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Abstract—In this essay, a rotor-bearing system has modeled 

by finite element method to examine the effect of breathing crack 

on it. Next, coefficient matrices of desired system has extracted, 

and then crack and its breathing behavior has modeled. In the 

next step, "Houbolt" procedure has used to system responses in 

transient and steady state operation can be achieved. Different 

crack depths in the shaft have considered. To investigation on 

system responses, time signal, Fourier transform, and finally the 

energy diagram of continuous wavelet transform coefficients 

have illustrated. Comparing numerous figures it can be seen that 

wavelet transform has a great capacity in distinguishing cracks.  

Keywords— Breathing crack; Fourier transform; Continuous 

wavelet transform; Transient signal; Houbolt 

I. INTRODUCTION 

High-pace loaded rotor systems are widely distributed in 
machines and equipment of various branches of technology, 
including transport or petrol industry. Condition monitoring of 
this equipment with a high resolution is one of the major task 
for many engineers worldwide. Detection of fatigue cracks in 
early time is necessary to decline catastrophic failure of rotating 
systems in which can result economic losses and accidental 
dangers. Many rotary machines, such as turbines, which are 
used in power producing industry, turn on for once and work in 
a steady state for a long time. Therefore, the methods that study 
the health of rotating equipment during steady-state operation 
have attracted the attention of many researchers in the recent 
years. On the other hand, some rotating systems, such as jet 
engines, are turned on and off consecutively, so the analysis of 
the transient response for this type of machine is significant. 

In the field of health monitoring of systems, many 
researchers have been using numerous non-destructive 
techniques to detect possible defects and calculate the safety of 
structures. Recent advances in computers, sensors, and other 
electronic technologies have made the use of non-destructive 
methods and tests more and more effective and efficient in 
detecting defects in structures than destructive methods. 
Among all methods in detection of cracks in rotor systems, 
vibration-based methods have the most efficiency [1]. The 
principal idea in Vibration-based procedures is that in the 
methods investigator can use of variations in system features 
such as stiffness, damping and mass occur which will cause 
significant variations in modal properties such as natural 
frequencies, modal damping and mode shapes. An illustration 
of this is that reducing of system stiffness is the significant 
indicator of existing crack [2].  

The geometry of crack has a great effect on the dynamics 
and characteristics of the cracked rotor. Therefore, the cracks 

can be classified mainly into three groups: longitudinal, slant 
and transverse cracks. Transverse cracks are most common and 
serious. Transverse crack appears perpendicular to the axis of 
the shaft and has large influence on the dynamic behavior and 
characteristics of the cracked rotor. This kind of crack reduces 
the cross-sectional area near to the crack surface of shaft and 
produces serious damage to the shaft. These cracks are 
generated when the rotor system is subjected to fluctuating 
bending stresses (i.e. cyclic stresses) [3]. Moreover, due to the 
tiny crack edge in heavy shaft in industrial application, crack is 
breathing during its rotation (i.e. opens and closes) and the 
probable non-linear effects of this phenomenon should be 
considered [4]. 

Liong and Proppe (2013) studied the breathing mechanism 
of a cracked rotor and its effects on the rotor system, resulting 
in the weight of the shaft appearing and the inertial forces. A 
method has proposed to estimate cross-sectional stiffness 
reduction, which includes crack. This method is based on the 
continuous area model instead of the elastic linear fracture 
mechanics. Crack breathing was modeled with a parabolic 
surface. As long as the crack is shallow, the straight-line 
enclosure line was used, while the parabolic closure line was 
used for deep crack [5]. Silani et al. (2013) focused on 
analyzing the vibrations of rotating systems, including cracks, 
and calculated the flexibility matrix of the cracked element 
using modified integral-capture limits. These modified limits 
provide more accuracy than conventional methods. The effect 
of these corrections has shown on the flexibility matrix 
coefficients for a simple rotor system including open crack. 
Furthermore, a new finite element method has introduced to can 
model the breathing behavior of the crack. Then, the short-term 
dynamic response of the rotor system analyzed using the 
Fourier transform. The ability of short time Fourier transform 
to detect small cracks studied in the case of transient response 
[6].  

