
Key-Aggregate Cryptosystem for Scalable Data

Sharing in Cloud Storage

Anumol A Jiji. N
 Student,Mtech CSE Associate.Professor in CSE

Younus College of Engineering and Technology, Younus College of Engineering and Technology,

 Vadakkevila, Kollam-691010 Vadakkevila, Kollam-691010

Abstract- Data sharing is an important functionality in cloud

storage. In this article, we show how to securely, efficiently,

and flexibly share the data with others in cloud storage. We

describe new public-key cryptosystems which produce

constant-size cipher texts such that efficient delegation of

decryption rights for any set of cipher texts are possible. The

novelty is that one can aggregate any set of secret keys and

make them as compact as a single key, but encompassing the

power of all the keys being aggregated. In other words, the

secret key holder can release a constant-size aggregate key for

flexible choices of cipher text set in cloud storage, but the

other encrypted files outside the set remain confidential. This

compact aggregate key can be conveniently sent to others or

be stored in a smart card with very limited secure storage. We

provide formal security analysis of our schemes in the

standard model. We also describe other application of our

schemes.In particular our schemes give the first public-key

patient controlled encryption for flexible hierarchy, which

was yet to be known.

1. INTRODUCTION

Computers have become an indivisible part of our life. As

the use of computers in our day to day life increases the

computer resources that we need also increases. For

enterprises affordability becomes a huge factor. They have

to face problems like the huge cost of hardware,

deployment and maintenance of software’s, software bugs,

machine failures, hardware crashes etc. and this might cost

a headache to such a community.

Cloud computing comes in rescue and provide solutions for

these problems. Cloud computing is an internet based

computing in which large group of remote servers is

networked to allow the centralized storage of data and

online access to computer services or resources rather than

saving or installing them on your personal or office

computers.

While enjoying the convenience brought by this new

technology, users also start worrying about losing control of

their own data. Security of stored data and data in transit

may be a great concern when storing sensitive data at cloud

storage provider, since cloud storage is a rich resource for

hackers and national security agencies. As cloud is gaining

more popularity more and more organization are waiting to

move towards cloud but the key concern about moving

towards cloud has been security. Information officer of an

organization while deciding to move to cloud he would

have lot of questions.

1. Is my data secure on cloud?

2.Can others access my confidential data’s? For e.g. if a

competitor is also using the same cloud infrastructure how

safe is my data, how confidential is my data?

3.What if an attacker brings down my application hosted

on cloud?

 Data in cloud should be stored in a secure manner i.e.

stored in an encrypted form. cryptography plays an

important role, to restrict client from direct accessing of

shared data.

Key Aggregate Cryptosystem for scalable data sharing in

cloud storage is an efficient public key encryption scheme

which supports flexible delegation in the sense that any

subset of the cipher text (produced by encryption scheme) is

decryptable by a constant size decryption key(generated by

the data owner). Data owner can simply send a single

aggregate key to the delegate to decrypt the key.

Challenging problem in sharing data in cloud is Ofcourse,

users can download the encrypted data from the storage,

decrypt them, then send them to others for sharing, but it

loses the value of cloud storage. Users should be able to

delegate the access rights of sharing the data to others so

that they can access these data from the server directly.

Finding an efficient and secure way to share the partial data

in cloud storage is not trivial.

Assume that Alice puts all her private photos on Dropbox,

and she does not want to expose her photos to everyone.

Due to various data leakage possibility Alice encrypts all

her photos using her own keys before uploading. One day,

Alice’s friend Bob, asks her to share the photos taken over

all these years which Bob appeared in. Alice can then use

the share function of Dropbox, but the problem now is how

to delegate the decryption rights for these photos to Bob.

Naturally there are two extreme ways for her under the

traditional encryption paradigm.

International Journal of Engineering Research & Technology (IJERT)

ISSN: 2278-0181

Published by, www.ijert.org

NCICN-2015 Conference Proceedings

Volume 3, Issue 13

Special Issue - 2015

1

 Alice encrypts all files with a single encryption

key and gives Bob the corresponding secret

key directly.

