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Abstract 

 An analysis on the stability of incompressible 

superposed Non-Newtonian fluids is considered. Kelvin-

Helmholtz instability is selected for this purpose. Rivilin-

Ericksen elastico-viscous superposed fluid is considered. 

Normal mode analysis is applied. The dispersion relation 

is solved analytically. The stability of the system is 

studied for exponentially varying density, viscosity and  

viscoelasticity. 

Key words - Non-Newtonian fluid, Rivilin-

Ericksen Elastico-viscous superposed fluid, Kelvin-

Helmholtz instability. 

1.  Introduction 

 A Non-Newtonian fluid is a fluid in which 

viscosity changes with the applied shear force. 

Therefore, Non-Newtonian fluids may not have a 

well defined viscosity. The role of Non-Newtonian 

fluid dynamics is important as it relates to plastic 

manufacture, performance of lubricants, clay 

suspensions, drilling muds, paints, processing of 

food and moment of biological fluids which 

contain higher molecular weight components.  The 

convective stability of a general viscoelastic fluid 

heated from below is analyzed by Sokolov, R. I. 

Tanner [1], S. Rosenblat [5] and J. Martinez-

Mardones [6].  The instability of the plane interface 

separating two uniform superposed streaming 

fluids, under varying assumption of 

hydrodynamics, has been discussed in the 

celebrated monograph by Chandrasekhar [3]. With 

the growing importance of non – newtonian 

viscoelastic fluids in modern technology and 

industries and the investigation on such fluids are 

desirable. Rivlin-Ericksen fluid is one such 

viscoelastic fluid. Johri [2] has discussed the 

viscoelastic Rivlin-Ericksen incompressible fluid 

under time dependent pressure gradient. Sharma 

and Kumar [7] have studied the thermal instability 

of a layer of Rivlin-Ericksen elastico-viscous fluid 

acted on by a uniform rotation and that rotation has 

a stabilizing effect and introduces oscillatory 

modes in the system. The instability of the plane 

interface between two uniform superposed and 

streaming fluids through porous medium has been 

investigated by Sharma and Spanos [4]. Sharma et 

al. [8] have studied the thermosolutal convection in 

Rivlin-Ericksen fluid in a porous medium in the 

presence of uniform vertical magnetic fluid.      G. 

C. Rana et. al [12] investigated the stability of 

incompressible Rivlin-Ericksen Elastico-Viscous 

Superposed fluids under rotation in porous 

medium. Instability of superposed streaming fluids 

through a porous medium. Aiyub  Khan et. al [10] 

have studied the instability of superposed streaming 

fluids  through  a porous  medium. Neild [11] gave 

note on the onset of convection in a layer of a 

porous medium saturated by a Non-Newtonian 

Nanofluid of Power-Law Type. Pardeep Kumar 

and Roshan Lal [9] have studied the stability of two 

superposed viscous-viscoelastic fluids. When two 

superposed fluids flow one over the other with a 

relative horizontal velocity, the instability of the 

plane interface between two fluids, when it occurs 

in this instance, is known as ‘Kelvin-Helmholtz 

instability’. The present paper focus on the Kelvin 

– Helmholtz Instability of Superposed Non – 

Newtonian Viscoelastic Fluid. 

 

2.  Mathematical Formulation 

An incompressible elastico-viscous 

Rivlin-Ericksen in fluid which there is a horizontal 

steaming in the 𝑥-direction with velocity 𝑈(𝑧) is 

considered. The equilibrium of this initial state is 

analysed  by supposing that the system is slightly 

disturbed and then following its further evolution.  
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Let  𝑝, 𝜌, 𝑔, 𝜈, 𝑣 ′ , 𝑞 (𝑈 𝑧 , 0, 0) denote, 

respectively, the pressure, density, acceleration due 

to gravity, kinematic viscosity, kinematic 

viscoelasticity and velocity of Rivlin-Ericksen 

viscoelastic fluid. 