Xuelien Chen (2016) examined a finite element model of a 
rotor system with a slant crack and two discs. Two types of 
linear and non-linear bearings were used to simulate bearings, 
while slant crack was modeled with time-variable stiffness. In 
this paper, the effects of two-disc eccentric phase difference 
have evaluated on the nonlinear responses of the rotor-bearing 
system in the operation of the steady state and starting 
operation. The results for lateral vibrations have shown that the 
resonant super-harmonic component associated with the first 
critical bending speed can be observed in the linear bearing 
state; however, in the case of nonlinear bearings, this 
component is not visible. For torsional vibrations, the super-
harmonic component associated with the first natural torsional 
frequency can be seen in both linear and nonlinear bearing 
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forces. The sharp phase difference between the two disks can 
reduce the vibration of the rotor [7]. Jain et al (2016) evaluated 
the dynamic behavior of a multi-crack rotor system in both 
theoretical and experimental modes, taking into account 
variables such as shaft depth and location, as well as shaft 
rotational speed. In this work, the Langrangian method 
extension has been used to analyze the dynamic behavior of the 
shaft with several cracks and using the Langrangian formula. 
The effects of crack depth on the stiffness of the shaft and the 
natural frequencies of the rotor system have been analyzed in a 
test. Natural frequencies of the system have been obtained 
using a hammer impact test in static conditions. Also, the 
dynamic response of the rotor is analyzed by exhalation using 
OROS [8].  

Guo et al. (2017) set up an experiment to study dynamic 
response of a rotor with a breathing crack as it passed through 
its 1/2, 1/3, 1/4 and 1/5 subcritical speeds. The vibration signals 
of the testbed during the coasting-up process were collected. 
Whirl orbit evolution at these subcritical speed zones was 
analyzed; in addition, the Fourier spectra obtained by FFT were 
used to investigate the internal frequencies corresponding to the 
typical orbit characteristics. The results showed that the 
appearance of the inner loops and orientation change of whirl 
orbits in the experiment were agreed well with the theoretical 
results had obtained previously. The presence of higher 
frequencies 2x, 3x, 4x  and 5x  in Fourier spectra showed the 
causes of subharmonic resonances at these subcritical speed 
zones [9]. Czajkowski (2017) used modal analysis in which 
would be able to simulate behavior of a non-rotating Jeffcott 
cracked rotor. Simulation results presented changes in natural 
frequencies of the system with the changing angular position of 
the rotor. Those changes were observed as doubled natural 
frequency peaks in the rotor’s frequency responses. They 
appeared only for the cracked rotor and could be explained by 
shaft stiffness changes due to the opening and closing of crack 
faces under gravity [10].  

Gupta et al. (2019) have been using of artificial neural 
network to introduce crack and unbalancing in a rotor system. 
In this study, they extracted a confusion matrix by statistical 
features. Then, by the help confusion matrix, the class of crack 
and unbalance was decided [11]. Shah and Vakharia (2019) 
have been tested two shafts, one healthy and the other cracked. 
In the case of a cracked shaft, the experiment was performed in 
the presence of and without the presence of a balancing and in 
order to observe changes in the vibrational pattern, the value 
and angle of the phase. Differences in vibration responses led 
to the detection of crack and crack place. The Wavelet energy 
package is used to better locate the crack. The presence of crack 
has led to changes in the dynamic behavior of the rotor. The 1x 
and 2x harmonics for responding to steady state are important 
parameters in the care of cracked rotor status [12]. 

II. ROTOR-BEARING SYSTEM MODELING 

A. Healthy shaft elements, bearings and discs modeling  

The equation of motion for a rotor system like that is shown 
in Fig. 1 can be introduced as Equation (1): 

[M]s{q̈}s-Ω[G]s{q̇}s+[K]s{q}s={Q}s (1) 

 

 

 
Fig. 1. Shaft cracked element and side view of rotor-bearing system 

 

In this regard, [𝑀]𝑠is the mass matrix of the rotor system, 
[𝐺]𝑠is the gyroscopic matrix, [𝐾]𝑠 is the stiffness matrix, [𝑄]𝑠 
is the force vector, and {𝑞}𝑠is the displacement vector of the 
whole system all reside in the coordinates, as well as Ω  is the 
angular speed of the system. The matrix coefficients of the 
Equation of motion of the rotor system can be introduced as 
following Equations: 
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[K2]= [
kuu kuv

kvu kvv
] 

