

INTRUSION DETECTION USING DATAMINING
1
R.Sateesh Kumar

2
M.Sunitha Reddy

Abstract

In this paper we discuss our research in

developing general and systematic methods for

intrusion detection. The key ideas are to use data

mining techniques to discover consistent and useful

patterns of system features that describe program

and user behavior, and use the set of relevant system

features to compute (inductively learned) classifiers

that can recognize anomalies and known intrusions.

Using experiments on the sendmail system call data

, we demonstrate that we can construct concise and

accurate classifiers to detect anomalies. We provide

an overview on two general data mining algorithms

that we have implemented: the association rules

algorithm and the frequent episodes algorithm. These

algorithms can be used to compute the intra- and

inter- audit record patterns, which are essential in

describing program or user behavior. The discovered

patterns can guide the audit data gathering process

and facilitate feature selection. To meet the

challenges of both efficient learning (mining) and

real-time detection, we propose an agent-based

architecture for intrusion detection systems where the

learning agents continuously compute and provide

the updated (detection) models to the detection

agents.

1 Introduction

As network-based computer systems play

increasingly vital roles in modern society, they have

become the targets of our enemies and criminals.

Therefore, we need to find the best ways possible to

protect our systems.

The security of a computer system is compromised

when an intrusion takes place. An intrusion can be

defined [8] as ``any set of actions that attempt to

compromise the integrity, confidentiality or

availability of a resource''. Intrusion prevention

errors, and information protection (e.g., encryption)

have been used to protect computer systems as a first

line of defense. Intrusion prevention alone is not

sufficient because as systems become ever more

complex, there are always exploitable weakness in

the systems due to design and programming errors, or

various ``socially engineered'' penetration techniques.

For example, after it was first reported many years

ago, exploitable ``buffer overflow'' still exists in

some recent system software due to programming

errors. The policies that balance convenience versus

strict control of a system and information access also

make it impossible for an operational system to be

completely secure.

Intrusion detection is therefore needed as another

wall to protect computer systems. The elements

central to intrusion detection are: resources to be

protected in a target system, i.e., user accounts, file

systems, system kernels, etc; models that characterize

the ``normal'' or ``legitimate'' behavior of these

resources; techniques that compare the actual system

activities with the established models, and identify

those that are ``abnormal'' or ``intrusive''.

Many researchers have proposed and implemented

different models which define different measures of

system behavior, with an ad hoc presumption that

normalcy and anomaly (or illegitimacy) will be

accurately manifested in the chosen set of system

features that are modeled and measured. Intrusion

detection techniques can be categorized into misuse

detection, which uses patterns of well-known attacks

or weak spots of the system to identify intrusions;

and anomaly detection, which tries to determine

whether deviation from the established normal usage

patterns can be flagged as intrusions.

Misuse detection systems, for example [12] and

STAT [9], encode and match the sequence of

``signature actions'' (e.g., change the ownership of a

file) of known intrusion scenarios. The main

shortcomings of such systems are: known intrusion

patterns have to be hand-coded into the system; they

are unable to detect any future (unknown) intrusions

that have no matched patterns stored in the system.

Anomaly detection (sub)systems, such as IDES ,

establish normal usage patterns (profiles) using

statistical measures on system features, for example,

the CPU and I/O activities by a particular user or

program. The main difficulties of these systems are:

intuition and experience is relied upon in selecting

the system features, which can vary greatly among

International Journal of Engineering Research & Technology (IJERT)

Vol. 1 Issue 5, July - 2012
ISSN: 2278-0181

1www.ijert.org

different computing environments; some intrusions

can only be detected by studying the sequential

interrelation between events because each event

alone may fit the profiles.

