
Java 8: Rebirth to a Software Supergiant

Kaushik N S Iyer Gururaja H S

Student, Dept. of Information Science & Engg. Asst. Professor, Dept. of Information Science & Engg.
BMS College of Engineering BMS College of Engineering

Bangalore, India Bangalore, India

Abstract— Java is one of the biggest software currently being

implemented in many spheres of the software industry and also

in many robotic technologies because of its highly methodical

and structural object oriented approach. In this paper, the

authors talk on the latest version of the language popularly

known as Java 8 which has included many aspects of closure

style programming related to Python. Some of such

implementations like that of the lambda expression, functional

interfaces, default methods, method references, streams, a

thread safe implementation of the date class and a small

introduction to Java 8 support to dynamic languages like

Javascript is discussed in the paper.

Keywords— Lambda Expressions, Functional Interfaces,
Method references.

I. INTRODUCTION

Java 8 is one of the most awaited and featured release of
this programming language. This version mainly was
intended to push the language more towards Closure style of
programming language. Like Python and C# which provide
inbuilt interfaces to ease the work of developers; now Java 8
has also implemented such styles and hence pushing the
language to new technological heights. Closure style of
programming involves binding of data to function which has
no name to reference. Some examples are lambda
expressions, streams and map and filter functions on
Collections.

JSR is an Acronym for Java Specification Requirement.
They are the description and an outline of specifications for a
Java version. Java 8 is popularly known as JSR 337 .This is
an Open source implementation to show the community what
the latest version has to offer. Even though there is an
increase in the support of annotations with Java 8, it is not a
new feature which has been bundled with the environment.
Hence it is not explained in a detailed manner.

II. LAMBDA EXPRESSIONS

By far the most famous implementation in Java 8 is that
of the lambda expressions. It is targeted to remove some
redundant use of Anonymous Inner Classes such as when you
are implementing ActionListeners or for functional interfaces
such as comparator interfaces.

The most common syntax of a lambda expression is:

Variable_name = (Parameters) -> {expression body};

The JVM compiler checks the type of the variable name
and then searches its interface for a method signature which
matches the parameters in the lambda expression; it then

replaces the default implementation of the interface with the
expression body defined in the lambda expression. Compared
to anonymous inner classes, this is very useful when you
have functional interfaces like comparator interface which is
used to sort a collection of any generic based on a parameter
given in the compare function which in-turn returns the
compareTo() of the two objects.

Consider a situation where we have to sort a set of
consecutive integer pairs based on their leading or first
numbers. In Java SE 7, we would have to do this with the
help of an anonymous inner class like shown below:

Collections.sort(list, new Comparator<integers>() {

@Override

public int compare(integers a, integers b) {

return b.getN1().compareTo(a.getN1());

}

});

Where N1 represents the member of the class. Now
consider we have to set an ActionListener to a button. We
generally do it as follows:

button.addActionListener(new ActionListener() {

@Override

public void actionPerformed(ActionEvent e) {

return null;

}

});

In both the above examples, we have to repeat the inner
class for every instance. In Java 8 we can reduce this as
follows:

a) For the first example, the lambda expression can be written
as:

Collections.sort(list, (integers a, integers b) ->
b.getN1().compareTo(a.getN1()));

b) For the second button example, the lambda expression can
be written as:

button.addActionListener((ActionEvent e) -> {return null; });

International Journal of Engineering Research & Technology (IJERT)

ISSN: 2278-0181

Published by, www.ijert.org

ICIOT - 2016 Conference Proceedings

Volume 4, Issue 29

Special Issue - 2016

1

This is briefly instructed in Figure 1 given below:

Java SE 7 Java 8

Collections.sort(list, new Collections.sort(list,

Comparator<integers>() { (integers a, integers b) ->

@Override b.getN1().compareTo(a.get

public int compare(integers N1()));

a, integers b) {

return b.getN1().compareTo

(a.getN1());

}

});

button.addActionListener(n button.addActionListener((

ew ActionListener() { ActionEvent e) -> {return

@Override null; });

public void

actionPerformed(ActionEve

nt e) {

return null;

}

});

Figure 1: Comparison between Java SE 7 and Java 8. Use of
Lambda Expressions in Java 8

III. STREAMS AND PIPELINING

A Stream is a collection of endless instances of objects. A

most common implementation of a stream is a List.
Sometimes a stream can also be thought of as a product of a
query which in most cases give a result set as a response.

