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Abstract 
In this paper, we propose Dual Tree Complex Wavelet 

Transform for image coding, so here we verify how the 

projection properties of the DT-CWT can be exploited to 

concentrate signal energy in a few wavelet coefficients 

greater than a given threshold, while maintaining image 

reconstruction quality. These non-zero coefficients are 

forced to compensate using an iterative transform 

projection loop with error feedback. Also, experiment with 

different thresholding and error gain strategies, here we use 

IP-NS system (Iterative projection based noise shaping 

system). The benefits of applying IP-NS to DT-CWT signals 

to provide preliminary or simulation results & develop a 

new and unique system for achieving these transform coding 

aims of coefficient elimination and compensation. The 

system is based on iterative projection of signals between 

the image domain and transform domain. 

Keywords- Dual Tree Complex Wavelet Transform, DWT 

                  Image coding, Iterative Projection, Noise shaping,  

                 PSNR. 

 

1. Introduction 

1.1 Discrete wavelet Transform: 

      The DWT is extensively used in its non-redundant form 

known as standard DWT. The filterbank implementation of 

standard DWT for images is viewed as 2-D DWT. 

       Two Dimensional Discrete Wavelet Transform (2-

DDWT)Filterbank structure is the simple implementation of 

1-D DWT, whereas image-processing applications requires 

two-dimensional implementation of wavelet transform. 

Implementation of 2-D DWT is also referred to as 

‗multidimensional‘ wavelet transform in literature[15]. The 

state of the art image coding algorithms such as e.g. the 

recent JPEG2000 standard make use of the separable dyadic 

2-D DWT [16], which is only an extension of 1-D DWT 

applied separately on rows and columns of an image.  

      The single level 2-D DWT structure produces three 

detailed sub-images (HL, HL, HH) corresponding to three 

different directional-orientations 0
0
,45

0
, 90

0
 (Horizontal, 

Diagonal and Vertical) and a lower resolution sub-image 

LL. The filterbank structure can be iterated in a similar 

manner on the LL channel to provide multilevel 

decomposition.  

       

DWT 2 – level decomposition hierarchy of an image is 

illustrated in figure (1). 
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                       Figure 1. DWT 2- level decomposition 

        Each decomposition breaks the parent image into four 

child images. Each of such sub-images is of one fourth of 

the size of a parent image. 

 

1.1.1 Limitations of dwt:  

         Although the standard DWT is a powerful tool, it has 

three major disadvantages that undermine its application for 

certain signal and image processing tasks. These 

disadvantages [3, 5] are described as below.   

 Lack of shift invariance: This means that small shifts in 

the input signal can cause major variations in the 

distribution of energy between DWT coefficients at 

different scales. 

 Poor directional selectivity: for diagonal features 

because the wavelet filters are separable & real. 

 Absence of Phase information: DWT implementations 

use separable filtering with real coefficient filters 

associated with real wavelets resulting in real-valued 

approximations and details. Such DWT 

implementations cannot provide the local phase 

information. All natural signals are basically real-

valued, hence to avail the local phase information, 
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complex-valued filtering is required [8]. The difference 

between real & analytic wavelet is shown in figure (2). 

 
 

Figure 2. Presentation of (a) real, and (b) analytic wavelets 

1.2 Complex wavelets 

       Fortunately, there is a simple solution to these DWT 

shortcomings [3]. 

       The Fourier transform is based on complex-valued 

oscillating sinusoids, 

 

 
 

with . The oscillating cosine and sine components 

(the real and imaginary parts, respectively) form a Hilbert 

transform pair; i.e., they are   out of phase with each 

other. Together they constitute an analytic signal 
 
that is 

supported on only one-half of the frequency axis (Ω > 0). 

      Inspired by the Fourier representation, imagine a CWT 

but with a complex-valued scaling function and complex-

valued wavelet, 

 

 
 

Here, ψr(t) is real and even and jψi(t ) is imaginary and odd. 

