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Abstract  

In this paper we discuss our research in 

developing general and systematic methods for 

intrusion detection. The key ideas are to use data 

mining techniques to discover consistent and useful 

patterns of system features that describe program 

and user behavior, and use the set of relevant system 

features to compute (inductively learned) classifiers 

that can recognize anomalies and known intrusions. 

Using experiments on the sendmail system call data 

, we demonstrate that we can construct concise and 

accurate classifiers to detect anomalies. We provide 

an overview on two general data mining algorithms 

that we have implemented: the association rules 

algorithm and the frequent episodes algorithm. These 

algorithms can be used to compute the intra- and 

inter- audit record patterns, which are essential in 

describing program or user behavior. The discovered 

patterns can guide the audit data gathering process 

and facilitate feature selection. To meet the 

challenges of both efficient learning (mining) and 

real-time detection, we propose an agent-based 

architecture for intrusion detection systems where the 

learning agents continuously compute and provide 

the updated (detection) models to the detection 

agents.  

1 Introduction  

As network-based computer systems play 

increasingly vital roles in modern society, they have 

become the targets of our enemies and criminals. 

Therefore, we need to find the best ways possible to 

protect our systems.  

The security of a computer system is compromised 

when an intrusion takes place. An intrusion can be 

defined  [8] as ``any set of actions that attempt to 

compromise the integrity, confidentiality or 

availability of a resource''. Intrusion prevention  

errors, and information protection (e.g., encryption) 

have been used to protect computer systems as a first 

line of defense. Intrusion prevention alone is not 

sufficient because as systems become ever more  

 

 

 

 

complex, there are always exploitable weakness in 

the systems due to design and programming errors, or  

various ``socially engineered'' penetration techniques. 

For example, after it was first reported many years 

ago, exploitable ``buffer overflow'' still exists in 

some recent system software due to programming 

errors. The policies that balance convenience versus 

strict control of a system and information access also 

make it impossible for an operational system to be 

completely secure.  

Intrusion detection is therefore needed as another 

wall to protect computer systems. The elements 

central to intrusion detection are: resources to be 

protected in a target system, i.e., user accounts, file 

systems, system kernels, etc; models that characterize 

the ``normal'' or ``legitimate'' behavior of these 

resources; techniques that compare the actual system 

activities with the established models, and identify 

those that are ``abnormal'' or ``intrusive''.  

Many researchers have proposed and implemented 

different models which define different measures of 

system behavior, with an ad hoc presumption that 

normalcy and anomaly (or illegitimacy) will be 

accurately manifested in the chosen set of system 

features that are modeled and measured. Intrusion 

detection techniques can be categorized into misuse 

detection, which uses patterns of well-known attacks 

or weak spots of the system to identify intrusions; 

and anomaly detection, which tries to determine 

whether deviation from the established normal usage 

patterns can be flagged as intrusions.  

Misuse detection systems, for example  [12] and 

STAT [9], encode and match the sequence of 

``signature actions'' (e.g., change the ownership of a 

file) of known intrusion scenarios. The main 

shortcomings of such systems are: known intrusion 

patterns have to be hand-coded into the system; they 

are unable to detect any future (unknown) intrusions 

that have no matched patterns stored in the system.  

Anomaly detection (sub)systems, such as IDES , 

establish normal usage patterns (profiles) using 

statistical measures on system features, for example, 

the CPU and I/O activities by a particular user or 

program. The main difficulties of these systems are: 

intuition and experience is relied upon in selecting 

the system features, which can vary greatly among 
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different computing environments; some intrusions 

can only be detected by studying the sequential 

interrelation between events because each event 

alone may fit the profiles.  