 Alice encrypts files with distinct keys and

sends Bob the corresponding secret keys.

The first method is inadequate since all unchosen data may

also leaked to Bob. For the second method, there are

practical concerns on efficiency. The number of such keys

is as many as the number of shared photos, say thousand.

Transferring these keys inherently requires a secure

channel, and storing these keys requires rather expensive

secure storage. The costs and complexities involved

generally increases with the number of decryption keys to

be shared. In short, it is very heavy and costly to do that.
Encryption keys also come with two flavors — symmetric

key or asymmetric (public) key. Using symmetric

encryption, when Alice wants the data to be originated

from a third party, she has to give the encryptor her secret

key; obviously, this is not always desirable. By contrast,

the encryption key and decryption key are different in

public-key encryption. The use of public-key encryption

gives more flexibility for our applications. For example, in

enterprise settings, every employee can up- load encrypted

data on the cloud storage server without the knowledge of

the company’s master-secret key.

Key Aggregate Cryptosystem is the best solution for the

above problem. Alice encrypts files with distinct public

keys, but only sends Bob a single (constant-size)

decryption key. Since the decryption key should be send

through a secure channel and kept secret, small key size is

always desirable. For example, we cannot expect large

storage for decryption keys in the resource constraint

devices like smart phones, smart cards or wireless sensor

nodes. Using KAC we can minimize the communication

requirements such as bandwidth, rounds of communication.

II. RELATED WORKS

This section we compare our basic KAC schemes with

other possible solutions on sharing in secure cloud storage.

Cryptographic keys for a predefined Hierarchy

Cryptographic key assignment schemes aim to minimize

the expense in storing and managing secret keys for general

cryptographic use. Utilizing a tree structure a key for a

given branch can be used to derive the keys for descendant

nodes (but not the other way round). Just granting the

parent key implicitly grants all the keys of its descendant

nodes. Alice can first classify the cipher text classes

according to their subjects.

Figure:1

Figure:2

Each node in the trees represents a secret key. The leaf

node represents keys for individual cipher text classes.

Filled circles represent the keys for the classes to be

delegated and circles circumvented by dotted lines

represent the keys to be granted. Note that every key of the

non leaf node can derive the keys of its descendant nodes.

if Alice wants to share all the files in the “personal”

category, she only needs to grant the key for the node

“personal”, which automatically grants the delegatee the

keys of all the descendant nodes (“Photo”, “Music”). This

is ideal case, where most classes to be shared belong to the

same branch and thus a parent key of them is sufficient.

However it is still difficult for general cases. if Alice shares

her demo music at work (“work”-> “casual”-> “demo” and

“work”-> “confidential”-> “demo”) with a colleague who

also has the rights to see some of her personal data, what

she can do is to give more keys, which leads to an increase

in the total key size. One can see that tis approach is not

flexible when the classifications are more complex and she

wants to share different sets of files to different peoples.

For this delegatee in our example, the number of granted

keys becomes the same as the number of classes. In

general, hierarchical approaches can solve the problem

only partially if one tends to share all files under certain

branch in the hierarchy. On, average, the number of keys

increases with the number of branches. It is unlikely to

come up with a hierarchy that can save the number of total

keys to be granted for all individuals (which can access a

different set of leaf-nodes) simultaneously.