Moreover, if ψr(t ) and ψi(t ) form a Hilbert transform pair 

(90
◦
 out of phase with each other), then ψc(t ) is an analytic 

signal and supported on only one-half of the frequency axis. 

The complex scaling function is defined similarly. See 

Figure(2) for an example of a complex wavelet pair that 

approximately satisfies these properties. 

       Projecting the signal onto  as in figure 

(2), we obtain the complex wavelet coefficient,  

 

 
 

With magnitude 

 

 
and phase 

 
When . As with the Fourier transform, 

complex wavelets can be used to analyze and represent both 

real valued signals (resulting in symmetries in the 

coefficients) and complex-valued signals as shown in 

figure(2). In either case, the CWT enables new coherent 

multiscale signal processing algorithms that exploit the 

complex magnitude and phase.  

 

         Recent research in the development of CWTs can be 

broadly classified in two groups: 

 

 RCWT (Redundant CWTs): The RCWT include two 

almost similar CWTs. They are denoted as DT-DWT 

(Dual-Tree DWT based CWT) with two almost similar 

versions namely Kingsbury‘s DT-DWT(K), and 

Selesnick‘s DT-DWT(S). These redundant transforms 

consist of two conventional DWT filterbank trees 

working in parallel with respective filters of both the 

trees in approximate quadrature. The filterbank structure 

of both DT-DWTs is same but the design methods to 

generate the filter coefficients are different. Both DT-

DWTs provide phase information; they are shift-

invariant with improved directionality[9,10,11] 

 

 NRCWT (Non-redundant CWTs) : NRCWT is the 

DWT of that complex valued projection, The projection 

(mapping) means converting a real signal to analytic 

(complex) form through digital filtering [12] 

 

 Here, we introduce the RCWT base Dual Tree Complex 

Wavelet Transform (DT CWT) 

 

1.2.1 Dual Tree Complex Wavelet Transforms: 

          The Dual-Tree Complex Wavelet Transform (DT-

CWT) is an overcomplete, perfect reconstruction, separable 

transform with Gabor-like filters. It uses two trees per 

dimension, each with short lowpass and highpass filters, to 

synthesize a single linear-phase complex lowpass/highpass 

filter pair [1]. The filters in the two trees are just the time-

reverse of each other, as are the analysis and reconstruction 

filters.  

 

1.2.2 Features of the Dual Tree Complex Wavelet 

Transform: 

 Approximate shift invariance 

 Good directional selectivity in 2-D, 3-D etc. 

 Perfect reconstruction with short support filters. 

 Limited Redundancy : 2:1 in 1-D,4:1 in 2-D (2
m
:1 for  

m-D) 

 Efficient order – N computation :Twice the simple 

DWT for 1-D (2
m  

for m-D) 
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 It has the ability to differentiate positive and negative 

frequencies and produces six directional subbands 

oriented in ±15, ±45, ±75 [1] 

 

       DT-CWT 2 – level decomposition hierarchy of an 

image is illustrated in figure (3). 

 

 

 

 

 

 

 

           Figure 3. DT-CWT 2- level decomposition 

 

1.2.3 Dual Tree Framework: 

               One effective approach for implementing an 

analytic wavelet transform is called the dual-tree CWT. The 

idea behind the dual-tree approach is quite simple. The dual 

tree CWT employs two real DWTs; the first DWT gives the 

real part of the transform while the second DWT gives the 

imaginary part. The analysis and synthesis FBs used to 

implement the dual-tree CWT and its inverse is illustrated in 

Figures (4) and (5). The two real wavelet transforms use two 

different sets of filters, with each satisfying the PR (Perfect 

reconstruction) conditions. The two sets of filters are jointly 

designed so that the overall transform is approximately 

analytic. Let h0(n), h1(n) denote the low-pass/high-pass filter 

pair for the upper FB, and let g0(n), g1(n) denote the low-

pass/high-pass filter pair for the lower FB [3,13].  