Our research aims to eliminate, as much as possible, 

the manual and ad-hoc elements from the process of 

building an intrusion detection system. We take a 

data-centric point of view and consider intrusion 

detection as a data analysis process. Anomaly 

detection is about finding the normal usage patterns 

from the audit data, whereas misuse detection is 

about encoding and matching the intrusion patterns 

using the audit data. The central theme of our 

approach is to apply data mining techniques to 

intrusion detection. Data mining generally refers to 

the process of (automatically) extracting models from 

large stores of data [6]. The recent rapid development 

in data mining has made available a wide variety of 

algorithms, drawn from the fields of statistics, pattern 

recognition, machine learning, and database. Several 

types of algorithms are particularly relevant to our 

research:  

Classification:  
maps a data item into one of several pre-

defined categories. These algorithms 

normally output ``classifiers'', for example, 

in the form of decision trees or rules. An 

ideal application in intrusion detection will 

be to gather sufficient ``normal'' and 

``abnormal'' audit data for a user or a 

program, then apply a classification 

algorithm to learn a classifier that will 

determine (future) audit data as belonging to 

the normal class or the abnormal class;  

Link analysis:  
determines relations between fields in the 

database. Finding out the correlations in 

audit data will provide insight for selecting 

the right set of system features for intrusion 

detection;  

Sequence analysis:  
models sequential patterns. These 

algorithms can help us understand what 

(time-based) sequence of audit events are 

frequently encountered together. These 

frequent event patterns are important 

elements of the behavior profile of a user or 

program.  

We are developing a systematic framework for 

designing, developing and evaluating intrusion 

detection systems. Specifically, the framework 

consists of a set of environment-independent 

guidelines and programs that can assist a system 

administrator or security officer to  

 select appropriate system features from audit 

data to build models for intrusion detection;  

 architect a hierarchical detector system from 

component detectors;  

 update and deploy new detection systems as 

needed.  

The key advantage of our approach is that it can 

automatically generate concise and accurate detection 

models from large amount of audit data. The 

methodology itself is general and mechanical, and 

therefore can be used to build intrusion detection 

systems for a wide variety of computing 

environments.  

The rest of the paper is organized as follows: 

Section 2 describes our experiments in building 

classification models for sendmail and network 

traffic. Section 3 presents the association rules and 

frequent episodes algorithms that can be used to 

compute a set of patterns from audit data. Section 4 

briefly highlights the architecture of our proposed 

intrusion detection system. Section 5 outlines our 

future research plans.  

2 Building Classification Models  

 In this section we describe in detail our experiments 

in constructing classification models for anomaly 

detection. The first set of experiments, first reported 

in  [15], is on the sendmail system call data, and the 

second is on the network tcpdump data.  

2.1 Experiments on sendmail Data  

 There have been a lot of attacks on computer 

systems that are carried out as exploitations of the 

design and programming errors in privileged 

programs, those that can run as root. For example, a 

flaw in the finger daemon allows the attacker to use 

``buffer overflow'' to trick the program to execute his 

malicious code. Recent research efforts by Ko et al. 

 [11] and Forrest et al.  [5] attempted to build 

intrusion detection systems that monitor the 

execution of privileged programs and detect the 

attacks on their vulnerabilities. Forrest et al. 

discovered that the short sequences of system calls 

made by a program during its normal executions are 

very consistent, yet different from the sequences of 

its abnormal (exploited) executions as well as the 

executions of other programs. Therefore a database 

containing these normal sequences can be used as the 

``self'' definition of the normal behavior of a 

program, and as the basis to detect anomalies. Their 

findings motivated us to search for simple and 

accurate intrusion detection models.  

Stephanie Forrest provided us with a set of traces of 

the sendmail program used in her experiments [5]. 
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We applied machine learning techniques to produce 

classifiers that can distinguish the exploits from the 

normal runs.  

2.1.1 The sendmail System Call Traces  

 The procedure of generating the sendmail traces 

were detailed in  [5]. Briefly, each file of the trace 

data has two columns of integers, the first is the 

process ids and the second is the system call 

``numbers''. These numbers are indices into a lookup 

table of system call names. For example, the number 

``5'' represents system call open. The set of traces 

include:  

Normal traces:  
a trace of the sendmail daemon and a 

concatenation of several invocations of the 

sendmail program;  

Abnormal traces:  
3 traces of the sscp ( sunsendmailcp) attacks, 

2 traces of the syslog-remote attacks, 2 

traces of the syslog-local attacks, 2 traces of 

the decode attacks, 1 trace of the sm5x 

attack and 1 trace of the sm565a attack. 

These are the traces of (various kinds of) 

abnormal runs of the sendmail program.  