Our research aims to eliminate, as much as possible,

the manual and ad-hoc elements from the process of

building an intrusion detection system. We take a

data-centric point of view and consider intrusion

detection as a data analysis process. Anomaly

detection is about finding the normal usage patterns

from the audit data, whereas misuse detection is

about encoding and matching the intrusion patterns

using the audit data. The central theme of our

approach is to apply data mining techniques to

intrusion detection. Data mining generally refers to

the process of (automatically) extracting models from

large stores of data [6]. The recent rapid development

in data mining has made available a wide variety of

algorithms, drawn from the fields of statistics, pattern

recognition, machine learning, and database. Several

types of algorithms are particularly relevant to our

research:

Classification:
maps a data item into one of several pre-

defined categories. These algorithms

normally output ``classifiers'', for example,

in the form of decision trees or rules. An

ideal application in intrusion detection will

be to gather sufficient ``normal'' and

``abnormal'' audit data for a user or a

program, then apply a classification

algorithm to learn a classifier that will

determine (future) audit data as belonging to

the normal class or the abnormal class;

Link analysis:
determines relations between fields in the

database. Finding out the correlations in

audit data will provide insight for selecting

the right set of system features for intrusion

detection;

Sequence analysis:
models sequential patterns. These

algorithms can help us understand what

(time-based) sequence of audit events are

frequently encountered together. These

frequent event patterns are important

elements of the behavior profile of a user or

program.

We are developing a systematic framework for

designing, developing and evaluating intrusion

detection systems. Specifically, the framework

consists of a set of environment-independent

guidelines and programs that can assist a system

administrator or security officer to

 select appropriate system features from audit

data to build models for intrusion detection;

 architect a hierarchical detector system from

component detectors;

 update and deploy new detection systems as

needed.

The key advantage of our approach is that it can

automatically generate concise and accurate detection

models from large amount of audit data. The

methodology itself is general and mechanical, and

therefore can be used to build intrusion detection

systems for a wide variety of computing

environments.

The rest of the paper is organized as follows:

Section 2 describes our experiments in building

classification models for sendmail and network

traffic. Section 3 presents the association rules and

frequent episodes algorithms that can be used to

compute a set of patterns from audit data. Section 4

briefly highlights the architecture of our proposed

intrusion detection system. Section 5 outlines our

future research plans.

2 Building Classification Models

 In this section we describe in detail our experiments

in constructing classification models for anomaly

detection. The first set of experiments, first reported

in [15], is on the sendmail system call data, and the

second is on the network tcpdump data.

2.1 Experiments on sendmail Data

 There have been a lot of attacks on computer

systems that are carried out as exploitations of the

design and programming errors in privileged

programs, those that can run as root. For example, a

flaw in the finger daemon allows the attacker to use

``buffer overflow'' to trick the program to execute his

malicious code. Recent research efforts by Ko et al.

 [11] and Forrest et al. [5] attempted to build

intrusion detection systems that monitor the

execution of privileged programs and detect the

attacks on their vulnerabilities. Forrest et al.

discovered that the short sequences of system calls

made by a program during its normal executions are

very consistent, yet different from the sequences of

its abnormal (exploited) executions as well as the

executions of other programs. Therefore a database

containing these normal sequences can be used as the

``self'' definition of the normal behavior of a

program, and as the basis to detect anomalies. Their

findings motivated us to search for simple and

accurate intrusion detection models.

Stephanie Forrest provided us with a set of traces of

the sendmail program used in her experiments [5].

International Journal of Engineering Research & Technology (IJERT)

Vol. 1 Issue 5, July - 2012
ISSN: 2278-0181

2www.ijert.org

We applied machine learning techniques to produce

classifiers that can distinguish the exploits from the

normal runs.

2.1.1 The sendmail System Call Traces

 The procedure of generating the sendmail traces

were detailed in [5]. Briefly, each file of the trace

data has two columns of integers, the first is the

process ids and the second is the system call

``numbers''. These numbers are indices into a lookup

table of system call names. For example, the number

``5'' represents system call open. The set of traces

include:

Normal traces:
a trace of the sendmail daemon and a

concatenation of several invocations of the

sendmail program;

Abnormal traces:
3 traces of the sscp (sunsendmailcp) attacks,

2 traces of the syslog-remote attacks, 2

traces of the syslog-local attacks, 2 traces of

the decode attacks, 1 trace of the sm5x

attack and 1 trace of the sm565a attack.

These are the traces of (various kinds of)

abnormal runs of the sendmail program.

