our lives and it is one of the most important representations 

of human civilization. People used to either make their own 

clothes or buy them from small local producers. However, 

the Industrial Revolution enabled the shift to mass 

production. In order for the clothing industry to compete 

with other industries, it should utilize modern technologies. 

Since most consumers are not professional 

designers, those who desire custom-made clothing contact 

a designer to help them with the process. This approach, 

however, is not efficient in terms of time and cost, and it 

often does not reflect the consumer’s personal taste as much 

as desired. 

This paper proposes a design system using the 

Interactive Genetic Algorithm (IGA) to overcome these 

problems. The system is designed in the Rhinoceros 3D 

software, using python . The user will find the design that 

appeals to her the most by exploring this evolutionary 

environment and evaluating the designs in each step until 

the satisfactory result is achieved. 

The remainder of the thesis is organized as 

follows: in Section 2, I introduce the background and 

current methods used in fashion design as well as the 

concept of the applications of IGA. Section 3 gives the 

overview of the system. The system implementation and 

user interface are given in Section 4. The effectiveness of 

the pro-posed methodology is analyzed by experiments in 

Section 5. Finally, conclusions are summarized in Section 

6. 
 

BACKGROUND 

Fashion Design Aid System 

Today, advances in information technology along 

with the globalization of the world’s economy have made a 

major change in the production process of many industries. 

The fashion industry, which is closely connected to our 

lives, has also shifted from small local production to mass 

production and then to make-to-order [1].  

The fashion industry’s main concern is to respond 

to clients’ demands rapidly but at minimal cost [2, 3]. To 

achieve this goal, computer-aided fashion design can be 

used to enhance the efficiency of product development. 

Although there are different systems available for fashion 

design, such as Adobe Illustrator and AutoCAD, avail-able 

for fashion design, they are usually for professionals only 

and hard for non-professionals to use. 

Appearance style is a metaphor for identity: 

through this kind of personal interpretation of or resistance 

to fashion, individuals announce who they are and who they 

hope to become [4]. Hence, a fashion design system that 

helps an ordinary person design her appealing fashion is 

very useful. 

But what is “the most appealing fashion design”? 

People have different opinions on this matter, and the image 

they have in mind is often ambiguous and fuzzy. Therefore, 

it is difficult to design human evaluation functions. To 

reflect such human sensibility, this study proposes using 

Interactive Genetic Algorithm (IGA). IGA differs from the 

conventional Genetic Algorithms (GA) in its evaluation of 

the fitness function [5].  In conventional GA, the objective 

function is numerically defined, while in IGA, the fitness 

function is replaced by a human user. IGA “interacts” with 

users and incorporates the emotion and preference of the 

user in the process of evolution; therefore, the user’s 

subjective evaluation determines the fitness of the solution 

[6]. IGA has been applied to optimization [7,8], designing 

the layout and lighting of rooms [9], fashion [10], web sites 

[11], data mining [12,13], and music composition [14], all 

according to the users’ preferences. 
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Abstract - These days, consumers can make their choice from 

a wide variety of clothes provided in the market; however, 

some prefer to have their clothes custom-made. Since most of 

these consumers are not professional designers, they contact a 

designer to help them with the process. This approach, 

however, is not efficient in terms of time and cost and it does 

not reflect the consumer’s personal taste as much as desired. 

This study proposes a design system using interactive genetic 

algorithm (IGA) to overcome these problems. IGA differs 

from traditional genetic algorithm (GA) by leaving the fitness 

function to the personal preference of the user. The proposed 

system uses user’s taste as a fitness value to create a large 

number of design options, and it is based on an encoding 

scheme describing a dress as a two-part piece of clothing. The 

system is designed in the rhinoceros 3d software, using python, 

which provides good speed and interface options. The 

assessment experiments with several subjects indicated that 

the proposed system is effective.