In Java 8, a Collection or more specifically a list can be
converted into a stream by calling the stream() method which
returns a stream of instances of the same generic as that of
the input matrix.

One major question would be as to why do we have to
convert the Collection to a stream? A Simple explanation
would be that when a Collection is converted to a stream,
operations can be done simultaneously or parallel by the
JVM.

In Java 8, two kinds of stream option exist and the
advantage is that they can be interchanged:

• Stream() gives a simple stream considering a collection as a
source.

• ParallelStream() is a major advancement in pipelining the
stream to perform several filters at a superscalar rate.

Aggregating operations are filters or basically conditions
based on which the elements of the collection can be
rearranged or basically the data of the Collection can be
converted to information and can also be collected in any
structure like a string or even another collection so as to
simplify the information processing.

a) Map() operation is a combination of a simple iterator and
an arithmetic operation that can be expressed as a lambda
expression.

As an example, take a list of numbers and store its squares
into another list:

List <Object>intlist = Arrays.asList(1,2,3,4,5,6,7,8,9,10);

List<Integer> sqnum=intlist.stream().map(i -> (Integer) i*
(Integer)i).collect(Collectors.toList());

We see that instead of instantiating an iterator manually, a
foreach loop will get implemented where instead of doing a
manual addition of object to the list, a BiPredicate functional
interface will be instantiated with the given lambda
expression and the iterator will be run with the above
BiPredicate on each element.

b) Filter() is just another way of applying a condition.
Consider an example where you want 10 random numbers
which are positive, even and less than 50.

In Java SE 7, you will have to run a while loop and also a
collection to store the result. But in Java 8, the
implementation is as follows:

IntStream integers = r.ints().filter (i->{return (i>0&& i<50);
}).limit(15);

In the above example, an iterator loop will be setup and a
Predicate Object will be instantiated with the filter expression
as a lambda expression and the loop gets executed until the
limit is reached.

c) forEach is another stream function which runs a for each
loop or advanced for loop through all the elements in the
Collection specified.Consider an example where you want to
print the numbers present in the stream mentioned in the filter
function as follows:

integers.forEach(System.out::println);

The parameter passed to the construct can be a lambda
expression or a method reference like shown in the example.
Method reference follows the syntax:

ClassName::MethodName

IV. NASHHORN JS ENGINE

Till Java SE & Java, the platform was shipped with
Mozilla Rhino JS Engine. But with the advent of Java 8, it
will be replaced with Nashhorn JS Engine. The following are
some of its main features.

Oracle Nashhorn is ECMA Copliant. ECMA is a
trademarked scripting specification which was initially
developed by Sun Microsystems and ECMA International.
According to the latest version of this standard which was
released in june 2015, it includes new features such as
iterators and for/if loops and programming constructs which
are of a Python flavour like lambda functions and generator
expressions, arrow functions, binary data and proxies.

Some interesting features with this new Extension is that
it can run these scripts as a Java fx application and an
Interesting Scripting mode can be enabled where system
scripts can be written in Javascript.

The scripting mode mainly comprises of two language
heredocs and shell invocation.

It is based on the Da Vinci machine. Based on the oracle
Documentation, the Da Vinci project is referred to as JSR
292. It was developed by Sun Microsystems. Its main
purpose is to ease the implementation of dynamic languages
like Javascript

International Journal of Engineering Research & Technology (IJERT)

ISSN: 2278-0181

Published by, www.ijert.org

ICIOT - 2016 Conference Proceedings

Volume 4, Issue 29

Special Issue - 2016

2

on top of JVM. Till Java SE 7, there was no support for
dynamically programmable languages. Like Javascript, the
JSR 292 adds a new “invokedyanmic” instruction at the JVM
Level. With the help of JIT (Just In Time Comilation) where
the bytecodes are verified prior to execution. Javascript can
now be rendered seamlessly without having the fuss to verify
multiple bytecodes.

V. DATE AND TIME CLASS

Along with the advent of Java 8, the Date class has
undergone a tremendous amount of change. The first change
is the introduction of zonal based Time and Local Time
without no fuss of handling the various time zones. Hence the
Local Time can be obtained by the class. Second change
would be that the new LocalTime class is thread safe for
which Java SE 7 had got a lot of backlashes.