2.1.2 Learning to Classify System Call Sequences

 In order for a machine learning program to learn the

classification models of the ``normal'' and

``abnormal'' system call sequences, we need to supply

it with a set of training data containing pre-labeled

``normal'' and ``abnormal'' sequences. We use a

sliding window to scan the normal traces and create a

list of unique sequences of system calls. We call this

list the ``normal'' list. Next, we scan each of the

intrusion traces. For each sequence of system calls,

we first look it up in the normal list. If an exact match

can be found then the sequence is labeled as

``normal''. Otherwise it is labeled as ``abnormal''

(note that the data gathering process described in [5]

ensured that the normal traces include nearly all

possible ``normal'' short sequences of system calls, as

new runs of sendmail failed to generate new

sequences). Needless to say all sequences in the

normal traces are labeled as ``normal''. See Table 1

for an example of the labeled sequences. It should be

noted that an intrusion trace contains many normal

sequences in addition to the abnormal sequences

since the illegal activities only occur in some places

within a trace.

Table 1: Pre-labeled System Call Sequences of

Length 7

System Call Sequences (length 7) Class Labels

4 2 66 66 4 138 66 ``normal''

... ...

5 5 5 4 59 105 104 ``abnormal''

... ...

We applied RIPPER [3], a rule learning program, to

our training data. The following learning tasks were

formulated to induce the rule sets for normal and

abnormal system call sequences:

 Each record has n positional attributes, p1,

p2, ..., pn, one for each of the system calls in

a sequence of length n; plus a class label,

``normal'' or ``abnormal''

 The training data is composed of normal

sequences taken from 80% of the normal

traces, plus the abnormal sequences from 2

traces of the sscp attacks, 1 trace of the

syslog-local attack, and 1 trace of the syslog-

remote attack

 The testing data includes both normal and

abnormal traces not used in the training data.

RIPPER outputs a set of if-then rules for the

``minority'' classes, and a default ``true'' rule for the

remaining class. The following exemplar RIPPER

rules were generated from the system call data:

normal:- p2=104, p7=112.

[meaning: if p2 is 104 (vtimes) and

p7 is 112 (vtrace) then the sequence

is ``normal'']

normal:- p6=19, p7=105. [meaning:

if p6 is 19 (lseek) and p7 is 105

(sigvec) then the sequence is

``normal'']

abnormal:- true. [meaning: if none

of the above, the sequence is

``abnormal'']

These RIPPER rules can be used to predict whether a

sequence is ``abnormal'' or ``normal''. But what the

intrusion detection system needs to know is whether

the trace being analyzed is an intrusion or not. We

International Journal of Engineering Research & Technology (IJERT)

Vol. 1 Issue 5, July - 2012
ISSN: 2278-0181

3www.ijert.org

use the following post-processing scheme to detect

whether a given trace is an intrusion based on the

RIPPER predictions of its constituent sequences:

1.

Use a sliding window of length 2L+1, e.g.,

7, 9, 11, 13, etc., and a sliding (shift) step of

L, to scan the predictions made by the

RIPPER rules on system call sequences.

2.

For each of the (length 2L+1) regions of

RIPPER predictions generated in Step 1, if

more than L predictions are ``abnormal''

then the current region of predictions is an

``abnormal'' region. (Note that L is an input

parameter).

3.

If the percentage of abnormal regions is

above a threshold value, say 2%, then the

trace is an intrusion.

This scheme is an attempt to filter out the spurious

prediction errors. The intuition behind this scheme is

that when an intrusion actually occurs, the majority

of adjacent system call sequences are abnormal;

whereas the prediction errors tend to be isolated and

sparse. In [5], the percentage of the mismatched

sequences (out of the total number of matches

(lookups) performed for the trace) is used to

distinguish normal from abnormal. The

``mismatched'' sequences are the abnormal sequences

in our context. Our scheme is different in that we

look for abnormal regions that contain more

abnormal sequences than the normal ones, and

calculate the percentage of abnormal regions (out of

the total number of regions). Our scheme is more

sensitive to the temporal information, and is less

sensitive to noise (errors).

RIPPER only outputs rules for the ``minority'' class.