(10) 

 

[𝐊𝐛]= [
cuu cuv

cvu cvv
] 

In the recent Equations A*=
ρAl

420
  , 𝐵∗ =

2ρAr2
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 , 𝐶∗ =

2ρAr2

120l
 and 

𝐷∗ =
EI

l
3  respectively. It should be noted that the mass and 

stiffness matrices of the shaft element are symmetrical and the 
matrix of the gyroscopic effects of the shaft element is 
symmetrical skew. The vector {Q} can include any type of force 
acting on the rotor system, whether external forces applied to 
the shaft, to the disk, or to the support forces or to the forces 
caused by the unbalancing. In this paper, only the disk 
unbalancing force is considered. For a disk of mass "md" and 

eccentricity e, relative to its center, the vector of force {Qd} can 

be written as follows. It should be noted that in the following 
relations α is the angle created by the torsional vibrations and 

Ω is the disc angular speed of the disk, so in these relationships 
Ωt+α is the general angle of the period as shown following 
figure. 

 

Fig. 2. Transverse section of a shaft element 

 

(11) 

{Qd}={Fx,Fy,0 ,0}
T
  

Fx=mde(Ω+α̇)2cos(Ωt+α)+mdeα̈sin(Ωt+α) 

Fy=mde(Ω+α̇)2sin(Ωt+α)-mdeα̈cos(Ωt+α) 

It should be noted that the above relationships are derived 
from the static equilibrium state, assuming that the reference is 
selected, so terms of forces that caused by the weight of disk 
have been ignored. Also in Equation (12), the displacement 
vector of the rotor system is defined for both sides of each 
element. 

(12) 
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Due to presence of cracks in the rotor system, the stiffness 
of the system and system’s force vector, as will be mentioned 
follow, are constantly updated and changed with shift rotation. 
Conversely, other coefficients, including mass matrices, 
damping, and gyroscopic effects, remain constant. To obtain 
the above matrices in the general coordinates of the system 
using finite element principles, the fixed matrices of each 
element, disk and bearings are assembled[13].  

Assuming isotropic bearings, the bearing damping 
coefficients are equal to cuv=cvu=0 and cuu=cvv=cb to which cb 
value that is referred as the bearing damping value. 

B. Crack modelling in the rotor system 

In this work, it is assumed that a transverse crack is 
breathing. Moreover, Energy Release Rate (SERR) method is 
applied. The flexibility matrix is written as Equation (13) for a 
bending element without crack [14]. 
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𝑙 is the length of each element of the shaft, which divides the 

total length of the shaft by the number of elements and the EI is 
the bending stiffness of the shaft. For cracked elements, the 
flexibility matrix is extracted as Equation (14). 
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In the above matrix, F0=
πEr2

(1-ν2)
 , r is the radius of the shaft 

and υ is the Poisson's coefficient. Additional flexibility 
coefficients created by cracks are available in the reference 
[15]. By multiplying reversing the flexibility matrix in the T 

transfer matrix and the TT transformer of this matrix, the 
stiffness matrix of each element of the shaft can be obtained. 

(15) 
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(16) [Kuc
e ]8*8=[T]8*4*[cuc]4*4

-1 *[T]4*8
T  

(17) 

 

[Kc
e]8*8=[T]8*4*[cc]4*4

-1 *[T]4*8
T  

The total stiffness matrix of shaft can be extracted by adding 
all element has assembled matrix together. It should be noticed 
that procedures have described in the previous section are used 
to assemble the stiffness matrix. In this way, the stiffness matrix 
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of all elements except the element containing cracks is equal to 
each other and remains unchanged. 

(18) 

 

[Ke]104*104=[Kuc
e ]104*104+[Kc

e]104*104 

In the above relationships, [Kc] is the stiffness matrix of the 
cracked element and [Kuc]  is the stiffness matrix of the healthy 
element, and |Ke| is the assembled stiffness matrix of all the 
elements in the case when the crack is fully open. 