 

 

Genetic Algorithm and Interactive Genetic Algorithm 

Interactive genetic algorithms are a subset of 

genetic algorithms. Genetic algorithms, first explored by 

John Holland, are used to solve optimization and search 

problems by emulating principles of biological evolution 

[15]. GAs set variables up as genes and combine them to 

make designs. GAs then iteratively evaluate designs against 

a fitness test and select the best designs from a group to be 

used to make the next generation, these designs are subject 

to mutation and combination of traits, similar to biological 

evolution [16]. Instead of improving a single design, as seen 

in Fig. 1, a population of solutions is examined to find the 

best solutions, which are then recombined or mutated to 

generate a new population of (better) solutions. The general 

GA process is as follows [17]: 

o Step 1: Initialize the population of chromosomes. 

o Step 2: Calculate the fitness for each individual in 

the population using a fitness function. 

o Step 3: Reproduce individuals to form a new 

population according to each individual’s fitness. 

o Step 4: Perform crossover and mutation on the 

population. 

o Step 5: Go to step (2) until a  particular condition 

is satisfied. 

Here is the pseudocode [18]: 

BEGIN 

Create a random set of initial solutions 

LOOP: 

Choose a subset of good solutions   

according to some ‘‘fitness measure’’. 

Perform recombination on randomly 

chosen pairs of solutions. 

Perform mutation on randomly chosen 

solutions. 

UNTIL (population is stable) 

END 

 

Fig.1. GA Process 

 

To use GA for a problem, we should be able to 

parameterize the problem. Each parameter is considered a 

gene that can be represented through binary numbers. A 

combination of several genes creates a chromosome. Each 

singular representation of the chromosome within a 

population is termed a genotype [19]. An individual’s 

fitness is calculated through decoding its genotype. In order 

to create new individuals for the next population, two 

individuals are submitted to crossover. To perform a single 

point crossover, as shown in Fig. 2, a crossover point is 

selected in each parents’ genotype, then all data beyond that 

point is swapped between the two parents. The two-point 

crossover occurs by swapping everything between two 

selected points in parents’ genotype. Fig.3 shows a visual 

representation of the crossover operation. 

 
Fig.2. Left: Single Point Crossover. Right: Two Points Crossover 

International Journal of Engineering Research & Technology (IJERT)

ISSN: 2278-0181http://www.ijert.org

IJERTV6IS090050
(This work is licensed under a Creative Commons Attribution 4.0 International License.)

Published by :

www.ijert.org

Vol. 6 Issue 09, September - 2017

366



 

 

 
Fig.3. Visual Representation of Crossover Operation 

 

To introduce more diversity, and potentially find 

drastically new solutions, mutation is utilized [19](Fig.4). 

Mutation occurs according to a user-definable mutation 

probability that is typically set to low. In the mutation 

process, as seen in Fig. 5, one point of the individual’s 

genotype is modified. 

 

Fig.4. Visual Representation of Mutation Operation. In this example, those offspring marked with a star are those that required more than one mutation to 

produce. 

 
Fig.5. Mutation Operation 

IGAs are similar to GAs, except the fitness 

function of the GA is replaced by a user evaluation of 

solution options. Human subject selects the most successful 

designs that will be used to create the next generation of 

designs. Interactive Genetic Algorithms were originally 

proposed by Dawkins [20] and led to works within 

computer art community. One example of evolutionary art 

is “Galapagos” exhibit by Karl Sims which allowed for 

discovery of interesting figures in a population of three-

dimensional virtual organisms [21]. 
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                           SYSTEM DESIGN 

Types 

GUD 

A GUD (General Upper Design) is an integer in 

{1..10}. Each GUD refers to one of the 10 different 

definitions, designed with grasshopper for an upper body 

design piece. As an example, Fig. 6 shows the grasshopper 

definition for GUD number 9 and Fig.7 displays its 

representation in the rhinoceros interface. To be able to 

show this GUD, 3 initial values have been set for its list of 

parameters. Fig. 8 shows GUD number 9 with a different 

list of parameters. Parameters are discussed in more detail 

in the following sections. 