For example, in our experiments, if the training data

has fewer abnormal sequences than the normal ones,

the output RIPPER rules can be used to identify

abnormal sequences, and the default (everything else)

prediction is normal. We conjectured that a set of

specific rules for normal sequences can be used as the

``identity'' of a program, and thus can be used to

detect any known and unknown intrusions (anomaly

intrusion detection). Whereas having only the rules

for abnormal sequences only gives us the capability

to identify known intrusions (misuse intrusion

detection).

Table: Comparing Detection of Anomalies. The

column [5] is the percentage of the abnormal

sequences of the traces. Columns A, B, C, and D are

the percentages of abnormal regions (as measured by

the post-processing scheme) of the traces. sendmail is

the 20% normal traces not used in the training data.

Traces in bold were included in the training data, the

other traces were used as testing data only.

 % abn. % abn. in experiment

Traces [5] A B C D

sscp-1 5.2 41.9 32.2 40.0 33.1

sscp-2 5.2 40.4 30.4 37.6 33.3

sscp-3 5.2 40.4 30.4 37.6 33.3

syslog-r-1 5.1 30.8 21.2 30.3 21.9

syslog-r-2 1.7 27.1 15.6 26.8 16.5

syslog-l-1 4.0 16.7 11.1 17.0 13.0

syslog-l-2 5.3 19.9 15.9 19.8 15.9

decode-1 0.3 4.7 2.1 3.1 2.1

decode-2 0.3 4.4 2.0 2.5 2.2

sm565a 0.6 11.7 8.0 1.1 1.0

sm5x 2.7 17.7 6.5 5.0 3.0

sendmail 0 1.0 0.1 0.2 0.3

We compare the results of the following experiments

that have different distributions of abnormal versus

normal sequences in the training data:

Experiment A:
46% normal and 54% abnormal, sequence

length is 11;

Experiment B:
46% normal and 54% abnormal, sequence

length is 7;

Experiment C:
46% abnormal and 54% normal, sequence

length is 11;

Experiment D:
46% abnormal and 54% normal, sequence

length is 7.

Table 2 shows the results of using the classifiers from

these experiments to analyze the traces. We report

International Journal of Engineering Research & Technology (IJERT)

Vol. 1 Issue 5, July - 2012
ISSN: 2278-0181

4www.ijert.org

here the percentage of abnormal regions (as measured

by our post-processing scheme) of each trace, and

compare our results with Forrest et al., as reported in

 [5]. From Table 2, we can see that in general,

intrusion traces generate much larger percentages of

abnormal regions than the normal traces. We call

these measured percentages the ``scores'' of the

traces. In order to establish a threshold score for

identifying intrusion traces, it is desirable that there is

a sufficiently large gap between the scores of the

normal sendmail traces and the low-end scores of the

intrusion traces. Comparing experiments that used the

same sequence length, we observe that such a gap in

A, 3.4, is larger than the gap in C, 0.9; and 1.9 in B is

larger than 0.7 in D. The RIPPER rules from

experiments A and B describe the patterns of the

normal sequences. Here the results show that these

rules can be used to identify the intrusion traces,

including those not seen in the training data, namely,

the decode traces, the sm565a and sm5x traces. This

confirms our conjecture that rules for normal patterns

can be used for anomaly detection. The RIPPER rules

from experiments C and D specify the patterns of

abnormal sequences in the intrusion traces included

in the training data. The results indicate that these

rules are very capable of detecting the intrusion

traces of the ``known'' types (those seen in the

training data), namely, the sscp-3 trace, the syslog-

remote-2 trace and the syslog-local-2 trace. But

comparing with the rules from A and B, the rules in

C and D perform poorly on intrusion traces of

``unknown'' types. This confirms our conjecture that

rules for abnormal patterns are good for misuse

intrusion detection, but may not be as effective in

detecting future (``unknown'') intrusions.

The results from Forrest et al. showed that their

method required a very low threshold in order to

correctly detect the decode and sm565a intrusions.

While the results here show that our approach

generated much stronger ``signals'' of anomalies from

the intrusion traces, it should be noted that their

method used all of the normal traces but not any of

the intrusion traces in training.

