

Keyword Search Using General Form of Inverted Index

Mrs. Pratiksha P. Nikam Prof. Srinu Dharavath Mr. Kunal Gawande

 Lecturer Professor(Guide) Software developer

GSMCOE, Pune ,india GSMCOE, Pune ,india Mumbai , india

Abstract

This Keyword search is the existing method for users to

access data from information storage. Inverted lists are

usually used to index documents to retrieve documents

according to a set of keywords efficiently. Inverted lists

are very large and many compression techniques have

been proposed to reduce the storage space and disk I/O

time. But these techniques perform decompression

operation, which increases CPU time. So, Here we

present a general form of inverted index which merges

consecutive IDs in inverted lists into intervals to save

storage space. A more efficient algorithm is devised to

do keyword search operations i.e. union and

intersection operation by taking advantage of intervals.

This algorithm do not require conversions from

interval lists back to ID lists, so general form of

inverted index is more efficient than traditional

inverted index. General form of inverted index

improves keyword search performance also it requires

less storage space that traditional inverted index.

1.Introduction

Management of string data in databases and

information systems has taken on particular importance

recently. Recently we study the following problem:

given a collection of strings, how to efficiently find

those in the collection that are similar to a query string?

Keyword search is very difficult for users to access text

dataset. If data is very huge, keyword search is critical

for users to access text datasets. Datasets may include

textual documents (web pages), XML documents, and

relational tables. Users use keyword search to retrieve

documents by simply typing in keywords as queries.

Current keyword search systems usually use an

inverted index. Inverted index is a data structure that

maps each word in the dataset to a list of IDs of

documents in which the word appears to efficiently

retrieve documents. The inverted index for a document

collection consists of a set called as inverted lists. Each

inverted list corresponds to a word, which stores all

the IDs of documents where this word appears in

ascending order.

Real world dataset is very large so different

compression techniques are used to store inverted

index. It reduces space cost as well as disk I/O time

during query processing. IDs in inverted lists are sorted

in ascending order. Compressed inverted index is

smaller than the original index, the system needs to

decompress encoded lists during query processing,

which leads to extra computational costs. Our paper

address this problem by using general form of inverted

index which is an extension of the traditional inverted

index to support keyword search. General form of

Inverted Index for Keyword Search has become a

ubiquitous method for users to access text data in the

face of information explosion. Inverted lists are usually

used to index underlying documents to retrieve

documents according to a set of keywords

efficiently. Since inverted lists are usually large, many

compression techniques have been proposed to reduce

the storage space and disk I/O time. However, these

techniques usually perform decompression operations

on the fly, which increases the CPU time. This paper

presents a more efficient index structure, the General

form of Inverted IndeX , which merges consecutive

IDs in inverted lists into intervals to save storage space.

With this index structure, more efficient algorithms can

be devised to perform basic keyword search operations,

i.e., the union and the intersection operations, by taking

the advantage of intervals. Specifically, these

algorithms do not require conversions from interval

lists back to ID lists. As a result, keyword search using

General form of inverted index can be more efficient

than those using traditional inverted indices. scalability

of general form of datasets show that it does not only

requires less storage space, but also improves the

keyword search performance, compared with

traditional inverted indexes.

General form of inverted index encodes consecutive

IDs in each inverted list of Inverted Index into

intervals, and adopts efficient algorithms to support

683

International Journal of Engineering Research & Technology (IJERT)

Vol. 3 Issue 1, January - 2014

IJ
E
R
T

IJ
E
R
T

ISSN: 2278-0181

www.ijert.orgIJERTV3IS10345

keyword search using these interval lists. This

technique reduces the size of inverted index and

support keyword search without list decompression.

This paper covers following points:

 Basics of traditional inverted structure.

 Paper present index structure i.e. General form of

index structure . This structure reduces storage space by

converting inverted list into interval list.

 Basic operations on interval list such as union and

intersection without decompression.

2. Related work and motivation
Most popular data structure for information

retrieval is inverted index. For a given collection of

document index is defined as follows. Each word in

document collection is called term. For each term we

maintain a list called inverted list of the entire

document in which this word appears. In this list, with

each document we may store some score. This score

indicate that how much important is this document with

respect to that word [6]. Different variants of the

inverted index sort the documents in the inverted lists

in a different manner. Sorting may be based on

document id or score.