Compact Key In Identity-Based Encryption

Identity Based-Encryption (IBE) is a type of public key

encryption in which the public key of a user can be set as

an identity string of the user (e.g. an email address). There

is a trusted party called private key generator (PKG) in IBE

which holds a master-secret key and issues a secret key to

each user with respect to the user identity. The encryptor

can take the public key parameter and a user identity to

encrypt a message. The recipient can decrypt this cipher

text by his secret key. Guo, tried to build IBE with key

aggregation. In their schemes, key aggregation is

constrained in the sense that all keys to be aggregated must

come from different identity divisions. While there are an

exponential number of identities and thus secret keys, only

a polynomial number of them can be aggregated. Most

importantly, their key-aggregation comes at the expense of

O(n) sizes for both cipher texts and public parameter,

where n is the number of secret keys which can be

aggregated into a constant size one. This greatly increases

International Journal of Engineering Research & Technology (IJERT)

ISSN: 2278-0181

Published by, www.ijert.org

NCICN-2015 Conference Proceedings

Volume 3, Issue 13

Special Issue - 2015

2

the costs of storing and transmitting ciphertexts, which is

impractical I many situations such as shared cloud storage.

As we mentioned, our schemes feature constant ciphertext

size, and their security holds in the standard model.

Attribute-Based Encryption

Attribute based encryption (ABE) allows each ciphertext

class to be associated with an attribute, and the master-

secret key holder can extract a secret key for a policy of

these attributes so that a cipher text can be decrypted by

this key if its associated attribute conforms to the policy.

For example, with the secret key for the policy (2 3

6 8), one can decrypt ciphertext tagged with class

2,3,6,8. But, the size of the key often increases with the

number of attributes it encompasses, or the ciphertext-size

is not constant.

III.THE PROPOSED SYSTEM

In modern cryptography, a fundamental problem we often

study is about leveraging the secrecy of a small piece of

knowledge into the ability to perform cryptographic

functions (e.g. encryption, authentication) multiple times.

In this paper, we study how to make a decryption key more

powerful in the sense that it allows decryption of multiple

cipher texts, without increasing its size.

Specifically the problem statement is-“To design an

efficient public key encryption scheme which supports

flexible delegation in the sense that any subset of the cipher

texts (produced by encryption scheme) is decryptable by a

constant size decryption key (generated by the owner of

master secret key).”

We solve this problem by introducing a special type of

public-key encryption which we call key-aggregate

cryptosystem (KAC). In KAC cipher texts are categorized

into different classes. No special relation is required

between classes. Users, encrypt a message not only under a

public key, but also under the identifier of these cipher text

classes. The key owner holds a master secret key, which

can be used to extract secret keys for different classes. The

extracted key can be an aggregate key which is as compact

as a secret key for a single class, but aggregate the power

of many such keys. i.e., the decryption power for any

subset of cipher text classes.

Figure:3 KAC system Architecture

With our solution Alice can simply send Bob a single

aggregate key via a secure e-mail. Bob can download the

encrypted photos from Alice’s dropbox space and then use

this aggregate key to decrypt these encrypted photos.

The sizes of cipher text, public key, master secret key and

aggregate key in our KAC schemes are all of constant size.

A canonical application of KAC is data sharing. The key

aggregation property is especially useful when we expect

the delegation to be efficient and flexible. The schemes

enable a content provider to share her data in a confidential

and selective way, with a fixed and small cipher text

expansion, by distributing to each authorized user a single

and small aggregate key.

IV.FIVE ALGORITHMIC STEPS IN KAC

Framework.

 A key-Aggregate encryption scheme consists of five

polynomial-time algorithms as follows:-

The data owner establishes the public system parameter via

setup and generates a public/master secret key pair via

KeyGen. Messages can be encrypted via Encrypt by

anyone who also decides what cipher text class is

associated with plain text message to be encrypted. The

data owner can use the master secret to generate an

aggregate decryption key for a set of cipher text classes via

Extract. The generated keys can be passed to delegatees

securely (through secure emails or secure devices). Finally,

any user with an aggregate key can decrypt any cipher text

provided that cipher text’s class is contained in the

aggregated key via Decrypt.

 Setup (λ, n): executed by the data owner to setup

an account on a server. On input a security level

parameter, λ and the number of cipher text classes

n (ie, class index should be an integer bounded by

1 and n), which outputs the public system

parameter param.

 KeyGen: executed by data owner to randomly

generate a public/master-secret key pair (pk, msk).