2.1.3 Learning to Predict System Calls

 Unlike the experiments in Section 2.1.2 which

required abnormal traces in the training data, here we

wanted to study how to compute an anomaly detector

given just the normal traces. We conducted

experiments to learn the (normal) correlation among

system calls: the nth system calls or the middle

system calls in (normal) sequences of length n.

The learning tasks were formulated as follows:

 Each record has n-1 positional attributes, p1,

p2, ..., pn-1, each being a system call; plus a

class label, the system call of the nth

position or the middle position

 The training data is composed of (normal)

sequences taken from 80% of the normal

sendmail traces

 The testing data is the traces not included in

the training data, namely, the remaining

20% of the normal sendmail traces and all

the intrusion traces.

RIPPER outputs rules in the following form:

38 :- p3=40, p4=4. [meaning: if p3

is 40 (lstat) and p4 is 4 (write), then

the 7th system call is 38 (stat).]

...

5:- true. [meaning: if none of the

above, then the 7th system calls is 5

(open).]

Each of these RIPPER rules has some ``confidence''

information: the number of matched examples

(records that conform to the rule) and the number of

unmatched examples (records that are in conflict with

the rule) in the training data. For example, the rule

for ``38 (stat)'' covers 12 matched examples and 0

unmatched examples. We measure the confidence

value of a rule as the number of matched examples

divided by the sum of matched and unmatched

examples. These rules can be used to analyze a trace

by examining each sequence of the trace. If a

violation occurs (the actual system call is not the

same as predicted by the rule), the ``score'' of the

trace is incremented by 100 times the confidence of

the violated rule. For example, if a sequence in the

trace has p3=40 and p4=4, but p7=44 instead of 38,

the total score of the trace is incremented by 100

since the confidence value of this violated rule is 1.

The averaged score (by the total number of

sequences) of the trace is then used to decide whether

an intrusion has occurred.

Table 3: Detecting Anomalies using Predicted

System Calls. Columns A, B, C, and D are the

averaged scores of violations of the traces. sendmail

is the 20% normal traces not used in the training data.

International Journal of Engineering Research & Technology (IJERT)

Vol. 1 Issue 5, July - 2012
ISSN: 2278-0181

5www.ijert.org

None of the intrusion traces was used in training.

 averaged score of violations

Traces Exp. A Exp. B Exp. C Exp. D

sscp-1 24.1 13.5 14.3 24.7

sscp-2 23.5 13.6 13.9 24.4

sscp-3 23.5 13.6 13.9 24.4

syslog-r-1 19.3 11.5 13.9 24.0

syslog-r-2 15.9 8.4 10.9 23.0

syslog-l-1 13.4 6.1 7.2 19.0

syslog-l-2 15.2 8.0 9.0 20.2

decode-1 9.4 3.9 2.4 11.3

decode-2 9.6 4.2 2.8 11.5

sm565a 14.4 8.1 9.4 20.6

sm5x 17.2 8.2 10.1 18.0

sendmail 5.7 0.6 1.2 12.6

Table 3 shows the results of the following

experiments:

Experiment A:
predict the 11th system call;

Experiment B:
predict the middle system call in a sequence

of length 7;

Experiment C:
predict the middle system call in a sequence

of length 11;

Experiment D:
predict the 7th system call.

We can see from Table 3 that the RIPPER rules from

experiments A and B are effective because the gap

between the score of normal sendmail and the low-

end scores of intrusion traces, 3.9, and 3.3

respectively, are large enough. However, the rules

from C and D perform poorly. Since C predicts the

middle system call of a sequence of length 11 and D

predicts the 7th system call, we reason that the

training data (the normal traces) has no stable

patterns for the 6th or 7th position in system call

sequences.

2.1.4 Discussion

Our experiments showed that the normal behavior of

a program execution can be established and used to

detect its anomalous usage. This confirms the results

of other related work in anomaly detection. The

weakness of the model in [5] may be that the

recorded (rote learned) normal sequence database

may be too specific as it contains about ~1,500

entries. Here we show that a machine learning

program, RIPPER, was able to generalize the system

call sequence information, from 80% of the normal

sequences, to a set of concise and accurate rules (the

rule sets have 200 to 280 rules, and each rule has 2 or

3 attribute tests). We demonstrated that these rules

were able to identify unseen intrusion traces as well

as normal traces.