C. Modeling of breathing behavior of crack in the rotor 

system 

Breathing cracks in both fixed and rotary shaft coordinates 
have variable stiffness and during a full shaft rotation cycle, 
different modes can be assumed for the contact position of the 
crack edges with each other. It is a bit more difficult to analyze 
such cracks because the change in the stiffness of the breathing 
cracks itself depends on another factor. That is the weight of the 
shaft because in heavy shafts, static deformation is greater than 
the amplitude of vibrations, and linear and time-variable 
behavior can be considered for breathing of carck. However, in 
light or weightless shafts (compared to other components that 
are connected to the shaft, such as discs, blades, etc.), opening 
and closing situation of crack is a function of the vibration 
amplitude and it will be created nonlinear behavior [16, 17]. In 
general, the breathing mechanism is the result of the 
distribution of stress around the cracked area, which results 
from the following two categories of forces: 

(A) Static forces such as weight or bearing reaction forces. (B) 
Dynamic forces such as unbalancing, etc. 

To modelling breathing mechanism, the resulted that 
obtained by Darpe are used [14]. 

D. Obtaining the system response and analyzing the answers 

For the rotor-bearing system with a mid-span disk including 
bellow properties: 

L=500*10-3m, md=5.5 kg, d=20*10-3m,ρ=7800
kg

m3
 , E=2.08*

1011N

m2
 

e=0.01*10-3m, cb=100 N.
m

m
, kb=

105N

m
, ID=0.01546m4 

We obtain the elements number of n=15 the system's response 
in the transverse direction (q

1
) and on the left, the element 

containing the crack means element 12, and for the steady-state 
operation mode with rotational speed ω0=80rad/s, and for 
primary angular acceleration 𝛼 = 30𝑟𝑎𝑑/𝑠2 by using the 
"Houbolt" method. For more information on this numerical 
method and other available numerical methods for solving 
multiple equations, see the reference [18]. 

III. INVESTIGATING SYSTEM RESPONSES UNDER 

CRACK 

A. Steady-State Analysis 

The system responses are obtained by MATLAB, and then 
diagrams of signal for non-cracked and cracked modes with 
different depths are compared in Fig. 3. It should be mentioned 
that the blue lines in each figure is related to the healthy shaft 

signal and the red graph is related to the cracked shaft signal 
with the desired depth. 

 

 

 

Fig.  3. System responses in steady-state operation with healthy shaft and 

cracked shaft with various crack depths 

 

Comparing the graphs in steady-state operation for healthy 
and cracked shafts, it can be seen that existence of cracks has 
caused a shock at a specific time. This shock has produced an 
increase in vibration amplitude at a specific time. Moreover, 
there is a linear correlation between crack depth and a rise in 
vibration amplitude. On the other hand, this time of impact can 
be interpreted as resonance, after which the amplitude of the 
vibrations returns to its normal condition. In the following, for 
these cases diagrams of Fourier transform are illustrated. It 
should be noted that to draw the Fourier transform diagram, two 
different modes are considered, the first mode is when the 
horizontal and vertical axes are in linear scale, in which case 
the diagram is drawn with more magnification. The second case 
is related to the time it takes to create a better image than what 
happens as a result of crack. The vertical axis was drawn on a 
logarithmic scale and the horizontal axis on a linear scale. In 
this case, for a better view, the diagram with a larger 
magnification is also drawn, which can be seen in Fig. 4. 

 

International Journal of Engineering Research & Technology (IJERT)

ISSN: 2278-0181http://www.ijert.org

IJERTV9IS061017
(This work is licensed under a Creative Commons Attribution 4.0 International License.)

Published by :

www.ijert.org

Vol. 9 Issue 06, June-2020

1668

www.ijert.org
www.ijert.org
www.ijert.org


 

 

 

 

 

Fig.  4. Fourier transform for steady-state operation in cases of healthy and 
cracked shaft with various depths (the second diagram with magnification) 

For the case where the vertical axis is plotted on a 
logarithmic scale, the Fourier transform diagrams of the rotor 
system with a healthy and cracked shaft are as follows. 