 Encrypt (pk, i, m): executed by anyone who wants

to encrypt the data. On input a public key pk, an

index I denoting cipher text class, and a message

m, it outputs a ciphertext ‘C’.

 Extract (msk, S): executed by the data owner for

delegating the decrypting power for a certain text

of ciphertext classes to a delegatee. On input the

master-secret key msk and a set S of indices

corresponding to different classes, it outputs the

aggregate key for set S denoted by Ks.

 Decrypt (Ks, S, i, C): executed by the delegatee

who received an aggregate key Ks generated by

Extract. On input Ks, the set S, an index I

denoting the cipher text class, the cipher text C

International Journal of Engineering Research & Technology (IJERT)

ISSN: 2278-0181

Published by, www.ijert.org

NCICN-2015 Conference Proceedings

Volume 3, Issue 13

Special Issue - 2015

3

belongs to, and C, it outputs the decrypted result

m if i € S.

Sharing Encrypted data.

A canonical application of KAC is data sharing. The key

aggregation property is especially useful when we expect

the delegation to be efficient and flexible. The schemes

enable a content provider to share her data in a confidential

and selective way, with a fixed and small cipher text

expansion, by distributing to each authorized user a single

and small aggregate key.

Here we describe the main idea of data sharing in cloud

storage using KAC.

Figure:4

Suppose Alice wants to share her data m1, m2, ….mv on the

server. She first performs Setup (λ,n) to establish

connection with server to get param and execute KeyGen

to get the public/master secret key pair (pk, msk). The

system parameter param and public-key pk can be made

public and master secret key msk should be kept secret by

Alice. Anyone (including Alice herself) can then encrypt

each message mi by Ci = Encrypt (pk, i, mi). The encrypted

data are uploaded to server. Once Alice is willing to

share a set S of her data with a friend Bob, she can

compute the aggregate key Ks for Bob by performing

Extract (msk, S). Since Ks is just a constant size key, it is

easy to be sent to Bob via a secure e-mail.
After obtaining the aggregate key, Bob can download the

data he is authorized to access. That is, for each i € S, Bob

downloads Ci (and some needed values in param) from the

server. With the aggregate key Ks, Bob can decrypt each Ci

by Decrypt (Ks, S, i, Ci) for each i € S.

Figure:5 DATA FLOW ARCHITECTURE

V.BASIC CONSTRUCTION OF KAC

The design of our basic scheme is inspired from the

collusion-resistant broadcast encryption scheme proposed

by Boneh. Although their scheme supports constant-size

secret keys, every key only has the power for decrypting

ciphertexts associated to a particular index. We thus need

to devise a new Extract algorithm and the corresponding

Decrypt algorithm.

 Setup(λ; n): Randomly pick a bilinear group G of

prime order p where 2λ ≤ p ≤ 2λ+1, a generator g £

G and α £ Zp. Compute gi = £ G for

i=1,…,n,n+2,….,2n. Output the system parameter

as param=‹g, g1,…gn,gn+2,….g2n> (_ can be safely

deleted after Setup).

Note that each ciphertext class is represented by

an index in the integer set{1, 2, _ _ _ , n} where n

is the total number of ciphertext classes.

 KeyGen(): Pick ϒ £ Zp, Output the public and

master-secret key pair: (pk = v = gϒ, msk=ϒ).

 Encrypt(pk,i,m): For a message m £ GT and an

index i £ {1, 2, _ _ _ , n}, randomly pick t£ Zp and

compute the ciphertext as C=< gt, (vgi)t,

m.e(g1,gn)t >.

 Extract(msk= ϒ,S): For the set S of indices j’s the

aggregate key is computed as Ks= Пj£S g ϒn+1-j.

 Decrypt(Ks,S,I,C=<c1,c2,c3>): If i S, Output

.Otherwise, return the message:m=c3.e(Ks. Пj£S,j≠i

g ϒn+1-j+I,C1)/e(Пj£S g ϒn+1-j,C2).