Compression techniques are often applied to

further reduce space requirement of these lists.

Compressed inverted index is smaller than the original

index, the system needs to decompress encoded lists

during query processing, which leads to extra

computational costs. To remove this extra computation,

generalized form of inverted index is developed.

3. General form of inverted index

Many compression techniques have been

proposed to reduce the storage space and disk I/O time.

However, these techniques usually perform

decompression operations on the fly, which increases

the CPU time. This paper presents a more efficient

index structure, the General form of inverted index,

which merges consecutive IDs in inverted lists into

intervals to save storage space.

Let D={d1,d2……….dN} be a collection of

documents[2]. Each document in D includes a set of

words, and the set of all distinct words in D is denoted

by W. Each word w ɛ W has an inverted list, denoted

by Iw, which is an ordered list of IDs of documents that

contain the word with all lists sorted in ascending

order. List contains ID lists and interval lists. For

example, Table 1 shows a collection of 7 document and

Table 2 shows its inverted index.

Table 1. Contents of dataset

Inverted index shown in table 2 corresponds to a

word which are four (Searching ,Search ,Keyword

,Databases) most frequent words. AS shown in figure

index list is very large as many consecutive IDs for

each word. So, we have to compress it.

Table 2. Inverted index

Size can be reduced by merging these groups of

consecutive IDs into intervals. Each interval r has two

numbers ,lower bound(Lb) and upper bound(Ub).This

new inverted index are called as general form of

inverted index. Table III shows general form of

inverted index.

Word IDs

Searching 2,7

Search 3,4,5,6

Keyword 1,2,3,6

Databases 1,2,3,6,7

ID CONTENT

1 Keyword search in databases.

2 Keyword searching using internet browsing in

databases

3 Keyword search in multimedia databases.

4 search in multimedia file.

5 Nevigation system for product search.

6 Keyword ranking and search in databases..

7 Searching for hidden web databases.

684

International Journal of Engineering Research & Technology (IJERT)

Vol. 3 Issue 1, January - 2014

IJ
E
R
T

IJ
E
R
T

ISSN: 2278-0181

www.ijert.orgIJERTV3IS10345

Table 3. General form of inverted index

 In above table Search word have [3,6] interval rather

than 3,4,5,6 IDs. General form of inverted index is

applicable for those datasets whose documents are

structured .Relational tables have some attribute values

which are shared by many records. And there inverted

list contain many consecutive IDs ,as a result general

form of inverted index is very small than traditional

inverted index. in such datasets, other information in

the inverted lists such as the frequency information and

position information do not significantly impact either

the query processing or result ranking[1]. Our paper

considers only structured document and does not

consider position information.

If an interval [Lb,Ub] have a single element i.e. Lb

=Ub , then two integer are still needed to represent the

interval. So for many singe element interval space cost

will be more. AS a result we use 3 ID list ie. S for

single element interval and Lb ,Ub for lower and upper

bounds of multi element intervals. For example

<[]2,2],[4,4],[5,5],[6,8],[9,10]> can be written as S =

<2,4,5> and Lb =<6,9> and Ub=<8,10>.

Two position indicator x,y are used to indicate the

position of S, Lb,Ub.At beginning x,y are set to

zero,i.e. they point to first element in S , Lb /Ub.

Current interval is found by comparing Sx and Lby. if

Sx is smaller we return to single element interval[Sx,

Sx] and increment x by 1. If Lby is smaller, return the

multi-element interval [Lby, Sby] and increment y by

1.

4. KEYWORD SEARCH

Keyword search can be done using union and

intersection operations on inverted lists. In union

operation the document which contain atleast one of the

query keywords is returned as a result .i.e. it support

OR query semantic. In intersection operation only those

documents that contain all the query keywords are

returned. i.e. it support AND semantic.

In traditional keyword search system first retrieves

the compressed inverted list for each keyword then

decompresses these list into ID lists, and then calculate

union or intersection of these list.

4.1 Union Operation

Union operation [2] is denoted by

∪

. Union of a set

of ID list denoted by S={ S1,S2………..Sn} . S is

another ID lists in which each ID is contained in at list

one ID list in S .Union of interval list is as follows:

Given

a set of interval list R={R1,R2……….Rn}and

their equivalent ID lists, S={ S1,S2………..Sn} ,the

union of R is the equivalent interval list of

∪n
k=1

Sk.