The governing equations are given by 

equation of motion, continuity and 

incompressibility for the Rivlin-Ericksen elastico-

viscous fluid as follows 

𝜌  
𝜕𝑞 

𝜕𝑡
+   𝑞  . ∇ 𝑞  =  −∇𝑝 + 𝜌𝑔  

                                      −𝜌  𝑣 + 𝑣 ′ 𝜕

𝜕𝑡
 𝑞      (2.1)

                           

∇. 𝑞 = 0                                         (2.2)

                   

𝜕𝜌

𝜕𝑡
+   𝑞 . ∇ 𝜌 = 0                                              (2.3)

     

   

Let δ𝑝, δ𝜌 and 𝑢  (𝑢, 𝑣, 𝑤) denote the 

perturbations in pressure 𝑝, density 𝜌 and velocity 

𝑞 (𝑈 𝑧 , 0, 0) respectively.  

 

Then, the linearized perturbation equations 

of fluid layer become 

𝜌  
𝜕𝑢   

𝜕𝑡
+  𝑞 . ∇ 𝑢  +  𝑢  . ∇ 𝑞 𝑖   = −∇δ𝑝 + 𝑔 𝛿𝜌 −

                                                   𝜌  𝑣 + 𝑣 ′ 𝜕

𝜕𝑡
 𝑢    (2.4) 

∇. 𝑢  = 0                                                   (2.5)

      

 
𝜕

𝜕𝑡
+ (𝑞 . ∇) 𝛿𝑝 = −𝑤

𝑑𝜌

𝑑𝑧
                 (2.6) 

    

 Analyzing the disturbances into normal 

modes, we seek solutions whose dependence  on 

𝑥, 𝑦 and 𝑡 is of given by 

    exp[i(𝑘𝑥𝑥 + 𝑘𝑦𝑦 + 𝑛𝑡)]                 (2.7) 

where 𝑛 is the growth rate, 𝑘 = (𝑘𝑥
2 + 𝑘𝑦

2)1 2  is the 

resultant wave number and 𝑘𝑥 , 𝑘𝑦  are horizontal 

wave numbers. 

 Substituting for 𝛿𝑝,  Eq.(2.4) with the help 

of Eqs.(2.5), (2.6) and expression (2.7) simplifies to 

 𝑖 𝜌 𝑛 + 𝑘𝑥𝑈 + 𝜌 𝑣 + 𝑖𝑛𝑣 ′  𝑢  + 𝜌𝑤 𝐷𝑈 𝑖  =

                               −∇𝛿𝑝 + 𝑖𝑔 
𝑤(𝐷𝜌 )

𝑛+𝑘𝑥𝑈
                   (2.8) 

where  𝑖    is unit vector in the 𝑥-direction and 

𝐷 = 𝑑 𝑑𝑧 . 

Writing the three component equations of (2.8) and 

eliminating 𝑢, 𝑣 and 𝛿𝑝 with the help of (2.5), we 

obtain 

𝐷  𝑖𝜌 𝑛 + 𝑘𝑥𝑈 + 𝜌 𝑣 + 𝑖𝑛𝑣 ′  𝐷𝑤 −

𝑖𝑘𝑥𝜌 𝐷𝑈 𝑤 −  𝑖𝜌 𝑛 + 𝑘𝑥𝑈 + 𝜌 𝑣 + 𝑖𝑛𝑣 ′  𝑤 =

                                            𝑖𝑔𝑘2(𝐷𝜌)
𝑤

𝑛+𝑘𝑥𝑈
          (2.9)                         

3. Superposed Uniform Fluids 

Consider the case when two superposed 

streaming fluids of uniform densities 𝜌1 and 𝜌2, 

uniform viscosities 𝜇1 and 𝜇2 and uniform 

viscoelsticities 𝜇1
′  and 𝜇2

′  are separated by a 

horizontal boundary layer at 𝑧 = 0. The superscript 

1 and 2 distinguish the lower and the upper fluid 

respectively. 

