
Intrusion Detection Prototype System for Massive

Mobile Applications

 Chethana S

Patil

1

 Nagesha A G

2

 PG Student, Dept. Of CS&E

 Associate

Professor, Dept. Of CS&E

 Acharya Institute of Technology,

Acharya Institute of Technology

 Bangalore,

India

Bangalore, India

Abstract – Mobiles have gained widespread usage& in smart

phones many interesting applications are made available through

Google Play. Android is one of the major Smartphone platforms

today. The intense increases in mobile apps too many threats

migrate from conventional PC client to android mobile device.

Smartphone applications can steal users’ personal sensitive

information and send it out across their back .Smartphone’s

store various personal data such as phone numbers, location

information, contact information, sms, passwords. The sensible

private information is abused highly without users notice. In

fact that majority of the users are not proficient in mobile

security. To improve security status of current mobile apps

MOBAPP-SAFE prototype is proposed process to valuate mobile

Apps based on cloud computing technology. Mobapp-Safe

prototype helps to identify whether the mobile App is safe from

malwares or they contain malwares. When compared with

conventional method, such as permission based method the

Mobapp--Safe prototype system associates the dynamic and

static analysis methods are used to check the Android Apps. In

the implementation Static Android Analysis Framework (SAAF)

and Android security evaluation framework (ASEF) the two

methods static and dynamic analysis methods respectively is

adapted to examine the Android Apps and determines the total

time needed to estimate mobile App market which contains all

the Apps &It also gives information what type of private data

App is leaking. Prototype provides deeper security analysis &

the estimation results show it is feasible to use cloud computing

for all stored Apps to authenticate regularly to clean out

malware apps from the mobile app markets.

Keywords: Android operating system, malware, cloud computing,

Cloud stack, redis key store.

I. INTRODUCTION

Smartphone’s are powerful and well connected becoming

increasingly common now days & other kinds of mobile

devices like tablets has also risen significantly. The fact is

accompanied by the n-number and variety of mobile

applications is made available. The android operating system

is available as an open source tool it is widely popular among

developers and various Smartphone manufacturers make use

of it & which enables them to add Apps so this strength

becomes challenge for providing security. Smartphone

applications can leak users’ sensitive information and send it

out at the back. The worldwide Android Smartphone market

raises the proficiency of security and privacy issues however,

in traditional Android Smart phones uses permission based

approach which is not enough to ensure the security & it is

time consuming. It presents a challenge to the engineers for

developing security solutions and methods for the platform So

in order to overcome security issues and to provide security

Mobapp-safe prototype is developed.

A. Mobile App Threats

 The intense increase in mobile apps on Mobile devices the

Apps uses Internet trends too many PC software’s are

migrating to the mobile device. Some malicious behaviors of

Android malwares in mobile apps are usually motivated by

controlling mobile device without the users intervention such

Malicious behaviors are as follow:

 Privilege escalation causing flaw in design.

 Leakage private data.

 Dial premium numbers were it increases the call

rates.

 Botnet activity lead denial of service attacks.

B. Root causes for Android malicious mobile apps origin

 Android operating system allows users to introduce

any mobile apps from the third-party market that may

make no efforts to check the safety of the software in

app that they distribute.

 Easy and Flexible to port an Windows-based botnet

existing client apps to Android based Smartphone’s.

 Application developers in android can upload their

apps without any intervention check of

trustworthiness& certificate authority.

 A number of mobile applications have been modified

in the app market and the malwares have been

introduced in application and spread through

unofficial repositories. The sophisticated malwares in

app detect the presence of an sohpiscated

environment and adapt their behavior pattern e.g.

Create hidden background processes when they find

security layer.

II. PROBLEM STATEMENT

To improve current security status of mobile applications

& to avoid leakage of the sensible private information which

is abused highly such as phone numbers and other personal

information without users notice by third party applications &

to detect malware apps.