V.PERFORMANCEANALYSIS

Comparison of KAC with other schemes

A comparison of the number of granted keys

between three methods is depicted in

Figure:6

We can see that if we grant the key one by one, the number

of granted keys would be equal to the number of the

delegated ciphertext classes. With the tree-based structure,

we can save a number of granted keys according to the

delegation ratio. On the contrary, in our proposed

approach, the delegation of decryption can be efficiently

implemented with the aggregate key, which is only of fixed

size.

VI.CONCLUSION

International Journal of Engineering Research & Technology (IJERT)

ISSN: 2278-0181

Published by, www.ijert.org

NCICN-2015 Conference Proceedings

Volume 3, Issue 13

Special Issue - 2015

4

Thus data privacy and security is maintained by designing

a public key cryptosystem called as Key Aggregate

Cryptosystem (KAC). This KAC helps user to share their

data partially over cloud with constant size key pair of

public-master keys and also receiver can decrypt this data

with single constant size aggregate key. No matter which

one among the power set of classes, the delegatee can

always get an aggregate key of constant size. Our approach

is more flexible than hierarchical key assignment which

can only save spaces if all key-holders share a similar set of

privileges.

VII. FUTURE ENHANCEMENT

A limitation in our work is the predefined bound of

the number of maximum ciphertext classes. In cloud

storage, the number of ciphertexts usually grows rapidly.

So we have to reserve enough ciphertext classes for

the future extension. Otherwise, we need to expand the

public-key. Another limitation in our work is that the

aggregate key has been send to delegatee through email

without any security so as a future extension we can

encrypt the aggregate key and send it to delegatee

REFERENCES

[1] S. S. M. Chow, Y. J. He, L. C. K. Hui, and S.-M. Yiu, “SPICE -

Simple Privacy-Preserving Identity-Management for Cloud

Environment,” in Applied Cryptography and Network Security –
ACNS 2012, ser. LNCS, vol. 7341. Springer, 2012, pp. 526–543.

[2] L. Hardesty, “Secure computers aren’t so secure,” MIT press, 2009,

http://www.physorg.com/news176107396.html.
[3] C. Wang, S. S. M. Chow, Q. Wang, K. Ren, and W. Lou, “Privacy-

Preserving Public Auditing for Secure Cloud Storage,” IEEE Trans.

Computers, vol. 62, no. 2, pp. 362–375, 2013.
[4] B. Wang, S. S. M. Chow, M. Li, and H. Li, “Storing Shared Data on

the Cloud via Security-Mediator,” in International Conference on

Distributed Computing Systems - ICDCS 2013. IEEE, 2013.
[5] S. S. M. Chow, C.-K. Chu, X. Huang, J. Zhou, and R. H. Deng,

“Dynamic Secure Cloud Storage with Provenance,” in Cryptography

and Security: From Theory to Applications - Essays Dedicated to
Jean-Jacques Quisquater on the Occasion of His 65th Birthday, ser.

LNCS, vol. 6805. Springer, 2012, pp. 442–464.

[6] D. Boneh, C. Gentry, B. Lynn, and H. Shacham, “Aggregate and
Verifiably Encrypted Signatures from Bilinear Maps,” in Proceedings

of Advances in Cryptology - EUROCRYPT ’03, ser. LNCS, vol.

2656. Springer, 2003, pp. 416–432.
[7] M. J. Atallah, M. Blanton, N. Fazio, and K. B. Frikken, “Dynamic and

Efficient Key Management for Access Hierarchies,” ACM

Transactions on Information and System Security (TISSEC), vol. 12,
no. 3, 2009.

[8] J. Benaloh, M. Chase, E. Horvitz, and K. Lauter, “Patient Controlled

Encryption: Ensuring Privacy of Electronic Medical Records,” in

Proceedings of ACM Workshop on Cloud Computing

Security (CCSW ’09). ACM, 2009, pp. 103–114.