2.1.2 Learning to Classify System Call Sequences  

 In order for a machine learning program to learn the 

classification models of the ``normal'' and 

``abnormal'' system call sequences, we need to supply 

it with a set of training data containing pre-labeled 

``normal'' and ``abnormal'' sequences. We use a 

sliding window to scan the normal traces and create a 

list of unique sequences of system calls. We call this 

list the ``normal'' list. Next, we scan each of the 

intrusion traces. For each sequence of system calls, 

we first look it up in the normal list. If an exact match 

can be found then the sequence is labeled as 

``normal''. Otherwise it is labeled as ``abnormal'' 

(note that the data gathering process described in  [5] 

ensured that the normal traces include nearly all 

possible ``normal'' short sequences of system calls, as 

new runs of sendmail failed to generate new 

sequences). Needless to say all sequences in the 

normal traces are labeled as ``normal''. See Table 1 

for an example of the labeled sequences. It should be 

noted that an intrusion trace contains many normal 

sequences in addition to the abnormal sequences 

since the illegal activities only occur in some places 

within a trace.    

 

 

   

Table 1: Pre-labeled System Call Sequences of 

Length 7 

System Call Sequences (length 7) Class Labels 

4 2 66 66 4 138 66 ``normal'' 

... ... 

5 5 5 4 59 105 104 ``abnormal'' 

... ... 

 

We applied RIPPER [3], a rule learning program, to 

our training data. The following learning tasks were 

formulated to induce the rule sets for normal and 

abnormal system call sequences:  

 Each record has n positional attributes, p1, 

p2, ..., pn, one for each of the system calls in 

a sequence of length n; plus a class label, 

``normal'' or ``abnormal''  

 The training data is composed of normal 

sequences taken from 80% of the normal 

traces, plus the abnormal sequences from 2 

traces of the sscp attacks, 1 trace of the 

syslog-local attack, and 1 trace of the syslog-

remote attack  

 The testing data includes both normal and 

abnormal traces not used in the training data.  

RIPPER outputs a set of if-then rules for the 

``minority'' classes, and a default ``true'' rule for the 

remaining class. The following exemplar RIPPER 

rules were generated from the system call data:  

normal:- p2=104, p7=112. 

[meaning: if p2 is 104 (vtimes) and 

p7 is 112 (vtrace) then the sequence 

is ``normal'']  

normal:- p6=19, p7=105. [meaning: 

if p6 is 19 (lseek) and p7 is 105 

(sigvec) then the sequence is 

``normal'']  

abnormal:- true. [meaning: if none 

of the above, the sequence is 

``abnormal'']  

These RIPPER rules can be used to predict whether a 

sequence is ``abnormal'' or ``normal''. But what the 

intrusion detection system needs to know is whether 

the trace being analyzed is an intrusion or not. We 
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use the following post-processing scheme to detect 

whether a given trace is an intrusion based on the 

RIPPER predictions of its constituent sequences:  

1.  

Use a sliding window of length 2L+1, e.g., 

7, 9, 11, 13, etc., and a sliding (shift) step of 

L, to scan the predictions made by the 

RIPPER rules on system call sequences.  

2.  

For each of the (length 2L+1) regions of 

RIPPER predictions generated in Step 1, if 

more than L predictions are ``abnormal'' 

then the current region of predictions is an 

``abnormal'' region. (Note that L is an input 

parameter).  

3.  

If the percentage of abnormal regions is 

above a threshold value, say 2%, then the 

trace is an intrusion.  

This scheme is an attempt to filter out the spurious 

prediction errors. The intuition behind this scheme is 

that when an intrusion actually occurs, the majority 

of adjacent system call sequences are abnormal; 

whereas the prediction errors tend to be isolated and 

sparse. In  [5], the percentage of the mismatched 

sequences (out of the total number of matches 

(lookups) performed for the trace) is used to 

distinguish normal from abnormal. The 

``mismatched'' sequences are the abnormal sequences 

in our context. Our scheme is different in that we 

look for abnormal regions that contain more 

abnormal sequences than the normal ones, and 

calculate the percentage of abnormal regions (out of 

the total number of regions). Our scheme is more 

sensitive to the temporal information, and is less 

sensitive to noise (errors).  

RIPPER only outputs rules for the ``minority'' class. 