2406

Vol. 3 Issue 4, April - 2014

International Journal of Engineering Research & Technology (IJERT)

IJ
E
R
T

IJ
E
R
T

ISSN: 2278-0181

www.ijert.orgIJERTV3IS042384

International Journal of Engineering Research & Technology (IJERT)

III. RELATED WORK

Android Apps security analysis is a important as more

Smartphone users exists and it is hot topic. In existing system

static analysis and dynamic behavior analysis and machine

learning techniques are used by too many researchers to carry

out security analysis.

A. Static analysis methods

 Static analysis is security analaysis which is carried out

during installation time of android apps and many static tools

are available. Stoway tool is used to detect an over privileges

in Android application. It checks whether data flows through

the stated specification. Android access control policy was

determined through techniques and it fails to detect reliable

permission information and the stoway tool was proposed by

Felt et [1].

Barrer et al[4] made an security analysis using static

method called permission based method it is a novel

methodology which applies Map organizing self algorithm

were relationship proximity was preserved greatly in complex

dataset to present to present relational view. The disadvantage

of permission method it fails detects sophisticated malwares.

Nadji et al [5] proposed static tool airmid, which uses

collaboration between the smartphone devices and network

sensors to identify the malicious traffic. They used three

mobile malwares to test the correctness of airmid. Airmid’s

carry out remote repair and it consists of a device attribution

system and it is server-based infection detection system. The

airmid methods as disadvantage the permissions are coarse

grained do not provide sufficient insight of the actual,

permissions. Potential malicious activities can be performed

after installation of App.

B. Dynamic behavior analysis

 Dynamic behavior analysis is security analysis where the

analysis of android mobile App is done at the run time .So it

belongs to the run time app monitor category. Many dynamic

analysis tools are available in existing system dynamic

analysis detects the abnormal execution patterns through

behavior signatures. The Author proposed Paranoid Android

[6] a security analysis to detect the malicious app. a system

can carry out malware analysis in the mobile phone replicas.

This method as disadvantage it causes serious problems such

as accessing call logs, contact information, personal details.

Zhou [7] author proposed security analysis method

DroidMOSS which make use of fuzzy hashing technique to

localize and to detect the changes from app behavior in

mobile. The disadvantage of it consumes more time.

C. Machine learning

 Schmidt et al[8] Proposed a machine learning solution to

detect malicious app based on monitoring events occurring on

kernel. Read elf tool was used to read static information held

by files and after applying read elf tool to both normal apps

and mailcious apps, they used the calls of the functions and

names appearing to form their safe app data set and malicious

data set. The main disadvantage is it is costly, time consuming

& high sensitive information data leaks are not detected.

IV. THE PROPOSED METHODOLOGY

The cloud computing platform a methodology is proposed

to valuate mobile apps for checking security status and for the

improvement of current security MOBAPP-SAFE, a prototype

system is proposed to check the whether the mobile app is

safe free from malwares or they contain malwares (mobile app

which is malware free). Mobapp-Safe associates the active

and passive analysis methods to check an Android mobile

apps and estimation time is reduced and the total analyze time

is an acceptable level. In the implementation, the two methods

dynamic and static analysis methods are used as follows

ASEF (Android Security Evaluation Framework) and SAAF

(Static Android Analysis Framework) to examine the Android

apps to detect malicious app and estimate the total time

needed to check the mobile app markets were all the Apps are

stored are safe or no & mobile app market owner get useful

data to clean out the unsafe mobile apps and it gives the

information about the leakage of sensitive data.

A. system architecture

 The system architecture gives the Mobapp-safe prototype

conceptual design which as work flow that defines the

structure and behavior of a system. Architecture is a formal

description of a system in which it is organized in such way

that supports reasoning about the structural properties of the

system. It also defines the system components or building

blocks and provides a plan from which the system developed.

The architectural design process is concerned with

establishing the basic structural framework for a system. The

major components of the system and communications

between these components are identified by the system

architecture as follows:

1) Infrastructure for cloud platform: Infrastructure is

provided by the cloud stack based on cloud computing

platform it can be used to carry out security analysis task.