We need to search for a more predictive classification

model so that the anomaly detector has higher

confidence in flagging intrusions. Improvement in

accuracy can come from adding more features, rather

than just the system calls, into the models of program

execution. For example, the directories and the names

of the files touched by a program can be used. In [7],

it is reported that as the number of features increases

from 1 to 3, the classification error rate of their

network intrusion detection system decreases

dramatically. Furthermore, the error rate stabilizes

after the size of the feature set reaches 4, the optimal

size in their experiments. Many operating systems

provide auditing utilities, such as the BSM audit of

Solaris, that can be configured to collect abundant

information (with many features) of the activities in a

host system. From the audit trails, information about

a process (program) or a user can then be extracted.

The challenge now is to efficiently compute accurate

patterns of programs and users from the audit data.

A key assumption in using a learning algorithm for

anomaly detection (and to some degree, misuse

detection) is that the training data is nearly

``complete'' with regard to all possible ``normal''

behavior of a program or user. Otherwise, the learned

detection model can not confidently classify or label

an unmatched data as ``abnormal'' since it can just be

an unseen ``normal'' data. For example, the

experiments in Section 2.1.3 used 80% of ``normal''

system call sequences; whereas the experiments in

Section 2.1.2 actually required all ``normal''

sequences in order to pre-label the ``abnormal''

sequences to create the training data. During the audit

data gathering process, we want to ensure that as

much different normal behavior as possible is

captured. We first need to have a simple and

incremental (continuously learning) summary

measure of an audit trail so that we can update this

International Journal of Engineering Research & Technology (IJERT)

Vol. 1 Issue 5, July - 2012
ISSN: 2278-0181

6www.ijert.org

measure as each new audit trail is processed, and can

stop the audit process when the measure stabilizes. In

Section 3, we propose to use the frequent intra- and

inter- audit record patterns as the summary measure

of an audit trail, and describe the algorithms to

compute these patterns.

3 Mining Patterns from Audit Data

 In order to construct an accurate (effective) base

classifier, we need to gather a sufficient amount of

training data and identify a set of meaningful

features. Both of these tasks require insight into the

nature of the audit data, and can be very difficult

without proper tools and guidelines. In this section

we describe some algorithms that can address these

needs. Here we use the term ``audit data'' to refer to

general data streams that have been properly

processed for detection purposes. An example of

such data streams is the connection record data

extracted from the raw tcpdump output.

3.1 Association Rules

 The goal of mining association rules is to derive

multi-feature (attribute) correlations from a database

table. A simple yet interesting commercial

application of the association rules algorithm is to

determine what items are often purchased together by

customers, and use that information to arrange store

layout. Formally, given a set of records, where each

record is a set of items, an association rule is an

expression X --> Y, confidence, support. X and Y are

subsets of the items in a record, support is the

percentage of records that contain X+Y, whereas

confidence is support(X+Y)/support(X). For example,

an association rule from the shell command history

file (which is a stream of commands and their

arguments) of a user is

trn --> rec.humor; [0.3, 0.1],

which indicates that 30% of the time when the user

invokes trn, he or she is reading the news in

rec.humor, and reading this newsgroup accounts for

10% of the activities recorded in his or her command

history file. Here 0.3 is the confidence and 0.1 is the

support.

The motivation for applying the association rules

algorithm to audit data are:

 Audit data can be formatted into a database

table where each row is an audit record and

each column is a field (system feature) of

the audit records;

 There is evidence that program executions

and user activities exhibit frequent

correlations among system features. For

example, one of the reasons that ``program

policies'', which codify the access rights of

privileged programs, are concise and

capable to detect known attacks [11] is that

the intended behavior of a program, e.g.,

read and write files from certain directories

with specific permissions, is very consistent.

These consistent behaviors can be captured

in association rules;

 We can continuously merge the rules from a

new run to the aggregate rule set (of all

previous runs).