[9] F. Guo, Y. Mu, Z. Chen, and L. Xu, “Multi-Identity Single-Key
Decryption without Random Oracles,” in Proceedings of Information

Security and Cryptology (Inscrypt ’07), ser. LNCS, vol. 4990.

Springer, 2007, pp. 384–398.
[10] V. Goyal, O. Pandey, A. Sahai, and B. Waters, “Attribute-Based

Encryption for Fine-Grained Access Control of Encrypted data,” in

Proceedings of the 13th ACM Conference on Computer and
Communications Security (CCS ’06). ACM, 2006, pp. 89–98.

[11] S. G. Akl and P. D. Taylor, “Cryptographic Solution to a Problem of

Access Control in a Hierarchy,” ACM Transactions on Computer
Systems (TOCS), vol. 1, no. 3, pp. 239–248, 1983.

[12] G. C. Chick and S. E. Tavares, “Flexible Access Control with Master

Keys,” in Proceedings of Advances in Cryptology – CRYPTO ’89,
ser. LNCS, vol. 435. Springer, 1989, pp. 316–322.

[13] W.-G. Tzeng, “A Time-Bound Cryptographic Key Assignment

Scheme for Access Control in a Hierarchy,” IEEE Transactions on

Knowledge and Data Engineering (TKDE), vol. 14, no. 1, pp. 182–

188, 2002.

[14] G. Ateniese, A. D. Santis, A. L. Ferrara, and B. Masucci, “Provably-
Secure Time-Bound Hierarchical Key Assignment Schemes,” J.

Cryptology, vol. 25, no. 2, pp. 243–270, 2012.

[15] R. S. Sandhu, “Cryptographic Implementation of a Tree
Hierarchyfor Access Control,” Information Processing Letters, vol.

27, no. 2, pp. 95–98, 1988.

[16] Y. Sun and K. J. R. Liu, “Scalable Hierarchical Access Control in
Secure Group Communications,” in Proceedings of the 23th IEEE

International Conference on Computer Communications

(INFOCOM’04). IEEE, 2004.
[17] Q. Zhang and Y. Wang, “A Centralized Key Management Scheme

for Hierarchical Access Control,” in Proceedings of IEEE Global

Telecommunications Conference (GLOBECOM ’04). IEEE, 2004,
pp. 2067–2071.

[18] J. Benaloh, “Key Compression and Its Application to Digital

Fingerprinting,” Microsoft Research, Tech. Rep., 2009.
[19] B. Alomair and R. Poovendran, “Information Theoretically Secure

Encryption with Almost Free Authentication,” J. UCS, vol. 15, no. 15,

pp. 2937–2956, 2009.
[20] D. Boneh and M. K. Franklin, “Identity-Based Encryption from the

Weil Pairing,” in Proceedings of Advances in Cryptology – CRYPTO

’01, ser. LNCS, vol. 2139. Springer, 2001, pp. 213–229.
[21] A. Sahai and B. Waters, “Fuzzy Identity-Based Encryption,” in

Proceedings of Advances in Cryptology - EUROCRYPT ’05, ser.
LNCS, vol. 3494. Springer, 2005, pp. 457–473.

[22] S. S. M. Chow, Y. Dodis, Y. Rouselakis, and B. Waters, “Practical

Leakage-Resilient Identity-Based Encryption from Simple
Assumptions,” in ACM Conference on Computer and

Communications Security, 2010, pp. 152–161.

[23] F. Guo, Y. Mu, and Z. Chen, “Identity-Based Encryption: How to
Decrypt Multiple Ciphertexts Using a Single Decryption Key,” in

Proceedings of Pairing-Based Cryptography (Pairing ’07), ser. LNCS,

vol. 4575. Springer, 2007, pp. 392–406.
[24] M. Chase and S. S. M. Chow, “Improving Privacy and Security in

Multi-Authority Attribute-Based Encryption,” in ACM Conference on

Computer and Communications Security, 2009, pp. 121–130.