 
Fig.6. Grasshopper definition for GUD number 9 

 

Fig.7. Representation of GUD number 9 in rhinoceros interface 

 

Fig.8. Representation of GUD number 9 in rhinoceros interface with a different list of parameters 

GLD 

A GLD (General Lower Design) is an integer in 

{1..10}. Each GLD refers to one of the 10 different 

algorithms, designed with grasshopper for a lower body 

design piece. As an example, Fig. 9 shows the grasshopper 

definition for GLD number 7 and Fig.10 displays its 

representation in the rhinoceros interface. To be able to 

show this GUD, 3 initial values have been set for its list of 

parameters. Fig. 11 shows GUD number 9 with a different 

list of parameters. Parameters are discussed in more detail 

in the fol-lowing sections. 
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Fig.9. Grasshopper definition for GLD number 7 

 

Fig.10. Representation of GLD number 7 in rhinoceros interface 
 

 

Fig.11. Representation of GLD number 7 in rhinoceros interface with a different list of parameters 

 

Individual 

An individual refers to a 2 piece dress consisting of 

Upper and Lower parts with spe-cific parameters. An 

individual is a dictionary of the form {'upper':X, 'lower':Y, 

'up-perParms': L1, 'lowerParms':L2} where 

o X is a GUD 

o Y is a GLD 

o L1 is a list of integers. Each of its members is a 

number in range(1,10). 

o L2 is a list of numbers. Each of its members is a 

number in range(1,10). 

As an example, Fig.12 shows an individual with the 

following dictionary: {‘upper’:9, ‘lower’:7, 

‘upperParms’:[8,5.3,10],’lowerParms’:[5,9,0]}. 
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Fig.12. An individual with the following dictionary: {‘upper’:9, ‘lower’:7, ‘up-perParms’:[8,5.3,10],’lowerParms’:[4,10,5]} 

Fig.13 shows an individual with the following 

dictionary: {‘upper’:9, ‘lower’:7, ‘up-

perParms’:[8,5.3,10],’lowerParms’:[5,18,0]}. By 

comparing Fig.12 and Fig.13 we realize that a change in the 

parameters in ‘lowerParms’ will result in a change in GLD. 

In the case of ‘GLD’:7, the list of ‘lowerParms’ controls the 

size, shape and orienta-tion of the openings in the respective 

design. 

 

Fig.13. An individual with the following dictionary: {‘upper’:9, ‘lower’:7, ‘up-perParms’:[8,5.3,10],’lowerParms’:[5,18,0]} 
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Fig.14 shows an individual with the following 

dictionary: {‘upper’:9, ‘lower’:7, ‘up-

perParms’:[10,6,5],’lowerParms’:[5,9,0]}. By comparing 

Fig.13 and Fig.14 we realize that a change in the parameters 

in ‘upperParms’ will result in a change in GUD. In the case 

of ‘GLD’:7, the list of ‘upperParms’ controls the shape and 

number of vertical and horizontal divisions. 

 

Fig.14. An individual with the following dictionary: {‘upper’:9, ‘lower’:7, ‘up-perParms’:[10,6,5],’lowerParms’:[5,9,0]} 

Population 

A population is a list of 6 individuals. 

Report 

A Report is a list of 2 integers in the form of [X,Y], 

where X is an integer in {1..10} and Y is an integer in 

{1..10}. In a report[X,Y] , X is the user’s favorite design in 

a population and Y is the user’s second favorite design.   

Functions 

Crossover 

Crossover is a random function from pairs of 

individuals to individuals. The new individual consists of 

either the upper part of the first and lower part of the second 

parent, or the upper part of the second and lower part of the 

first parent. If A is an individual with the dictionary: 

{‘upper’:9, ‘lower’:7, ‘upperParms’:[8,5.3,10], 

’lowerParms’: [5,9,0]} and B is an individual with the 

dictionary: {‘upper’:10, ‘lower’:5, ‘upperParms’:[3,3,10], 

’lowerParms’: [10,5,0.25]},  Fig 15. Shows possible 

individual  C produced by their crossover with the 

following dictionary: {‘upper’:10, ‘lower’: 7, 

‘upperParms’:[3,3,10],’lowerParms’:[5,9,0]. This 

dictionary results in an individual with the upper design of 

individual B and lower design of individual A.  Fig. 16 

demonstrates individual D which is another possible 

individual produced by the crossover of A and B.  