 The density 𝜌2 of the upper fluid is taken 

to be less than the density  𝜌1 of lower fluid so that, 

in the absence of the streaming, the configuration is 

stable. Let the two fluids be streaming with 

constant velocities 𝑈1 and 𝑈2. Then in each of the 

two regions of constant 𝜌, 𝜇, 𝜇′ and 𝑈, Eq. (2.9) 

becomes  

(𝐷2 − 𝑘2)𝑤 = 0                    (3.1)

  

The boundary conditions to be satisfied 

here are: 

(A)                       

     
𝑤

𝑛+𝑘𝑥𝑈
                    (3.2)

                                          

must be continuous at an interface,  since 𝑈 is 

discontinuous at 𝑧 = 0. 
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(B) Integrating Eq.(2.9) between 0 − 𝜂 and 

0 + 𝜂 and passing to be limit 𝜂 = 0, we obtain, in 

view of (3.2), the jump condition for 𝑧 = 0 is,  

∆0  𝑖𝜌 𝑛 + 𝑘𝑥𝑈 + 𝜌 𝑣 + 𝑖𝑛𝑣 ′  𝐷𝑤 −

                    𝑖𝑘𝑥𝜌 𝐷𝑈 𝑤 = 𝑖𝑔𝑘2∆0(𝜌)
𝑤

𝑛+𝑘𝑥𝑈
   (3.3)    

       

 

 

while the equation valid everywhere else (𝑧 ≠ 0) is  

 

𝐷  𝑖𝜌 𝑛 + 𝑘𝑥𝑈 + 𝜌 𝑣 + 𝑖𝑛𝑣 ′  𝐷𝑤 −

       𝑖𝑘𝑥𝜌 𝐷𝑈 𝑤  − 𝑘2 𝑖𝜌 𝑛 + 𝑘𝑥𝑈 +

               𝜌 𝑣 + 𝑖𝑛𝑣 ′  𝑤 =  𝑖𝑔𝑘2(𝐷𝜌)
𝑤

𝑛+𝑘𝑥𝑈
    (3.4)                    

  

Here ∆0𝑓 = 𝑓 𝑧0 + 0 − 𝑓 𝑧0 − 0  is the 

jump which a quantity experiences at the interface 

𝑧 = 𝑧0; and the superscript 0 distinguish the value a 

quantity, known to be continuous at an interface, 

takes at the interface 𝑧 = 𝑧0. 

 

The general solution of Eq.(3.1) is a linear 

combination of the integrals 𝑒+𝑘𝑧  and  𝑒−𝑘𝑧 . Since 

𝑤/(𝑛 + 𝑘𝑥𝑈) must be continuous on the surface 

𝑧 = 0 and 𝑤 cannot increase exponentially on 

either side of the interface, the solution appropriate 

for two regions are  

 

 𝑤1 = 𝐴 𝑛 + 𝑘𝑥𝑈1 𝑒
+𝑘𝑧 ,             (𝑧 < 0)          (3.5)     

                       

 𝑤2 = 𝐴 𝑛 + 𝑘𝑥𝑈2 𝑒
−𝑘𝑧 ,             (𝑧 > 0)          (3.6)                          

  

        Applying the boundary condition  (3.3) to the 

solutions (3.5) – (3.6), we obtain the dispersion 

relation 

 

 1 +  𝛼1𝑣1
′ + 𝛼2𝑣2

′   𝑛2 +  2𝑘𝑥 𝛼1𝑈1 + 𝛼2𝑈2 +

     𝑘𝑥 𝛼1𝑣1
′ 𝑈1 + 𝛼2𝑣2

′ 𝑈2 − 𝛼1𝑣1 + 𝛼2𝑣2 𝑛  +

       𝑘2(𝛼1𝑈1
2 + 𝛼2𝑈2

2) − 𝑖𝑘𝑥 𝛼1𝑈1𝑣1 + 𝛼2𝑈2𝑣2 −

         𝑔𝑘 𝛼1 − 𝛼2 = 0                                      (3.7) 

                            

where  

𝛼1,2 =
𝜌1,2

𝜌1+𝜌2
  , 𝑣1,2 =

𝜇1,2

𝜌1,2
 , 𝑣1,2

′ =
𝜇1,2

′

𝜌1,2
. 