Cloud stack is used to manage a VMware based computing

servers. The whole Cloud Stack manages the network servers,

storage and compute all nodes that makes cloud infrastructure

were Mobapp-safe prototype is placed.

2) Work principle: Mobapp-Safe is a prototype

which is used to check an Android apps is virulence or non-

virulence and if virulence what type of private sensitive data

App is leaking information will be provided based on cloud

computing. Using some customized tools. The architecture of

system is shown in Fig1. Mobapp-Safe is an prototype system

which can be used to carry out security analysis of android

apps. When you upload an unknown Apk file to Mobapp-Safe

for analysis, it will check the key in store whether the upload

apk file is already undergone analysis and its result is stored in

database. The Comparison of apk file is based on the hashing

technique as the key to query in the redis key value store. The

redis version is 2.1.3 is used if the key is matched in redis,

then the response is returned as result to submitter.

2407

Vol. 3 Issue 4, April - 2014

International Journal of Engineering Research & Technology (IJERT)

IJ
E
R
T

IJ
E
R
T

ISSN: 2278-0181

www.ijert.orgIJERTV3IS042384

International Journal of Engineering Research & Technology (IJERT)

Fig.1 System Architecture

If it is new Apk file then key is not matched. In that

case, the Apk is stored in database. After that, a daemon

invokes the frameworks, such as ASEF and SAAF to collect

the log files and store them in specific directory to carry out

security analysis. Also the prototype inserts the key to redis

and the value is updated with the result directory in database.

B. DESIGN & IMPLEMENTATION

 Entire Mobapp-safe prototype system can be divided into

the following modules:

1) User registration / login platform: Any user can

register for the platform with an email id and phone number.

The platform generates the user id and password for the user

which will be active for 15 days and these details will be sent

to the user via email and sms which was used at the time of

registration. Once the user logins for the first time with the

password sent the user will be asked to change the password

and after successful change of password, user can again login

to application and gains full access to the platform.

2) Platform analyzing application: Once the

authorized user logins to the platform & the user can upload

the apk file from an Google app or the browser app which is

then sent to the platform for the security analysis. The

platform applies SAAF and ASEF algorithm which

completely checks for the file to find malicious app which

contain malwares .It also finds the vulnerabilities and reports

the status to the user which is also stored in the database. If

the app to be analyzed is already present in the Database the

status is directly passed to the user. The platform analyzing

application module plays a very vital role in finding whether

app is safe or unsafe and it collects data why the app is a

unsafe and what type of private data it is leaking from the

android based mobile so user can come to know security

status. The Working of Mobapp-safe is shown in fig. 2.

Fig.2 The process of Mobapp-Safe prototype

The frameworks used in the module are:

a) ASEF: ASEF is an automatize framework which

can carry out security analysis for Android application in

mobile whether the app is safe or unsafe When an unknown

apk file is uploaded to ASEF for analysis As shown in fig 3 it

as three phases: active, passive, interpret firstly it will start the

passive phase were it is initial phase normalization of app will

be carried then it will send that data to active phase

behavioral data will be collected to run test cycle and then it

send to the interpret phase were data will be parsed then

launch an Android Virtual Machine(AVD) were ADB logging

and traffic sniffing using TCPDUMP is done and install the

application on it. Then ASEF will start to install the

application to be examined for analysis and send a number of

behaviors it will be collected to simulate human integration on

the mobile application. Meanwhile ASEF also compares the

log file of CVE library with activites connected to internet

with API of safe Google browser of android virtual machine.

After that certain numbers of behaviors are sent to virtual

machine randomly then the test circle is ended and the

application will be removed. ASEF will start to analysis the

log file and the traffic generated by app through internet.