Individual D has the upper design of individual A and lower 

design of individual B and is shown with the following 

dictionary:  {‘upper’:9, ‘low-er’:5, upperParms’: [3,3,10], 

’lowerParms’:[5,9,0]}. 
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Fig.15. Crossover of Individual A with the dictionary {‘upper’:9, ‘lower’:7, ‘upperParms’:[8,5.3,10], ’lowerParms’: [5,9,0]} and B with the dictionary: 
{‘upper’:10, ‘lower’:5, ‘upperParms’:[3,3,10], ’lowerParms’: [10,5,0.25]} and their possible child C with the dictionary: {‘upper’:10, ‘lower’: 7, 

‘upperParms’:[3,3,10],’lowerParms’:[5,9,0] 

 

Fig.16. Cross over of Individual A with the dictionary {‘upper’:9, ‘lower’:7, ‘upperParms’:[8,5.3,10], ’lowerParms’: [5,9,0]} and B with the dictionary: 
{‘upper’:10, ‘lower’:5, ‘upperParms’:[3,3,10], ’lowerParms’: [10,5,0.25]} and their possible child D with the dictionary: {‘upper’:9, ‘lower’:5, upperParms’: 

[3,3,10], ’lowerParms’:[5,9,0]} 
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Mutation 

Mutation is a random function from individuals to 

individuals, which changes a random element in either the 

list of upperParms or lowerParms of an individual. The 

process works as follows. The list of upperParm or 

lowerParms of an individual is chosen at random. An 

element from one of the 3 element in that list is chosen 

randomly and replaced with a randomly generated number 

in {0..10} 

Fig.17 shows the individual we want to perform mutation on. 

This individual has the following dictionary: {‘upper’:3, ‘lower’:4, 

‘upperParms’: [9,10,1], ’lower-Parms’:[10,10,4]}. 

 

Fig.17. An individual with the dictionary: {‘upper’:3, ‘lower’:4,  ‘upperPArms: [9,10,1], ‘lowerParms’: [10,10,4]} 
 

Performing mutation on Fig.17 can generate an 

individual with the following diction-ary: {‘upper’:3, 

‘lower’:4, ‘upperParms’: [9,10,1], ’lowerParms’:[10,10,6]} 

(Fig.18). The mutation operation has changed the third 

element in the list of lowerParms of that individual, causing 

a change in the placement of the openings in the lower 

design of that individual. 

 

Fig.18. An individual, which is a mutation on the individual in Fig.17, with the dictionary: {‘upper’:3, ‘lower’:4,  ‘upperPArms: [9,10,1], ‘lowerParms’: 

[10,10,6]} 

 

Performing mutation on Fig.17 can also generate 

an individual with the following dictionary: {‘upper’:3, 

‘lower’:4, ‘upperParms’: [9,10,1], ’lowerParms’:[10,5,6]} 

(Fig.19). This time, the mutation operation has changed the 

second element in the list of lowerParms of that individual, 

causing a change in the horizontal division of the lower 

design. 
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Fig.19. An individual, which is a mutation on the individual in Fig.17, with the dictionary: {‘upper’:3, ‘lower’:4,  ‘upperPArms: [9,10,1], ‘lowerParms’: 
[10,5,4]} 

Performing mutation on Fig.17 can also generate 

an individual with the following dictionary: {‘upper’:3, 

‘lower’:4, ‘upperParms’: [6,10,1], ’lowerParms’:[10,10,4]} 

(Fig.20). This time, the mutation operation has changed the 

first element in the list of upperParms of that individual, 

causing a change in the horizontal placement of the spikes 

on the upper design. 

 
 

Fig.20. An individual with the dictionary: {‘upper’:3, ‘lower’:4,  ‘upperPArms: [6,10,1], ‘lowerParms’: [10,10,4]} 

Step 

If x is the user's favorite dress in population p, y is 

the user's second favorite dress in population p, and a,b,c, 

and d are the remaining members of p, then step(p) is a new 

population consisting of the following individuals: 

1. X 

2. a mutation of x 

3. a mutation of the crossover of x and y 

4. a crossover of x with a random member of {a,b,c,d} 

5. a crossover of mutation of a random member of 

{a,b,c,d} and a new individual 

6. a new individual 

 

The System Design 

Fig. 21 shows the overview of the entire system. 