LocalDateTime and the zonal time by the class
ZonedDateTime and are initialized as follows:

• LocalDateTime time1 = LocalDateTime.now();

• ZonedDateTime time2 = ZonedDateTime.parse
(“the_zone_of_the_region”);

Each of the above class has separate set of functionalities
because of the type of input given to its constructor.
LocalDateTime class coupled with the LocalDate and
LocalTime class can be used to query multiple parameters
out of the LocalDateTime class like just the date part or the
time which was a tedious task in the Date class which
returned the entire date and Time string and the developer
had to parse the string to get the required portion of the
String. Consider the following example to obtain the current
date and time:

a) Date Class:

Date d= new Date();

which would give the output as: Wed Mar 09 01:38:09 IST
2016

b) LocalDateTime Class:

LocalDateTime time1= LocalDateTime.now();

which would give the output as: 2016-03-09T01:38:10.381

As we can observe, the Date object gives the entire details
but whereas the LocalDateTime is giving just the date and
time separated by a „T‟. Now if we were to get just the day
of week for today‟s date, it would be given as:

a) Date Class:

System.out.println("Day: "+d.toString().substring(0, 3));

which would give the output as: Day: Wed which can be put
under a string switch to get the complete name:
“WEDNESDAY”.

b) LocalDateTime Class:

LocalDate date1 = time1.toLocalDate();

System.out.println("Day: "+time1.getDayOfWeek());

which would give the output as: Day: WEDNESDAY.
Without any additional functions required.

Along with the addition of LocalDateTime and its helper

classes, Java 8 also encompasses a Class called ChronoUnit
which is a enumerative way to store the data of the metrics
required to calculate relative date and time based on the
current time. Some examples of ChronoUnits are
ChronoUnit.WEEKS and ChronoUnit.DECADES. Consider
an example where we want to find the day of the week for the
same date next but for next month. Then the syntax would be
like follows:

a) Date Class:

You will have to get the current month with the help of
the Date object and reset the month with the help of the
SetMonth() function. The main problem is that both the
above mentioned helper functions are deprecated for they are
quite tedious to reinitialize the parameters at every instance:

Date d= new Date();

int month= d.getMonth();

d.setMonth(month+1);

System.out.println("Day: "+d.toString().substring(0, 3));

The Output will be: Day: Sat

b) In the LocalDateTime class, you will just have to update
the time with the help of helper functions such as plus() with
takes in ChronoUnits.

LocalDateTime time1= LocalDateTime.now();

time1 =time1.plus(1,ChronoUnit.MONTHS);

System.out.println("Day: "+time1.getDayOfWeek());

The Output will be: Day: SATURDAY

The above illustrated examples can be summarized in
Figure 2 as follows:

Java SE 7 Java 8

Date d= new Date(); LocalDateTime time1 =

 LocalDateTime.now();

System.out.println(“Day: System.out.println(“Day:

“+d.toString().substring(0, “+time1.getDayOfWeek());

3));

int month= d.getMonth(); time1 = time1.plus

d.setMonth(month+1); (1,ChronoUnit.MONTHS);

System.out.println(“Day: System.out.println(“Day:

“+d.toString().substring(0, “+time1.getDayOfWeek());

3));

Figure 2: Comparison between Date class and LocalDateTime class

VI. CONCLUSION

The authors would like to conclude that the latest version
of the Java language popularly known as Java 8 has included
many aspects of closure style programming related to Python.
This helps the implementations like lambda expressions,
functional interfaces, default methods, method references and
streams much more easily as spoken in the paper. The
examples also suggest that Java 8 is easier to implement
compared to Java SE 7.

International Journal of Engineering Research & Technology (IJERT)

ISSN: 2278-0181

Published by, www.ijert.org

ICIOT - 2016 Conference Proceedings

Volume 4, Issue 29

Special Issue - 2016

3

 REFERENCES

[1] Oracle Documentation [https://docs.oracle.com/javase/tutorial].

[2] Java 8 Tutorials [https://tutorialspoint.com].
[3] Head First Java by Cathy Sierra.

International Journal of Engineering Research & Technology (IJERT)

ISSN: 2278-0181

Published by, www.ijert.org

ICIOT - 2016 Conference Proceedings

Volume 4, Issue 29

Special Issue - 2016

4