[25] T. Okamoto and K. Takashima, “Achieving Short Ciphertexts or

Short Secret-Keys for Adaptively Secure General Inner-Product

Encryption,” in Cryptology and Network Security (CANS ’11), 2011,
pp. 138–159.

[26] R. Canetti and S. Hohenberger, “Chosen-Ciphertext Secure Proxy

Re-Encryption,” in Proceedings of the 14th ACM Conference on
Computer and Communications Security (CCS ’07). ACM, 2007, pp.

185–194.

[27] C.-K. Chu and W.-G. Tzeng, “Identity-Based Proxy Re-encryption
Without Random Oracles,” in Information Security Conference (ISC

’07), ser. LNCS, vol. 4779. Springer, 2007, pp. 189–202.

[28] C.-K. Chu, J. Weng, S. S. M. Chow, J. Zhou, and R. H. Deng,
“Conditional Proxy Broadcast Re-Encryption,” in Australasian

Conference on Information Security and Privacy (ACISP ’09), ser.

LNCS, vol. 5594. Springer, 2009, pp. 327–342.
[29] S. S. M. Chow, J. Weng, Y. Yang, and R. H. Deng, “Efficient

Unidirectional Proxy Re-Encryption,” in Progress in Cryptology -

AFRICACRYPT 2010, ser. LNCS, vol. 6055. Springer, 2010, pp.
316–332.

[30] G. Ateniese, K. Fu, M. Green, and S. Hohenberger, “Improved

Proxy Re-Encryption Schemes with Applications to Secure
Distributed Storage,” ACM Transactions on Information and System

Security (TISSEC), vol. 9, no. 1, pp. 1–30, 2006.

[31] D. Boneh, C. Gentry, and B. Waters, “Collusion Resistant Broadcast
Encryption with Short Ciphertexts and Private Keys,” in Proceedings

of Advances in Cryptology - CRYPTO ’05, ser. LNCS, vol. 3621.

Springer, 2005, pp. 258–275.
[32] L. B. Oliveira, D. Aranha, E. Morais, F. Daguano, J. Lopez, and R.

Dahab, “TinyTate: Computing the Tate Pairing in Resource-

Constrained Sensor Nodes,” in Proceedings of 6th IEEE International
Symposium on Network Computing and Applications (NCA ’07).

IEEE, 2007, pp. 318–323.

[33] D. Naor, M. Naor, and J. Lotspiech, “Revocation and Tracing
Schemes for Stateless Receivers,” in Proceedings of Advances in

Cryptology - CRYPTO ’01, ser. LNCS. Springer, 2001, pp. 41–62.

International Journal of Engineering Research & Technology (IJERT)

ISSN: 2278-0181

Published by, www.ijert.org

NCICN-2015 Conference Proceedings

Volume 3, Issue 13

Special Issue - 2015

5

[34] T. H. Yuen, S. S. M. Chow, Y. Zhang, and S. M. Yiu, “Identity-

Based Encryption Resilient to Continual Auxiliary Leakage,” in

Proceedings of Advances in Cryptology - EUROCRYPT ’12, ser.

LNCS, vol. 7237, 2012, pp. 117–134.

[35] D. Boneh, X. Boyen, and E.-J. Goh, “Hierarchical Identity Based
Encryption with Constant Size Ciphertext,” in Proceedings of

Advances in Cryptology - EUROCRYPT ’05, ser. LNCS, vol. 3494.

Springer, 2005, pp. 440–456.
[36] D. Boneh, R. Canetti, S. Halevi, and J. Katz, “Chosen-Ciphertext

Security from Identity-Based Encryption,” SIAM Journal on

Computing (SIAMCOMP), vol. 36, no. 5, pp. 1301–1328, 2007.

International Journal of Engineering Research & Technology (IJERT)

ISSN: 2278-0181

Published by, www.ijert.org

NCICN-2015 Conference Proceedings

Volume 3, Issue 13

Special Issue - 2015

6