To create the initial population, the system selects random 

elements and combines them into 6 dress designs. User 

gives his fitness value by selecting 2 of his favorite designs 

in order of favorability. The system uses a pre-defined 

parent selection to choose pairs of designs for divergent and 

recombination. After applying crossover and mutation, the 

results are displayed again and this loop continues until a 
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desired design is found. As a summary, here is a 

pseudocode description of the algorithm: 

o step 1:Generation of the first population. The GUD, 

GLD, upperParms and lowerParms of each individual 

in this population are randomly selected. 

o Step 2:display: The 6 individuals are  presented to the 

user through the user inter-face. 

o Step 3:Happy with the result? If so, end. If not, go to 

step 4. 

o Step 4: Evaluation.  In response to the presented 

population, the user is asked to give a report based on 

his subjective view. This evaluation will count as the 

fitness function in the IGA process. 

o Step 5:reproduction. According to the choice of the 

user, either the convergent or divergent type of 

reproduction is used to create a new population. Go to 

step 2. 

 

Fig.21. Flow diagram showing the system overview 

The overall system algorithm in python is provided in 

appendix A. 

User’s Fitness Value 

Some researchers have proposed IGA systems in 

which users must rank each design within each set of a 

generation, while others have argued that such ranking 

causes user fatigue [19, 22, 23, 24]. Instead, they propose 

that users should identify their most and least preferred 

among a set because these are easier to identify than a whole 

ranking. This consequently reduces fatigue and provides a 

wealth of information [19]. For this research, 6 designs are 

displayed in each generation and the user will select his/her 

two favorite designs in each generation according to his 

preference. However, in the last generation the user will 

only select one final favorite design. 

SYSTEM IMPLEMENTATION  

The system is designed in the Rhinoceros and 

grasshopper software because of the precise designing tool 

they offer. Unfortunately, because of the current design 

decisions of the python component in grasshopper, the 

design of the system had to be transferred to Python shell, 

while the display of the population remained in Rhinoceros. 

Fig. 22 shows the user interface of the system (A demo of 

the interface can be found at 

https://www.youtube.com/watch?v=OJHHtnASRRU). The 

system displays current population composed of six designs 

(Fig. 23) in one screen. The number of the individual is 

shown next to each individual model. To decrease user 

fatigue, only 2 designs should be selected in each 

population. The selected designs have a higher probability 

to be used for recombination in the next generation. 
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Fig.22. User Interface 

 

Fig.23. Population Example

As seen in Fig.24 upper left part of the screen shows the Python shell that lets the user interact with the system by 

providing the numbers of individuals for the report, stating if they want a new population to be generated, or if they want to end 

the loop. 

International Journal of Engineering Research & Technology (IJERT)

ISSN: 2278-0181http://www.ijert.org

IJERTV6IS090050
(This work is licensed under a Creative Commons Attribution 4.0 International License.)

Published by :

www.ijert.org

Vol. 6 Issue 09, September - 2017

376



 

 

 

Fig.24. Python shell user interface 

User can input her measurements in the grasshopper interface (Fig.25).  There is a button provided to display the population in 

the Rhinoceros interface.  

 
Fig.25. Grasshopper Interface 

User can select a design to view in the right part of 

the screen and can rotate and zoom in the selected 

individual (Fig.26). To get more detail on a selected 

individual, its genes are shown in the grasshopper interface. 

This design can be exported and saved for further use (e.g. 

3D printing) with a click of a button provided in the 

grasshopper interface. 
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Fig.26. Selected view 
 

IGAs can help enhance creativity because they can 

operate in both divergent and convergent ways [19]. We 

have implemented both operations in order to find new and 

interesting design concepts while retaining the 

characteristics that the user already liked. To model 

convergence, we gave a high probability to the designs 

selected by the user to become parents for the population of 

the new generation. Then, we applied a low mutation rate 

on the created designs. This process allows users to con-

verge toward a design that is appealing to them. 

Mistuned GAs may cause drastic diverge from 

their intended goal which increases in each generation. 

Thus, high mutation rates should be avoided in order to 

prevent random mutation during the process. In this system 

we managed to explore the design environment without 

diverging drastically from the main goal, while expecting 

unique inspiring designs. 

 

 

 

 
 

EXPERIMENTAL OVERVIEW 

Experimental Overview Number 1 

To examine the performance of the system, we 

implemented it in both convergent and divergent process. 