ASEF uses API Google Safe Browsing to find out URLS of

the app trying to reach whether they contain malwares or not

framework also checks the existed vulnerabilities with a

known vulnerabilities list to examine whether the application

has some dangerous Vulnerabilities.

b) SAAF: SAAF is a framework which is used for

security analysis it is static analyzer for Android apk files. It

can extract the data of apk files and decode the apk file

login Registers

for

application

Upload

apk files

cloud

Mobapp-safe

Send info abt

Mobile apps

security

status results

Upload apk

file
Check key value store

EXISTED IN

Invokes SAAF& ASEF

Return the

result and

store in

database

Put result to key store

Return the result and store the

result in database

yes

NO

END

2408

Vol. 3 Issue 4, April - 2014

International Journal of Engineering Research & Technology (IJERT)

IJ
E
R
T

IJ
E
R
T

ISSN: 2278-0181

www.ijert.orgIJERTV3IS042384

International Journal of Engineering Research & Technology (IJERT)

content to smali code and then it will divide the program into

small chunks of smali code. SAAF unpacks these APK files in

the following way in order to carryout analysis the data-flow

analysis and further analysis operations are done:

 The analyst loads an Android application (apk file).

 SAAF unpacks the contents of the app and generates

smali files for all classes, using the android-apk tool.

Working directly on the byte code enables us to

obtained a detailed view of the code it overcomes

limitations of tools that rely on decompile the byte

code to Java code.

 SAAF then parses all the smali files and creates

appropriate objects for representation of its contents.

we process the Manifest file of app, basic blocks of

the methods, fields, and all opcodes are collected to

analyze the permissions of apps to match behavior

patterns to detect malicious app which is leaking

private data.

c) Performance Evaluation by ASEF Framework: In

order to measure performance metrics how much time ASEF

framework takes time to analyze an mobile app, record can be

done by writing script The apps are installed in three category

Android Smartphone’s. The beginning of a program the time

stamp is used and ASEF framework is used to analyze all

different Android mobile apps downloaded from app market.

The result is shown in Fig. 3, what the time it takes to analyze

one application varies from 60 s to 140 s, and the average time

is taken 100 s. It means that we can finish the security analysis

and acquire the results in less than 1 min on average whether

the app is malware free can be known. It follows 6 steps to

analyze: Preparing app, start collecting log files, service step

were installation is done and testing is carried out by

collecting all the behaviors of app. As shown in Fig.3.

Fig.3 ASEF framework time consumption analysis

Fig.4 SAAF framework time consumption analysis

d) performance evaluation by SAAF framework: To

calculate performance Metrics in security analysis of app

whether it is free from malwares we make use of SAAF

framework for Android apps downloaded from App markets

for checking the performance static smali code of this

framework is used From Fig. 4 above, we can see that the

time consuming step of SAAF framework is the slicing files

into chunks step, and the second is the permission check step.

The average time of analyzing one app consumed by SAAF

framework is less than 1secs. Time depends on the complexity

of app but SAAF framework complete the analysis in

acceptable time duration. In this way security analysis can be

carried out in quicker manner to submit response to users.

3) Admin user for approval tasks and generate

reports: Since the user has authorized gain to the application

for only 15 days, after this time the user can request for

extension and the admin user approves such request. Since

large numbers of apps are uploaded for analysis the admin

user can see all the analyzed files with the status and also

generate the reports in the graphical format for the same data.

V. RESULTS

1) User login window:

This is user login window where users can login to check

App

by using username & password if the credentials are

True

then user can access the platform.

5 10 15 20 25 30

Parser

Permission

ccheck

check
Slicing files

Analyzing

Report

0

CONFIG

File check

Extract apk

Time consumption of each step(SECS)

Time consumption of each step (Secs)

10

0
20 30 40 50 60

Preparing

start log

Installing

Analyzing

Testing

0

2409

Vol. 3 Issue 4, April - 2014

International Journal of Engineering Research & Technology (IJERT)

IJ
E
R
T

IJ
E
R
T

ISSN: 2278-0181

www.ijert.orgIJERTV3IS042384

International Journal of Engineering Research & Technology (IJERT)

2) User register window:

This window shows If the user is using the app for the

first

time the user should get

registered

for the platform with an

user

name email-id

and

phone number.

3)

Upload apk file window:

This window shows Upload apk files to verify the apps

are safe unsafe.