 

 

 

 

 

 

Fig.  5. Fourier transform diagram when the vertical axis is on a logarithmic 
scale for the operation of a steady-state rotor mode with a healthy and cracked 

shaft with various depths (the second diagram with magnification) 

From the recent diagrams, it is obvious that the Fourier 
transform diagram, when drawn without magnification, does 
not have the appropriate resolution in linear axis mode, but after 
zooming, it is observed that as a result of cracks and breathing 
behavior, the peak is related to 2x harmonics. It is easy to see 
that it was previously considered a sign of crack in the 
references. But it is observed in some cases that Fourier 
transform diagram for the rotor system is plotted with a vertical 
logarithmic axis. As a result, cracks and breathing behavior are 
created small peaks with periods of rotation equal to the period 
of shaft rotation. These small peaks increase in proportion to 
the growth in crack depth, and can be considered as a sign of 
cracks in the rotor system's response in steady-state operation 
mode. As the next step, from the responses of the desired 
system, the continuous wavelet transfrom with the mother 
function "Morlet" and for the scales of 1 to 128 has been done. 
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The diagram of the energy coefficients of the wavelet is also 
shown in Fig. 6. 

 

 

 

 

Fig.  6. Energy diagram of continuous wavelet transform coefficients for rotor 
system with cracked shaft in steady-state operation and various crack depths 

By a glance in recent energy coefficients, it can be seen that 
existence of crack has caused some high-energy points. 
Moreover, intensity of these points are correlated with crack 
depth. Also a separation due to crack has created at the top of 
the diagram. 

B. Transient Analysis  

The responses of a rotor-bearing system are unsteady-state 
or transient when it starts from the stop mode (it has an 
incremental acceleration) as well as when it is turning off (it has 
a decreasing acceleration). Therefore, to analyze the transient 
operation, the starting up situation is considered. In this case, 
the time signal, Fourier transform (two modes) and continuous 
wavelet transform coefficients are compared. It should be 
noticed that the system is going through its first critical speed.  

 

 

 

Fig.  7. System responses in transient operation with healthy shaft and cracked 
shaft with various depths 

From the signal diagrams in transient state (i.e. Fig .7), it is 
practically impossible to extract any specific information, and 
more than the previous case, that is, the operation of the steady-
state state, a more precise method is needed to analyze the 
signal. For this purpose, the Fourier transform diagrams for the 
desired system and at different crack depths are shown in Fig. 
8 and Fig .9. 
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Fig.  8. Fourier transform for transient operation in cases of healthy and 
cracked shaft with various depths (the second diagram with magnification) 

 

 

 

 

 

 

 

 

Fig.  9. Fourier transform diagram when the vertical axis is on a logarithmic 
scale for the operation of a transient rotor mode with a healthy shaft and 

cracked shaft with various depths (the second diagram with magnification) 

Compared with Fourier diagrams that have plotted for 
steady-state operation above, Fourier graphs in the case of 
transient state do not show any profitable details concern to 
cracks effects. In the Fourier transform diagrams with Linear 
Scale Axis, there is no distinction between a healthy shaft signal 
and a cracked shaft in a normal display. In the magnified charts, 
just main peaks have some differences in amplitude. These 
differences are related to the critical speeds of the system. In 
the case of displaying Fourier transform with vertical axis on a 
logarithmic scale, there is some difference in amplitude at the 
beginning of the period. 

In magnified graphs, some small peaks are visible. 
Moreover, these low-amount peaks are  corresponded to the 
cracked shaft’s period of rotation. As the depth of the crack 
increases, these peaks can be more apparent, due to a growth in 
their amplitudes. However, for the transient signal of the single 
shaft in the desired rotor system, continuous wavelet transform 
with the "Morlet" mother function is used and the results are 
shown in the form of energy diagrams of the wavelet 
coefficients in Fig. 10.  To have a more clear observation, the 
magnified graph of the coefficients energy is plotted along with 
the coloring change. 
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Fig.  10. Energy diagram of continuous wavelet transform coefficients for 
rotor system with cracked shaft and in transient operation (The second 

diagram with magnification and coloring change) 

The recent graphs have been showing that due to crack 
some distortion are introduced. Additionally, in critical speeds 
points are more colorful than other times. It is also visible from 

the diagrams shown in higher magnification, as the crack depth 
increases, the blue range increases, which is almost average 
energy points (according to the color line next to the 
diagram).These are completely separated for a relative depth of 
0.35 these points. 
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