In the convergent process, we allocated a lower mutation 

rate and a higher probability of the selected designs being 

used for creating the next population. For the divergent 

process, we allocated a higher mutation rate and a lower 

probability of the selected designs being used for the 

creation of the next population. This system allows for the 

implementation of both of these processes simultaneously. 

Our tests showed that the first 4-6 generations were 

considered divergent, and after that the generations tend to 

be more convergent. For This experiment, I modified the 

system, such that in each generation, the user would decide 

whether he wants the new population to have a higher 

randomness and mutation value (for exploring different 

designs) or a lower one that would let them converge 

toward a specific design of their choice. This experiment 

showed the improved system to be somewhat effective. 

(Fig.27) However, some users tend to use the divergent 

operator too often, which did not allow the system to be as 

convergent as it is intended to be. For further exploration of 

this system, we propose focusing on the limitation of the 

use of this operator to prevent this situation. 
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Fig.27. The result of the experimental overview number 1 

Experimental Overview Number 2 

We examined user satisfaction with our system by 

testing a group of 8 experiment subjects. They were asked 

to design an avant-garde dress that they would wear on a 

fashion runway using our proposed system and another 

online fashion design system. They were then asked to 

report which one of the systems they found more effective. 

Fig.28 shows the results of this experiment. The subjects 

were also asked to provide comments about both of these 

tools. They called the designs in the existing fashion tools 

mundane and not fashionable. However, they suggested an 

improvement on the proposed system to make it work 

faster. In addition, they asked for an easier interface, 

however, the interface was not an important part of this 

project, since the focus was mainly on the algorithms and 

system behind this program. They also asked for designs to 

be more realistic and suitable for daily use (instead of 

designs suitable for fashion runway).They stated that they 

would not necessarily prefer the proposed system over the 

online fashion aid system for a dress suitable for daily use. 

However, this was not the aesthetic measure that was 

decided to use in this project. We wanted the designs to be 

more structural and inspired by architecture, rather than 

normal designs for daily use. In conclusion, the experiments 

showed a promising result on the application of IGA for a 

fashion design aid system for non-professionals. 

 
Fig.28. The result of the experimental overview number 2 
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Experimental Overview Number 3 

We examined user satisfaction with the proposed 

IGA system in contrast to the basic GA system by testing a 

group of 8 experiment subjects. We asked the subjects to 

design a cool-looking costume, using the proposed IGA 

system. They were asked to do the same thing also by using 

the basic GA system, which does not ask for the user input 

to create each population. Instead, in each generation, the 

basic GA system generates the new population by random. 

They had to find their favorite design in less than 10 

generations.  The results showed the IGA system to be more 

effective than basic GA system. 

 
Fig.29. The result of the experimental overview number 3 

 

Experimental Overview Number 4 

It is difficult to show the convergence of IGA with 

quantitative analysis because it is operated based on 

human’s evaluation. We have requested 5 subjects to find 

cool looking and elegant design using the system for 10 

generations.  They were asked to rank their favorite design 

in each generation from 1 to 5. Fig.30 shows the changes of 

the grade on average. This figure shows the steady 

improvement of the result over generations. The cool 

looking case shows better results than the elegant one, 

because the meaning of ‘elegant’ might be more complex 

and various than that of ‘cool-looking, or it might be that 

the proposed system can produce dresses with cool looking 

value rather than elegance. 

 
Fig.30. The result of the experimental overview number 4 
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Future Development 

An important aspect of human computer 

interaction is the idea that a computer system should allow 

the user to make use of their increased knowledge about the 

system as they use it more frequently [25]. As users gain 

more experience with the system, they grow some 

understanding of how different parameters affect the 

design. To use this knowledge, we propose an option in the 

interface to adjust values of those parameters, which affect 

not the absolute values of those parameters but how much 

the algorithm explores those regions of parameter space, i.e. 

the extent to which corresponding regions of the genome 

are mutated [18]. In addition, an option to adjust the 

exploration rate could be also useful. This option could 

provide the user with control over the mutation and 

crossover rate. 

CONCLUSION 

This study proposed a fashion design aid system 

for non-professionals by using IGA. The proposed system, 

which is designed in the Rhinoceros and grasshopper 

software, with utilization of python shell uses user’s taste 

as a fitness value to create a large number of design options. 