𝑣1  =
𝜇1

𝜌1
 ,  𝑣1

′  =
𝜇1

′

𝜌1
 , 𝑣2  =

𝜇2

𝜌2
  and 𝑣2

′  =
𝜇2

′

𝜌2
  are 

the kinematic viscosities and kinematic viscoelasti-

cities of the lower and upper fluid respectively. 

  

Equation  (3.7) yields 

  

𝑖𝑛 = − + 𝛼1𝑣1 + 𝛼2𝑣2 + 2𝑖𝑘𝑥 𝛼1𝑈1+𝛼2𝑈2  +

𝑖𝑘𝑥 𝛼1𝑣1
′ 𝑈1 + 𝛼2𝑣2

′ 𝑈2  ±   𝛼1𝑣1 + 𝛼2𝑣2 
2 −

4𝑖𝑘𝑥𝛼1𝛼2 𝑣1 − 𝑣2  𝑈1 − 𝑈2 + 4𝑘𝑥
2𝛼1𝛼2 𝑈1𝑣2

′ −

𝑈2𝑣1
′   𝑈1 − 𝑈2 − 2𝑖𝑘𝑥  (𝑣1𝛼1

2𝑣1
′ 𝑈1 +

𝑣2𝛼2
2𝑣2

′ 𝑈2  + 𝛼1𝛼2 𝑈1𝑣2
′ 𝑣1 + 𝑈2𝑣1

′ 𝑣2 +

𝛼1𝛼2 𝑈1 − 𝑈2  𝑣1𝑣2
′ − 𝑣1

′ 𝑣2 +  𝑘𝑥 𝛼1𝑣1
′ 𝑈1 +

𝛼2𝑣2
′ 𝑈2  

2
+ 4𝑘𝑥   

2 𝛼1   𝛼2   𝑈1 − 𝑈2  2 −

4𝑔𝑘 𝛼1 − 𝛼2 [1 +  𝛼1𝑣1
′ + 𝛼2𝑣2

′  ]}1 2            (3.8) 

  

     

 Some cases of interest are now considered. 

(C)    When 𝑘𝑥 = 0, equation (3.8) yields 

𝑖𝑛 =  − 𝛼1𝑣1 + 𝛼2𝑣2 ± { 𝛼1𝑣1 + 𝛼2𝑣2 
2 −

4𝑘𝑔 𝛼1 − 𝛼2 [1 +  𝛼1𝑣1
′ + 𝛼2𝑣2

′  ]}1 2           (3.9)          

 Here we assume kinematic viscosities 

𝑣1 , 𝑣2 and kinematic viscoelasticities 𝑣1
′ , 𝑣2

′     of 

the two fluids to be equal, that is 𝑣1 = 𝑣2 = 𝑣, 

𝑣1
′ = 𝑣2

′ = 𝑣 ′. However, any of the essential 

features  of the problem are not obscured by this 

simplifying assumption. Eq.(3.9), then, becomes 

𝑖𝑛 = −𝑣 ± [𝑣2 − 4𝑔𝑘 𝛼1 − 𝛼2 {1 + 𝑣 ′}]1 2   

                                                                (3.10) 

 Unstable case 

      For the potentially unstable configuration 

(𝜌2 > 𝜌1), it is evident from Eq.(3.10)  that one of 

values of 𝑖𝑛 is positive which means that the 

perturbations growth with time and so the system 

is unstable. 
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 Stable case 

       For the potentially stable configuration 

(𝜌2 < 𝜌1), Eq.(3.10) yields that both values of in 

are either real, negative or complex conjugates 

with negative real parts implying stability of the 

system. 