For example, in our experiments, if the training data 

has fewer abnormal sequences than the normal ones, 

the output RIPPER rules can be used to identify 

abnormal sequences, and the default (everything else) 

prediction is normal. We conjectured that a set of 

specific rules for normal sequences can be used as the 

``identity'' of a program, and thus can be used to 

detect any known and unknown intrusions (anomaly 

intrusion detection). Whereas having only the rules 

for abnormal sequences only gives us the capability 

to identify known intrusions (misuse intrusion 

detection).    

   

Table: Comparing Detection of Anomalies. The 

column  [5] is the percentage of the abnormal 

sequences of the traces. Columns A, B, C, and D are 

the percentages of abnormal regions (as measured by 

the post-processing scheme) of the traces. sendmail is 

the 20% normal traces not used in the training data. 

Traces in bold were included in the training data, the 

other traces were used as testing data only. 

  % abn. % abn. in experiment 

Traces  [5] A B C D 

sscp-1 5.2 41.9 32.2 40.0 33.1 

sscp-2 5.2 40.4 30.4 37.6 33.3 

sscp-3 5.2 40.4 30.4 37.6 33.3 

syslog-r-1 5.1 30.8 21.2 30.3 21.9 

syslog-r-2 1.7 27.1 15.6 26.8 16.5 

syslog-l-1 4.0 16.7 11.1 17.0 13.0 

syslog-l-2 5.3 19.9 15.9 19.8 15.9 

decode-1 0.3 4.7 2.1 3.1 2.1 

decode-2 0.3 4.4 2.0 2.5 2.2 

sm565a 0.6 11.7 8.0 1.1 1.0 

sm5x 2.7 17.7 6.5 5.0 3.0 

sendmail 0 1.0 0.1 0.2 0.3 

 

We compare the results of the following experiments 

that have different distributions of abnormal versus 

normal sequences in the training data:  

 

 

Experiment A:  
46% normal and 54% abnormal, sequence 

length is 11;  

Experiment B:  
46% normal and 54% abnormal, sequence 

length is 7;  

Experiment C:  
46% abnormal and 54% normal, sequence 

length is 11;  

Experiment D:  
46% abnormal and 54% normal, sequence 

length is 7.  

Table 2 shows the results of using the classifiers from 

these experiments to analyze the traces. We report 
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here the percentage of abnormal regions (as measured 

by our post-processing scheme) of each trace, and 

compare our results with Forrest et al., as reported in 

 [5]. From Table 2, we can see that in general, 

intrusion traces generate much larger percentages of 

abnormal regions than the normal traces. We call 

these measured percentages the ``scores'' of the 

traces. In order to establish a threshold score for 

identifying intrusion traces, it is desirable that there is 

a sufficiently large gap between the scores of the 

normal sendmail traces and the low-end scores of the 

intrusion traces. Comparing experiments that used the 

same sequence length, we observe that such a gap in 

A, 3.4, is larger than the gap in C, 0.9; and 1.9 in B is 

larger than 0.7 in D. The RIPPER rules from 

experiments A and B describe the patterns of the 

normal sequences. Here the results show that these 

rules can be used to identify the intrusion traces, 

including those not seen in the training data, namely, 

the decode traces, the sm565a and sm5x traces. This 

confirms our conjecture that rules for normal patterns 

can be used for anomaly detection. The RIPPER rules 

from experiments C and D specify the patterns of 

abnormal sequences in the intrusion traces included 

in the training data. The results indicate that these 

rules are very capable of detecting the intrusion 

traces of the ``known'' types (those seen in the 

training data), namely, the sscp-3 trace, the syslog-

remote-2 trace and the syslog-local-2 trace. But 

comparing with the rules from A and B, the rules in 

C and D perform poorly on intrusion traces of 

``unknown'' types. This confirms our conjecture that 

rules for abnormal patterns are good for misuse 

intrusion detection, but may not be as effective in 

detecting future (``unknown'') intrusions.  

The results from Forrest et al. showed that their 

method required a very low threshold in order to 

correctly detect the decode and sm565a intrusions. 

While the results here show that our approach 

generated much stronger ``signals'' of anomalies from 

the intrusion traces, it should be noted that their 

method used all of the normal traces but not any of 

the intrusion traces in training.  