The experimental tests showed that users are significantly 

satisfied with the system; therefore using IGA for a fashion 

design aid system is a proper choice. 

We tested the performance of our system in both 

convergent and divergent ways. The results showed the 

system to be effective in both ways. These two concepts can 

help enhance creativity. With an appropriate 

implementation of both these operations, we can allow for 

reaching to an appealing design, while exploring the unique 

interesting designs in our system environment.  

To improve our system, we propose to add an 

option in the interface to adjust the parameters that affect 

the design. In addition, an option to adjust the exploration 

rate could be also useful. This option can provide the user 

with control over the mutation and crossover rate. 

We also suggest adding a mutation operator 

allowing local exploration of a selected design. To further 

improve this study, we propose to focus on limitation of this 

operator, to prevent the system from being one-dimensional 

and not being able to explore the design environment. 
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APPENDIX A 

THE SYSTEM ALGORITHM 

import random 

#import time 

a=[] 

#random.seed(time.clock()) 

f = open('thesis.txt', 'r+') 

#GUD.  

#A GUD (General Upper Design) is an integer in {1..10}. 

#Each GUD refers to one of the 10 different definitions, 

designed with grasshopper for an upper body design piece.  

 

#GLD.  

#A GLD (General Lower Design) is an integer in {1..10}. 

#Each GLD refers to one of the 10 different algorithms, 

designed with grasshopper for a lower body design piece. 

 
 

#Individual.  

#An individual refers to a 2 piece dress consisting of Upper 

and Lower parts with spe-cific parameters. An individual is 

a dictionary of the form {'upper':X, 'lower':Y, 'up-

perParms': L1, 'lowerParms':L2} where 

#X is a GUD 

#Y is a GLD 

#L1 is a list of integers. Each of its members is a number in 

range(0.1,10). 

#L2 is a list of numbers. Each of its members is a number 

in range(0.1,10). 

 

#Population.  

#A population is a list of 6 individuals. 

 

#Report.  

#A Report is a 2-tuple of integers in the form of (X,Y), 

where X is an integer in {1..10} and Y is an integer in 

{1..10}. 

#In a report(X,Y) , X is the user’s favorite design in a 

population and Y is the user’s second favorite design.  

 

#Crossover.  

#Crossover is a random function from pairs of individuals 

to individuals. 

#The new individual consists of either the upper part of the 

first and lower part of the second parent, or the upper part 

of the second and lower part of the first parent. 

#Crossover: individual*individual->individual 

def crossover(individual1,individual2): 

    X1= {'upper':individual1['upper'], 'lower': 

individual2['lower'],  'upperParms': 

individual1['upperParms'], 'lowerParms': 

individual2['lowerParms'] } 

    X2= {'upper': individual2['upper'], 'lower': 

individual1['lower'],  'upperParms': 

individual2['upperParms'], 'lowerParms': 

individual1['lowerParms'] } 

    return random.choice([ X1,X2])  

 

#Mutation is a random function from individuals to 

individuals, which changes a random element in either the 

list of upperParms or lowerParms of an individual. 

#The process works as follows. The list of upperParm or 

lowerParms of an individual is chosen at random. 

#An element from one of the 3 element in that list is chosen 

ran-domly and replaced with a randomly generated number 

in {0..10} 

#mutation: individual->individual 

def mutation(individual): 

    

A=[individual['upperParms'][0],individual['upperParms'][1

],individual['upperParms'][2]] 

    

B=[individual['lowerParms'][0],individual['lowerParms'][1

], individual['lowerParms'][2]] 

    X1= random.randint(0,1) 

    X2= random.randint(0,2) 

    if X1==0: 

        A[X2]=random.uniform(0.1,10) 

    else: 

        B[X2]=random.uniform(0.1,10) 

    return {'upper': individual ['upper'], 

'lower':individual['lower'], 'upperParms': A, 

'lowerParms':B} 

 

 

#initPopulation() is a random function that produces a list 

of 6 individuals. 

#initPopulation:list of individuals 

def initPopulation(): 

    individuals=[] 

    

a={'upper':random.randint(1,10),'lower':random.randint(1,

10), 

'upperParms':[random.uniform(0.1,10),random.uniform(0.

1,10),random.uniform(0.1,10)], 

'lowerParms':[random.uniform(0.1,10),random.uniform(0.