4)

Apk file is uploaded

window:

This window shows apk from mobile file is uploaded.

5) Result window App is unsafe:

This window shows the result apk file is analyzed whether the

app contains malwares as result shows the uploaded apk file

is unsafe.it is unsafe as its leaks private data.

6)

Result window App is safe:

This window shows it analyzes

and checks the app whether it

is safe or it contains malwares.

7)

Admin window:

This window shows admin can login see the user account

status& list of Analyzed files.

2410

Vol. 3 Issue 4, April - 2014

International Journal of Engineering Research & Technology (IJERT)

IJ
E
R
T

IJ
E
R
T

ISSN: 2278-0181

www.ijert.orgIJERTV3IS042384

International Journal of Engineering Research & Technology (IJERT)

8) Admin Analyzed Report:

This window shows admin can see graph of all analyzed apk

files and time consumed by apps to undergo security analysis

VI CONCLUSION

The proposed methodology is to improve security

status & verify the security of Android mobile apps to

indentify whether mobile apps contain malwares or no based

on cloud computing technology. The memory and time

consumption during the security analysis is less & classifies

new malware under few seconds with less percent of impact

on performance & power consumption is also less. The

prototype system Mobapp-Safe can be implemented for

security analysis of mobile Apps were static code and active

behavior of App is analyzed ASEF and SAAF are the two

methods which carry out active analysis and passive analysis

can be used to examine the Android Apps and calculates the

total time needed to examine all the stored Apps which are

collected in a mobile App market and regularly to filter out

malware Apps The scope of the mobapp-safe prototype

system it can solve practical real life problems such as it can

protect & promotes the android markets. Developers and

owner of App markets would benefit from integrating

Mobapp-safe prototype. They can also protect and promote a

market being targeted by an attacker. Before downloading any

app into smartphone, a user can see what this prototype has to

say about the behavioral analysis of the App.

REFERENCES

[1] A. P. Felt, E. Chin, S. Hanna, D. Song, and D. Wagner, Android

permissions demystified 18th ACM Conference on Computer and
Communications Security, Chicago, USA, 2011, pp. 627-638.

[2] Q. Feng, Android software security and reversing engineering

analysis, Feb. 2013.
[3] http://techcrunch.com/2013/05/29/mary-meeker-2013- internet-

trends/, May 29, 2013

[4] Barrera, H. G. Kayacik, P. C. van Oorschot, and A. Somayaji, A
methodology for analysis of permission-security

models and its application to Android, in Proc. 17th ACM

Conference on Computer and Communications Security, Chicago,
USA, 2010, pp. 73- 84

[5] Nadji, J. Giffin, and P. Traynor, Automated remote

repair for mobile malware, in Proc. 27th Annual Computer
Security Applications Conference, Orlando, USA, 2011, pp. 413-

422. J. Wu, On Top of Tides (Chinese Edition), Beijing: China

Publishing House of Electronics Industry, January 8, 2011.
[6] Sango Lee and Da Young Ju International Journal of Security and

Its Application Vol.7, No.5(2013.

[7] Gartner http://www.gartner.com/it/page.jsp?id=2153215,
September 11, 2012.

[8] Schmidt, R. Bye, H. G. Schmidt, J. Clausen,O. Kiraz, K. A.

Yuksel, S. A. Camtepe, and S. Albayrak, Static analysis of
executables for collaborative malware detection on Android, in

Communications, ICC’09, IEEE International Conference on,
Dresden, Germany, 2009

[9] List of mobile software distribution platforms,

http://en.wikipedia.org/wiki/List of digital distribution platforms
for mobile devices, July 19 2013. .

[10] W. Enck, D. Octeau, P. McDaniel, and S. Chaudhuri, A study of

android application security, San Francisco, USA, 2011.

2411

Vol. 3 Issue 4, April - 2014

International Journal of Engineering Research & Technology (IJERT)

IJ
E
R
T

IJ
E
R
T

ISSN: 2278-0181

www.ijert.orgIJERTV3IS042384

International Journal of Engineering Research & Technology (IJERT)