2.1.3 Learning to Predict System Calls  

 Unlike the experiments in Section 2.1.2 which 

required abnormal traces in the training data, here we 

wanted to study how to compute an anomaly detector 

given just the normal traces. We conducted 

experiments to learn the (normal) correlation among 

system calls: the nth system calls or the middle 

system calls in (normal) sequences of length n.  

The learning tasks were formulated as follows:  

 Each record has n-1 positional attributes, p1, 

p2, ..., pn-1, each being a system call; plus a 

class label, the system call of the nth 

position or the middle position  

 The training data is composed of (normal) 

sequences taken from 80% of the normal 

sendmail traces  

 The testing data is the traces not included in 

the training data, namely, the remaining 

20% of the normal sendmail traces and all 

the intrusion traces.  

RIPPER outputs rules in the following form:  

38 :- p3=40, p4=4. [meaning: if p3 

is 40 (lstat) and p4 is 4 (write), then 

the 7th system call is 38 (stat).]  

...  

5:- true. [meaning: if none of the 

above, then the 7th system calls is 5 

(open).]  

Each of these RIPPER rules has some ``confidence'' 

information: the number of matched examples 

(records that conform to the rule) and the number of 

unmatched examples (records that are in conflict with 

the rule) in the training data. For example, the rule 

for ``38 (stat)'' covers 12 matched examples and 0 

unmatched examples. We measure the confidence 

value of a rule as the number of matched examples 

divided by the sum of matched and unmatched 

examples. These rules can be used to analyze a trace 

by examining each sequence of the trace. If a 

violation occurs (the actual system call is not the 

same as predicted by the rule), the ``score'' of the 

trace is incremented by 100 times the confidence of 

the violated rule. For example, if a sequence in the 

trace has p3=40 and p4=4, but p7=44 instead of 38, 

the total score of the trace is incremented by 100 

since the confidence value of this violated rule is 1. 

The averaged score (by the total number of 

sequences) of the trace is then used to decide whether 

an intrusion has occurred.    

   

Table 3: Detecting Anomalies using Predicted 

System Calls. Columns A, B, C, and D are the 

averaged scores of violations of the traces. sendmail 

is the 20% normal traces not used in the training data. 
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None of the intrusion traces was used in training. 

  averaged score of violations 

Traces Exp. A Exp. B Exp. C Exp. D 

sscp-1 24.1 13.5 14.3 24.7 

sscp-2 23.5 13.6 13.9 24.4 

sscp-3 23.5 13.6 13.9 24.4 

syslog-r-1 19.3 11.5 13.9 24.0 

syslog-r-2 15.9 8.4 10.9 23.0 

syslog-l-1 13.4 6.1 7.2 19.0 

syslog-l-2 15.2 8.0 9.0 20.2 

decode-1 9.4 3.9 2.4 11.3 

decode-2 9.6 4.2 2.8 11.5 

sm565a 14.4 8.1 9.4 20.6 

sm5x 17.2 8.2 10.1 18.0 

sendmail 5.7 0.6 1.2 12.6 

 

Table 3 shows the results of the following 

experiments:  

Experiment A:  
predict the 11th system call;  

Experiment B:  
predict the middle system call in a sequence 

of length 7;  

Experiment C:  
predict the middle system call in a sequence 

of length 11;  

Experiment D:  
predict the 7th system call.  

We can see from Table 3 that the RIPPER rules from 

experiments A and B are effective because the gap 

between the score of normal sendmail and the low-

end scores of intrusion traces, 3.9, and 3.3 

respectively, are large enough. However, the rules 

from C and D perform poorly. Since C predicts the 

middle system call of a sequence of length 11 and D 

predicts the 7th system call, we reason that the 

training data (the normal traces) has no stable 

patterns for the 6th or 7th position in system call 

sequences.  

2.1.4 Discussion  

Our experiments showed that the normal behavior of 

a program execution can be established and used to 

detect its anomalous usage. This confirms the results 

of other related work in anomaly detection. The 

weakness of the model in  [5] may be that the 

recorded (rote learned) normal sequence database 

may be too specific as it contains about ~1,500 

entries. Here we show that a machine learning 

program, RIPPER, was able to generalize the system 

call sequence information, from 80% of the normal 

sequences, to a set of concise and accurate rules (the 

rule sets have 200 to 280 rules, and each rule has 2 or 

3 attribute tests). We demonstrated that these rules 

were able to identify unseen intrusion traces as well 

as normal traces.  