     It is interesting to note from above that for the 

special case when perturbation in the direction of 

streaming are ignored (𝑘𝑥 = 0), the system is 

unstable for potentially unstable configuration and 

system is stable for potentially stable configuration 

and not depending upon kinematic viscoelasticity. 

(D)   In every other direction, instability occurs 

when  

𝛼1𝛼2𝑘𝑥
2

휀2
(𝑈1 − 𝑈2)2 > 𝑔𝑘  𝛼1 −  𝛼2               (3.11) 

         Thus for a given difference in velocity 

 𝑈1 − 𝑈2  and for a given direction of the wave-

vector 𝑘  , instability occurs for all wave numbers 

𝑘 >  
𝑔 𝛼1 − 𝛼2 

𝛼1𝛼2 𝑈1 − 𝑈2 
2 cos2𝜃

                        (3.12) 

where 𝜃 is the angle between the direction of 

𝑘  (𝑘𝑥 , 𝑘𝑦 , 0) and 𝑈   (𝑈, 0, 0), that is, 𝑘𝑥 = 𝑘 cos 𝜃. 

Hence, for a given velocity differences 𝑈1 − 𝑈2 , 

instability occurs for the least wave number when 

𝑘   is in the direction of 𝑈    and this minimum wave 

number; 𝑘𝑚𝑖𝑛 , is given by 

𝑘𝑚𝑖𝑛 =  
𝑔 𝛼1 − 𝛼2 

𝛼1𝛼2 𝑈1 − 𝑈2 
2 
                               (3.13) 

For 𝑘 > 𝑘𝑚𝑖𝑛 , the system is unstable. 

4.  Conclusion  

 It has been observed that for 𝜌1 < 𝜌2, the 

system is found unstable and for 𝜌1 > 𝜌2 the 

system is stable. 

5. References  

[1] M. Sokolov, R. I. Tanner, convective stability 

of general viscoelastic fluid heated below, Phys. 

Fluids 15 (1986) 613-623. 

[2] Johri A. K., Acta Ciencia Indica, 24(1976), 377. 

[3] Chandrasekhar S., Hydrodynamic and 

Hydromagnetic Stability, Dover Publication, 

New York, 1981. 

[4] Sharma R. C. and Spanos T.J.T., Canadian J. 

Phys., (60)(1982), 1391. 

[5] S. Rosenblat, Thermal convection in a 

viscoelastic liquid, J. Non-Newtonian Fluid 

Mech. 21 (1986) 534- 539. 

[6] J. Martinez-Mardones, C. Perz-Garcia, Linear 

instability in viscoelastic fluid convection, J. 

Phys. Condens. Matter 2 (1990) 1281-1290. 

[7] Sharma R. C. and Kumar P. Z., Naturforsch,  

51a(1996), 881. 

[8] Sharma R. C., Sunil and Chand S., Appl. Mech. 

Engg., 3(1) (1998), 1. 

[9] Pardeep Kumar and Roshan Lal, J. Fluids Eng., 

2007, Vol. 129,  Issue 1, 116.  

[10] Aiyub  Khan et al., Turkish J. Eng.  Env.  Sci. 

34, 59 – 68 (2010). 

[11] D. A. Nield, A note on the Onset of 

Convection in a Layer of a Porous Medium 

Saturated by Non-Newtonian Nanofluid of 

Power-Law Type, Transp. Porous Med. 

(2010) DOI 10.1007/s11242-010-9671-z. 

[12] Rana G. C.,  Sharma. V and Sanjeev Kumar, J. 

Comp & Math Sci. Vol.2(2), 316-321, (2011). 

 

International Journal of Engineering Research & Technology (IJERT)

Vol. 1 Issue 9, November- 2012

ISSN: 2278-0181

4www.ijert.org

IJ
E
R
T

IJ
E
R
T