             The inverse of the dual-tree CWT is as simple as the 

forward transform. To invert the transform, the real part and 

the imaginary part are each inverted—the inverse of each of 

the two real DWTs are used to obtain two real signals. 
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   Figure 4. Analysis filterbank for 1-D DT-DWT 
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    Figure 5. Synthesis filterbank for 1-D DT-DWT 

              

         The 2-D DT-DWT structure has an extension of 

conjugate filtering in 2-D case. The filterbank structure of 2-

D dual-tree is shown in figure (6). 2-D structure needs four 

trees for analysis as well as for synthesis. The pairs of 

conjugate filters are applied to two dimensions (x and y), 

which can be expressed as [14]: 
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Figure 6. Filterbank structure for 2-D DT-CWT 

1.3  Noise Shaping 

          The modification of large coefficients to compensate 

for the loss of small coefficients – is the goal of the noise 

shaping. The noise shaping scheme is used to remove 

additive, uncorrelated and white noise. For image coding 

purposes, we would like to find the configurations that 

concentrate signal energy in as few non-zero wavelet 
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coefficients as possible, while still producing a good 

approximation of the original signal. The scheme presented 

here attempts to modify large coefficients to compensate for 

the loss of small coefficients, without substantially changing 

the original image. The changes to the large coefficients and 

loss of small coefficients can be modelled as additive 

complex-valued noise [1].  

          For illustrative purposes, we describe first how we 

shape noise for a simple hard thresholding system. 

Coefficients whose magnitudes are less than the threshold 

are discarded (as in simple denoising applications), but there 

are no constraints on the values of the retained coefficients. 

  

1.4  Thresholding 

        There are two thresholding methods frequently used 

 Soft Thresholding  & Hard Thresholding  [13] 

 

1.4.1 Soft Thresholding 

            The soft threshold function also called the 

shrinkage function is shown in figure(7),  

                                        y   

 

 

                                 -T                   

                                       x 

        T                             

 

                         

 

                         Figure 7.Soft Thresholding 

 

           Soft thresholding is an extension of hard thresholding, 

first setting to zero the elements whose absolute values are 

lower than the threshold, and then shrinking the nonzero 

coefficients toward zero. 

 

1.4.2 Hard Thresholding  

      The hard thresholding function as shown in figure(8),  

                                              y 

                                                                                          

 

 

 

                                -T                                            x         

                                                       T 

 

 

 

 

Figure 8. Hard Thresholding 

 

       which keeps the input if it is larger than the threshold, 

otherwise it is set to zero. 

       The wavelet thresholding procedure removes noise by 

thresholding the wavelet coefficients of the detailed 

subbands only, while keeping the low resolution coefficients 

unaltered. 

 

1.5 Peak – Signal to Noise Ratio (PSNR) 
 

        Peak Signal-to-Noise Ratio, often abbreviated PSNR, 

is an engineering term for the ratio between the maximum 

possible power of a signal and the power of 

corrupting noise that affects the fidelity of its representation. 

Because many signals have a very wide dynamic range, 

PSNR is usually expressed in terms of 

the logarithmic decibel scale. PSNR is used to measure 

difference between two images.  

 
 

 
 

 

          MSE is mean square error between two images. 

PSNR is used to measure the quality between the original & 

reconstructed image. Higher PSNR indicates that the better 

quality of reconstructed image. 

 

 

2. Iterative - Projection System 
 

           The DT-CWT is an energy-preserving transform; the 

signal‘s energy is reduced through thresholding, and as a 

result of the projection of the noisy signal back into the 

image domain. The iterative projection forms the basis of 

noise shaping system [1]. Figure (9) shows the system block 

diagram. 