We need to search for a more predictive classification 

model so that the anomaly detector has higher 

confidence in flagging intrusions. Improvement in 

accuracy can come from adding more features, rather 

than just the system calls, into the models of program 

execution. For example, the directories and the names 

of the files touched by a program can be used. In  [7], 

it is reported that as the number of features increases 

from 1 to 3, the classification error rate of their 

network intrusion detection system decreases 

dramatically. Furthermore, the error rate stabilizes 

after the size of the feature set reaches 4, the optimal 

size in their experiments. Many operating systems 

provide auditing utilities, such as the BSM audit of 

Solaris, that can be configured to collect abundant 

information (with many features) of the activities in a 

host system. From the audit trails, information about 

a process (program) or a user can then be extracted. 

The challenge now is to efficiently compute accurate 

patterns of programs and users from the audit data.  

A key assumption in using a learning algorithm for 

anomaly detection (and to some degree, misuse 

detection) is that the training data is nearly 

``complete'' with regard to all possible ``normal'' 

behavior of a program or user. Otherwise, the learned 

detection model can not confidently classify or label 

an unmatched data as ``abnormal'' since it can just be 

an unseen ``normal'' data. For example, the 

experiments in Section 2.1.3 used 80% of ``normal'' 

system call sequences; whereas the experiments in 

Section 2.1.2 actually required all ``normal'' 

sequences in order to pre-label the ``abnormal'' 

sequences to create the training data. During the audit 

data gathering process, we want to ensure that as 

much different normal behavior as possible is 

captured. We first need to have a simple and 

incremental (continuously learning) summary 

measure of an audit trail so that we can update this 
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measure as each new audit trail is processed, and can 

stop the audit process when the measure stabilizes. In 

Section 3, we propose to use the frequent intra- and 

inter- audit record patterns as the summary measure 

of an audit trail, and describe the algorithms to 

compute these patterns.  

3 Mining Patterns from Audit Data  

 In order to construct an accurate (effective) base 

classifier, we need to gather a sufficient amount of 

training data and identify a set of meaningful 

features. Both of these tasks require insight into the 

nature of the audit data, and can be very difficult 

without proper tools and guidelines. In this section 

we describe some algorithms that can address these 

needs. Here we use the term ``audit data'' to refer to 

general data streams that have been properly 

processed for detection purposes. An example of 

such data streams is the connection record data 

extracted from the raw tcpdump output.  

3.1 Association Rules  

 The goal of mining association rules is to derive 

multi-feature (attribute) correlations from a database 

table. A simple yet interesting commercial 

application of the association rules algorithm is to 

determine what items are often purchased together by 

customers, and use that information to arrange store 

layout. Formally, given a set of records, where each 

record is a set of items, an association rule is an 

expression X --> Y, confidence, support. X and Y are 

subsets of the items in a record, support is the 

percentage of records that contain X+Y, whereas 

confidence is support(X+Y)/support(X). For example, 

an association rule from the shell command history 

file (which is a stream of commands and their 

arguments) of a user is  

trn --> rec.humor; [0.3, 0.1], 

which indicates that 30% of the time when the user 

invokes trn, he or she is reading the news in 

rec.humor, and reading this newsgroup accounts for 

10% of the activities recorded in his or her command 

history file. Here 0.3 is the confidence and 0.1 is the 

support.  

The motivation for applying the association rules 

algorithm to audit data are:  

 Audit data can be formatted into a database 

table where each row is an audit record and 

each column is a field (system feature) of 

the audit records;  

 There is evidence that program executions 

and user activities exhibit frequent 

correlations among system features. For 

example, one of the reasons that ``program 

policies'', which codify the access rights of 

privileged programs, are concise and 

capable to detect known attacks [11] is that 

the intended behavior of a program, e.g., 

read and write files from certain directories 

with specific permissions, is very consistent. 

These consistent behaviors can be captured 

in association rules;  

 We can continuously merge the rules from a 

new run to the aggregate rule set (of all 

previous runs).  

Our implementation follows the general association 

rules algorithm.  