1,10),random.uniform(0.1,10)]} 

    

b={'upper':random.randint(1,10),'lower':random.randint(1,

10), 

'upperParms':[random.uniform(0.1,10),random.uniform(0.

1,10),random.uniform(0.1,10)], 

'lowerParms':[random.uniform(0.1,10),random.uniform(0.

1,10),random.uniform(0.1,10)]} 

    

c={'upper':random.randint(1,10),'lower':random.randint(1,

10), 

'upperParms':[random.uniform(0.1,10),random.uniform(0.

1,10),random.uniform(0.1,10)], 

'lowerParms':[random.uniform(0.1,10),random.uniform(0.

1,10),random.uniform(0.1,10)]} 
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d={'upper':random.randint(1,10),'lower':random.randint(1,

10), 

'upperParms':[random.uniform(0.1,10),random.uniform(0.

1,10),random.uniform(0.1,10)], 

'lowerParms':[random.uniform(0.1,10),random.uniform(0.

1,10),random.uniform(0.1,10)]} 

    

e={'upper':random.randint(1,10),'lower':random.randint(1,

10), 

'upperParms':[random.uniform(0.1,10),random.uniform(0.

1,10),random.uniform(0.1,10)], 

'lowerParms':[random.uniform(0.1,10),random.uniform(0.

1,10),random.uniform(0.1,10)]} 

    

f={'upper':random.randint(1,10),'lower':random.randint(1,

10), 

'upperParms':[random.uniform(0.1,10),random.uniform(0.

1,10),random.uniform(0.1,10)], 

'lowerParms':[random.uniform(0.1,10),random.uniform(0.

1,10),random.uniform(0.1,10)]} 

    individuals.extend([a,b,c,d,e,f]) 

    return individuals 

 

#Step. 

#step is a function from population*report which generates 

a new population according to the beginning population and 

report(x,y), 

#where report consists of the user's favorite designs in that 

beginning population. 

#step:Population*report->Population 

def step(population,report): 

    individuals=[] 

    y=population 

    removes=[report[0],report[1]] 

    y=[i for j, i in enumerate(y) if j not in removes] 

    #y is now the list of all other individuals in the beginning 

population except the favorites. 

    a=population[report[0]-1] 

    b=mutation(population[report[0]-1]) 

    c=mutation(crossover(population[report[0]-

1],population[report[1]-1])) 

    

d=mutation(crossover(random.choice([population[report[0

]-1],population[report[1]-1]]),random.choice(y))) 

    

e=crossover(mutation(random.choice(y)),{'upper':random.

randint(1,10),'lower':random.randint(1,10), 

'upperParms':[random.uniform(0.1,10),random.uniform(0.

1,10),random.uniform(0.1,10)], 

'lowerParms':[random.uniform(0.1,10),random.uniform(0.

1,10),random.uniform(0.1,10)]}) 

    

f={'upper':random.randint(1,10),'lower':random.randint(1,

10), 

'upperParms':[random.uniform(0.1,10),random.uniform(0.

1,10),random.uniform(0.1,10)], 

'lowerParms':[random.uniform(0.1,10),random.uniform(0.

1,10),random.uniform(0.1,10)]} 

    individuals.extend([a,b,c,d,e,f]) 

    return individuals 

 

###############################################

########## 

population=initPopulation() 

print("Check the rhino window to view the beginning 

population.") 

f.write(str(population)) 

f.close() 

while True: 

    x=input("\nHave you found your final individual (y/n)?") 

    if x=='y': 

        print("\nIn the grasshopper window choose your final 

design to be shown in the main view,then bake it and 

enjoy!\n") 

        ex=input("Type 'y' when you are ready to exit?") 

        if x=='y': 

            break; 

    elif x=='n': 

        print("\nTo continue you need to select 2 of your 

favorie designs.\n") 

        report=[0,0] 

        report[0]=int(input("The number of your first favorite 

design?")) 

        report[1]=int(input("\nThe number of your second 

favorite design?")) 

        population=step(population,report) 

        f = open('thesis.txt', 'r+') 

        f.write(str(population)) 

        f.close() 

        print("\nCheck the rhino window to view the new 

population.") 
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