 

 

                

        DT-CWT                   θi                                IDT-CWT 
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                                                                                          ei = 
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                                                      DT-CWT                                                             

                                   

                                                               

                                         Wi 

                                             

         

Figure 9. Block diagram of Iterative Projection System 
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As shown in block diagram figure (9), 

           A is Analysis Operator 

           R is Synthesis or reconstruction operator 

           k is Energy Gain Factor 

           X is Original image 

           Xi_cap is Threshold reconstructed image 

           θi  is Hard threshold 

2.1 Basic Algorithm:  
     To achieve sparsity following steps of Basic algorithm 

given below: 

 Set iteration i=1 & take the DT CWT of the input image. 

 Set to zero all wavelet coefficients with magnitude 

smaller than a threshold. 

 Take the inverse DT CWT & measure the error due to 

loss of smaller coefficients. 

 Take the DT CWT of the error image i.e. error image is 

projected back into DTCWT domain & added to the non 

zero wavelet coefficients(Xh_cap) from step 2 to reduce the 

error & to form the wavelet coefficients Xi+1  at the start of 

iteration i+1.   

 Increment i, reduce threshold a little & repeat steps 2 to  4 

 When there are sufficient non – zero coefficients to give 

the required rate – distortion tradeoff, keep threshold 

constant & iterate a few more times until converged. 

 

3. Implementation of Iterative Projection System  
 

 Our iterative projection based noise shaping system 

applied to 256×256 pixel ‗Lena‘ Image. 

 Let X be the data from an N x N (256x256) real-valued 

image is as shown in figure(10), rearranged into an 

 N 
2
 x 1 column matrix. 

 The DT-CWT analysis operator matrix A has 

dimensions N M x N 
2
, with M = 2N. 

 Level one DT-CWT of image is taken, then the 

thresholding operation is done. Let the DT-CWT of 

image is represented by Xi 

 Applying the hard threshold θ to Xi eliminates 

insignificant coefficients, leaving the significant 

coefficients unaffected and producing Xh_cap,where 

matrix element  Xh_cap(m,n) is given by, 

 

 
 

       Then  is reconstructed, let we call this .  

 For ease of result display the value of hard threshold is 

chosen from 64 to 60.then thresholded & reconstructed 

image   as shown in figure(10). Since we are 

discarding some of the coefficients, it will obviously 

introduce some kind of loss of information i.e. error in 

reconstructed image after thresholding ( .  

 So the error between the original and re-constructed 

image is ei = X – Xi_cap. Image reconstructed from error 

coefficient ei is shown in figure (10). 

 On the i
th

 iteration, some non-linear operation, such as 

thresholding or quantising, is applied to wavelet 

coefficients Xi. This operation can be represented as the 

addition of noise ni. When the system starts the input to 

the non-linear operator is Xi, the DT-CWT of image X. 

After this (i.e. for i>0), the input to the non-linear 

operator switches to the feedback loop. 

 The noisy coefficients Xh_cap are then projected back 

into image domain, where the error ei between the 

original image X and the most recent reconstruction 

Xi_cap calculated. The error is projected into the DT-

CWT domain and added to the noisy coefficients Xh_cap 

to form the wavelet coefficients Xi+1 at the start of 

iteration i+1. 

 Although the DT-CWT is an energy-preserving 

transform, the signal‘s energy is reduced through 

thresholding, and as a result of the projection of the 

noisy signal back into the image domain. We obviously 

need to introduce energy gain. 

 A gain factor k>=1 is applied to the error signal to 

replace energy lost in the system.  

 The choice of k affects which noise components remain 

in the system. With unit gain (k=1), the noise 

components of the DT-CWT analysis operator 

disappear during the loop. 

 The effect of k=1 is that the number of nonzero 

coefficients remaining after thresholding decreases with 

each iteration, while the PSNR of the reconstructed 

image increases, until the signal converges. 