3.2 Frequent Episodes  

 While the association rules algorithm seeks to find 

intra- audit record patterns, the frequent episodes 

algorithm, can be used to discover inter- audit record 

patterns. A frequent episode is a set of events that 

occur frequently within a time window (of a specified 

length). The events must occur (together) in at least a 

specified minimum frequency, min_fr, sliding time 

window. Events in a serial episode must occur in 

partial order in time; whereas for a parallel episode 

there is no such constraint. For X and Y where X+Y 

is a frequent episode, X --> Y with 

confidence=frequency(X+Y)/frequency(X) and 

support=frequency(X+Y) is called a frequent episode 

rule. An example frequent serial episode rule from 

the log file of a department's Web site is  

home, research --> theory; [0.2, 0.05], [30s] 

which indicates that when the home page and the 

research guide are visited (in that order), in 20% of 

the cases the theory group's page is visited 

subsequently within the same 30s time window, and 

this sequence of visits occurs 5% of the total (the 

30s) time windows in the log file (that is, 

approximately 5% of all the records).  

We seek to apply the frequent episodes algorithm to 

analyze audit trails since there is evidence that the 

sequence information in program executions and user 

commands can be used to build profiles for anomaly 

detection [5,14].  
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3.3 Using the Discovered Patterns  

The association rules and frequent episodes can be 

used to guide the audit process. We run a program 

many times and under different settings. For each 

new run, we compute its rule set (that consists of both 

the association rules and the frequent episodes) from 

the audit trail, and update the (existing) aggregate 

rule sets using the following merge process:  

 For each rule in the new rule set: find a 

match in the aggregate rule set. A match is 

defined as the exact matches on both the 

LHS and RHS of the rules, plus epsilon 

matches (using ranges), on the support (or 

frequency) and confidence values  

 If a match is found, increment the 

match_count of the matched rule in the 

aggregate rule set. Otherwise, add the new 

rule and initialize its match_count to be 1.  

When the rule set stabilizes (there are no new rules 

added), we can stop the data gathering process since 

we have produced a near complete set of audit data 

for the normal runs. We then prune the rule set by 

eliminating the rules with low match_count, 

according to a user-defined threshold on the ratio of 

match_count over the total number of audit trails. 

The system builders can then use the correlation 

information in this final profile rule set to select a 

subset of the relevant features for the classification 

tasks. We plan to build a support environment to 

integrate the process of user selection of features, 

computing a classifier (according to the feature set), 

and presenting the performance of the classifier. Such 

a support system can speed up the iterative feature 

selection process, and help ensure the accuracy of a 

detection model.  

We believe that the discovered patterns from (the 

extensively gathered) audit data can be used directly 

for anomaly detection. We compute a set of 

association rules and frequent episodes from a new 

audit trail, and compare it with the established profile 

rule set. Scoring functions can be used to evaluate the 

deviation scores for: missing rules with high support, 

violation (same antecedent but different consequent) 

of rules with high support and confidence, new 

(unseen) rules, and significant changes in support of 

rules.  

4 Conclusion and Future Work  

 In this paper we proposed a systemic framework that 

employs data mining techniques for intrusion 

detection. This framework consists of classification, 

association rules, and frequence episodes programs, 

that can be used to (automatically) construct 

detection models. The experiments on sendmail 

system call data and network tcpdump data 

demonstrated the effectiveness of classification 

models in detecting anomalies. The accuracy of the 

detection models depends on sufficient training data 

and the right feature set. We suggested that the 

association rules and frequent episodes algorithms 

can be used to compute the consistent patterns from 

audit data. These frequent patterns form an abstract 

summary of an audit trail, and therefore can be used 

to: guide the audit data gathering process; provide 

help for feature selection; and discover patterns of 

intrusions. Preliminary experiments of using these 

algorithms on the tcpdump data showed promising 

results.  

We are in the initial stages of our research, much 

remains to be done including the following tasks:  

 Implement a support environment for 

system builders to iteratively drive the 

integrated process of pattern discovering, 

system feature selection, and construction 

and evaluation of detection models;  

 Investigate the methods and benefits of 

combining multiple simple detection 

models. We need to use multiple audit data 

streams for experiments;  

 Implement a prototype agent-based intrusion 

detection system. JAM  already provides a 

base infrastructure;  

 Evaluate our approach using extensive audit 

data sets, some of which is presently under 

construction at Rome Labs.  
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