Our implementation follows the general association

rules algorithm.

3.2 Frequent Episodes

 While the association rules algorithm seeks to find

intra- audit record patterns, the frequent episodes

algorithm, can be used to discover inter- audit record

patterns. A frequent episode is a set of events that

occur frequently within a time window (of a specified

length). The events must occur (together) in at least a

specified minimum frequency, min_fr, sliding time

window. Events in a serial episode must occur in

partial order in time; whereas for a parallel episode

there is no such constraint. For X and Y where X+Y

is a frequent episode, X --> Y with

confidence=frequency(X+Y)/frequency(X) and

support=frequency(X+Y) is called a frequent episode

rule. An example frequent serial episode rule from

the log file of a department's Web site is

home, research --> theory; [0.2, 0.05], [30s]

which indicates that when the home page and the

research guide are visited (in that order), in 20% of

the cases the theory group's page is visited

subsequently within the same 30s time window, and

this sequence of visits occurs 5% of the total (the

30s) time windows in the log file (that is,

approximately 5% of all the records).

We seek to apply the frequent episodes algorithm to

analyze audit trails since there is evidence that the

sequence information in program executions and user

commands can be used to build profiles for anomaly

detection [5,14].

International Journal of Engineering Research & Technology (IJERT)

Vol. 1 Issue 5, July - 2012
ISSN: 2278-0181

7www.ijert.org

3.3 Using the Discovered Patterns

The association rules and frequent episodes can be

used to guide the audit process. We run a program

many times and under different settings. For each

new run, we compute its rule set (that consists of both

the association rules and the frequent episodes) from

the audit trail, and update the (existing) aggregate

rule sets using the following merge process:

 For each rule in the new rule set: find a

match in the aggregate rule set. A match is

defined as the exact matches on both the

LHS and RHS of the rules, plus epsilon

matches (using ranges), on the support (or

frequency) and confidence values

 If a match is found, increment the

match_count of the matched rule in the

aggregate rule set. Otherwise, add the new

rule and initialize its match_count to be 1.

When the rule set stabilizes (there are no new rules

added), we can stop the data gathering process since

we have produced a near complete set of audit data

for the normal runs. We then prune the rule set by

eliminating the rules with low match_count,

according to a user-defined threshold on the ratio of

match_count over the total number of audit trails.

The system builders can then use the correlation

information in this final profile rule set to select a

subset of the relevant features for the classification

tasks. We plan to build a support environment to

integrate the process of user selection of features,

computing a classifier (according to the feature set),

and presenting the performance of the classifier. Such

a support system can speed up the iterative feature

selection process, and help ensure the accuracy of a

detection model.

We believe that the discovered patterns from (the

extensively gathered) audit data can be used directly

for anomaly detection. We compute a set of

association rules and frequent episodes from a new

audit trail, and compare it with the established profile

rule set. Scoring functions can be used to evaluate the

deviation scores for: missing rules with high support,

violation (same antecedent but different consequent)

of rules with high support and confidence, new

(unseen) rules, and significant changes in support of

rules.

4 Conclusion and Future Work

 In this paper we proposed a systemic framework that

employs data mining techniques for intrusion

detection. This framework consists of classification,

association rules, and frequence episodes programs,

that can be used to (automatically) construct

detection models. The experiments on sendmail

system call data and network tcpdump data

demonstrated the effectiveness of classification

models in detecting anomalies. The accuracy of the

detection models depends on sufficient training data

and the right feature set. We suggested that the

association rules and frequent episodes algorithms

can be used to compute the consistent patterns from

audit data. These frequent patterns form an abstract

summary of an audit trail, and therefore can be used

to: guide the audit data gathering process; provide

help for feature selection; and discover patterns of

intrusions. Preliminary experiments of using these

algorithms on the tcpdump data showed promising

results.

We are in the initial stages of our research, much

remains to be done including the following tasks:

 Implement a support environment for

system builders to iteratively drive the

integrated process of pattern discovering,

system feature selection, and construction

and evaluation of detection models;

 Investigate the methods and benefits of

combining multiple simple detection

models. We need to use multiple audit data

streams for experiments;

 Implement a prototype agent-based intrusion

detection system. JAM already provides a

base infrastructure;

 Evaluate our approach using extensive audit

data sets, some of which is presently under

construction at Rome Labs.