 When k>1, the energy of the final reconstructed image 

is closer to the energy of the original. This improves the 

reconstructed image‘s PSNR, but at the expense of 

more non-zero coefficients. We consider the number of 

non-zero coefficients to be a measure of efficiency 

because zero coefficients are very efficient to code, and 

so bit rate tends to be proportional to the number of 

non-zero coefficients 

 We can partially circumvent this trade-off between the 

reconstruction quality and number of significant 

coefficients by starting with a large threshold and 

decreasing it each iteration until our target threshold is 

reached. A large starting threshold causes many 

coefficients to be eliminated initially. With the right 

balance between the energy gain k and the amount by 

which the threshold decreases each iteration, most 

insignificant coefficients remain insignificant, while the 

signal‘s energy is maintained and image reconstruction 

improves. 

 Our iterative projection-based noise shaping system 

was applied to the 256 x 256 8 -bit ‗Lena‘ image. A 
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threshold value θ = 32 was applied to the wavelet and 

scaling coefficients. The number of non-zero 

coefficients clearly decreases with each iteration, while 

image quality improves  

 The control system, where the initial threshold 64 is 

reduced by 1 each iteration until theta = 32, performs 

best as theta decrease the PSNR increase as shown in 

table(I & II) below: 

 

  Table I: As Theta decreases PSNR increases of 

                   threshold reconstructed image 

 

 

Table II: As Theta decreases PSNR increases of final 

reconstructed image 

 

 Image showing output of  implementation of iterative 

projection system: 

 

 At initial threshold θ = 64 

 

 
 

 

Figure 10. Output Image of IP-NS at θ = 64 

 

 

 At final Threshold θ = 32 

 

 
           

       

Figure 11. Output Image of IP-NS at θ = 32 

 

 

 Graph between Theta vs. PSNR of threshold 

reconstructed Lena.bmp image & final reconstructed 

Lena.bmp image using DT – CWT 

 

Theta PSNR 

in DB 

Theta PSNR 

in DB 

Theta PSNR 

in DB 

Theta PSNR 

in DB 

64 24.85 56 27.53 48 29.69 40 32.16 

63 29.71 55 32.25 47 34.13 39 36.31 

62 25.53 54 28.10 46 30.22 38 33.13 

61 30.41 53 32.72 45 34.59 37 37.20 

60 26.23 52 28.66 44 30.78 36 34.54 

59 31.09 51 33.21 43 35.10 35 38.42 

58 26.92 50 29.16 42 31.40 34 36.41 

57 31.71 49 33.66 41 35.65 33 40.00 

      32 38.49 

Theta PSNR 

in DB 

Theta PSNR 

in DB 

Theta PSNR 

in DB 

Theta PSNR 

in DB 

64 20.54 56 23.17 48 25.28 40 27.73 

63 25.52 55 27.88 47 29.72 39 31.88 

62 21.25 54 23.73 46 25.81 38 28.69 

61 26.13 53 28.33 45 30.18 37 32.76 

60 21.91 52 24.27 44 26.36 36 30.10 

59 26.76 51 28.82 43 30.68 35 33.98 

58 22.58 50 24.76 42 26.98 34 31.96 

57 27.36 49 29.26 41 31.22 33 35.56 

      32 34.04 
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Figure 12. Theta Vs PSNR using DT – CWT 

 

 Reduce threshold by 1 at each iteration, while the 

PSNR of the Threshold reconstructed image& final 

reconstructed image (New image) increases as shown in 

above figure (12). 

 As PSNR increases, while image reconstruction quality 

improves. 

 

4. Conclusion 
 

       Iterative projection based noise shaping (IP-NS) system 

produces gain over conventional single-stage thresholding. 

Also, the IP-NS system produces a version of an image‘s 

DT-CWT as shown in figure (10, 11) that results in the 

same PSNR reconstruction with 60 to 70% fewer non-zero 

coefficients than single-stage thresholding, making it more 

amenable to efficient coding. 

      The initial threshold 64 is reduced by 1 each iteration 

until theta = 32, performs best because slower Threshold 

reduction rate i.e. 1/iteration produces a DT-CWT signal 

with fewer non zero coefficients but same reconstruction 

quality, here as the  theta decreases PSNR increases shown 

in table (II) & image reconstruction improves shown in 

figure (10,11) with different threshold (θ). 
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