References

[1]
D. Atkins, P. Buis, C. Hare, R. Kelley, C.

Nachenberg, A. B. Nelson, P. Phillips, T.

Ritchey, and W. Steen.

Internet Security Professional Reference.

New Riders Publishing, 1996.

[2]
S.M.Bellovin. Security problems in the

tcp/ip protocol suite. Computer

Communication Review, 19(2):32-48, April

1989.

[3]

International Journal of Engineering Research & Technology (IJERT)

Vol. 1 Issue 5, July - 2012
ISSN: 2278-0181

8www.ijert.org

W.W.Cohen. Fast effective rule induction.

In Machine Learning: the 12th International

Conference, Lake Taho, CA, 1995. Morgan

Kaufmann.

[4]

P.K.Chan and S.J.Stolfo.Toward parallel

and distributed learning by meta-learning.

In AAAI Workshop in Knowledge Discovery

in Databases, pages 227-240, 1993.

[5]
S. Forrest, S. A. Hofmeyr, A. Somayaji, and

T. A.Longstaff.A sense of self for unix

processes.

In Proceedings of the 1996 IEEE

Symposium on Security and Privacy, pages

120-128, Los Alamitos, CA, 1996. IEEE

Computer Society Press.

[6]
U. Fayyad, G. Piatetsky-Shapiro, and P.

Smyth.

The KDD process of extracting useful

knowledge from volumes of data.

Communications of the ACM, 39(11):27-34,

November 1996.

[7]
J.Frank.Artificial intelligence and intrusion

detection: Current and future directions.

In Proceedings of the 17th National

Computer Security Conference, October

1994.

[8]
R. Heady, G. Luger, A. Maccabe, and M.

Servilla. The architecture of a network level

intrusion detection system. Technical report,

Computer Science Department, University

of New Mexico, August 1990.

[9]
K. Ilgun, R. A. Kemmerer, and P. A. Porras.

State transition analysis: A rule-based

intrusion detection approach.IEEE

Transactions on Software Engineering,

21(3):181-199, March 1995.

[10]
V. Jacobson, C. Leres, and S. McCanne.

tcpdump.

available via anonymous ftp to

ftp.ee.lbl.gov, June 1989.

[11]
C. Ko, G. Fink, and K. Levitt.

Automated detection of vulnerabilities in

privileged programs by execution

monitoring.

In Proceedings of the 10th Annual Computer

Security Applications Conference, pages

134-144, December 1994.

[12]

S. Kumar and E. H. Spafford.

A software architecture to support misuse

intrusion detection.

In Proceedings of the 18th National

Information Security Conference, pages

194-204, 1995.

[13]
J. O. Kephart, G. B. Sorkin, M. Swimmer,

and S. R.White. Blueprint for a computer

immune system. Technical report, IBM T. J.

Watson Research Center, Yorktown

Heights, New York, 1997.

[14]
T.Lane and C.E.Brodley.Sequence matching

and learning in anomaly detection for

computer security. In AAAI Workshop: AI

Approaches to Fraud Detection and Risk

Management, pages 43-49. AAAI Press,

July 1997.

[15]
W. Lee, S. J. Stolfo, and P. K. Chan.

Learning patterns from unix process

execution traces for intrusion detection.

In AAAI Workshop: AI Approaches to Fraud

Detection and Risk Management, pages 50-

56. AAAI Press, July 1997.

[16]
T. Lunt, A. Tamaru, F. Gilham, R.

Jagannathan, P. Neumann, H. Javitz, A.

Valdes, and T. Garvey.

A real-time intrusion detection expert

system (IDES) - final technical report.

Technical report, Computer Science

Laboratory, SRI International, Menlo Park,

California, February 1992.

International Journal of Engineering Research & Technology (IJERT)

Vol. 1 Issue 5, July - 2012
ISSN: 2278-0181

9www.ijert.org