For Example, Consider the following intervals

<[1,3],[4,5]> , <[2,6],[13,13]> ,

<[5,7],[10,11],[13,15]>. Their equivalent ID list

are<1,2,3,4,5> , <2,3,4,5,6,13> ,

<5,6,7,10,11,13,14,15>. Union of these three ID lists

is<1,2,3,4,5,6,7,10,11,13,14,15>,thus the union of these

interval is equivalent to interval list

as<[1,7]>,[10,11],[13,15].

 First interval list are converted into ID lists using

union operation this method is called as

NAIVEUNION algorithm and result again converted

back into an interval list.

 Scan-Line algorithm

is union algorithm without ID-

interval conversion. Algorithm use the interval

boundaries in the interval lists..

Inspired by the scan-

line rendering algorithm in computer graphics[3], The

boundaries of all interval in interval lists are first sorted

into ascending order, with the scan-line moves from the

smallest boundaries to largest boundaries to calculate

union list.. The scan line movement maintains a

reference counter to count the number of intervals that

the scan-line is currently hitting. The counter is

decremented by 1 when it hits an upper bound and

incremented by 1 when the scan-line hits a lower bound

. If counter increases from 0 to 1, it means scan-line is

processing an interval an the current boundary is saved

in variable a. When the counter decreases from 1 to 0 it

means that the scan-line will not hit any interval before

it hits another lower-bound .the current boundary is

saved in variable b and [a,b]• is returned as the

resulting interval. The heap-based merge is used on all

the interval lists to enumerate all the lower bounds and

upper bounds in ascending order.

 Improved scan-line algorithm(SCANLINEUNION

algorithm) [2] maintain an active interval to denote

current result interval.

Algorithm : SCANLINEUNION (R)

Input: R A set of interval lists.

Output: G The resulting interval list.

1: for all k ɛ[1, n]• do

2: Let rk be the first interval of Rk

Word Intervals

Searching [2,2],[7,7]

Search [3,6]

Keyword [1,3],[6,6]

Databases [1,3],[6,7]

685

International Journal of Engineering Research & Technology (IJERT)

Vol. 3 Issue 1, January - 2014

IJ
E
R
T

IJ
E
R
T

ISSN: 2278-0181

www.ijert.orgIJERTV3IS10345

3: Insert lb(rk) and ub(rk) to min-heap H

4: a<-0, b<-0, c<-0

5: while H≠Ф do

6: Let t be the top element in H

7: Pop t from H

8: if t is a lower-bound then

9: c<-C+1

10: if c=1 then α<-t

11: if t is an upper-bound then

12: c<-c-1

13: if c = 0 then b<-t and append [a,b]• to G

14: Let r ɛ Rj be the corresponding interval of t

15: Let r ’ be the next interval (if any) of r in Rj

16: Insert lb(r’) and ub(r’) to H

17: return G

 At the beginning, all pointers are pointing to the first

intervals in the interval lists and the active interval is

set to be empty. The difference is that only lower

bounds are inserted into the heap. In each step, the

algorithm first pops up the minimum lower bound in

the heap, and then extends the active interval if the two

intervals overlap. Finally, the lower bound of the next

interval in the corresponding list is pushed into the

heap. If the interval corresponding to the popped lower

bound (denoted by r) and the active interval do not

overlap, active interval is returned as a resulting

interval and its lower and upper bounds are updated to

lb(r) and ub(r).

4.2 Intersection operation

 Intersection operation [2] is denoted by ∩. This

operation calculates the intersection list. Intersection of

interval list is as follows:

Given a set of interval list R={R1,R2……….Rn}and

their equivalent ID lists, S={ S1,S2………..Sn} ,the

intersection of R is the equivalent interval list of ∩
n

k=1

Sk.

 For Example, Consider the following intervals

<[1,3],[4,5]>,<[2,6],[13,13]>,<[4,7],[10,11],[13,15]>.

Their equivalent ID list

are<1,2,3,4,5>,<2,3,4,5,6,13>,<4,5,6,7,10,11,13,14,15>

. The intersection list of these Id list is <4,5>. Thus

intersection of interval lists is equivalent interval list of

ID list i.e. <[4,5]>. First interval list are converted into

ID lists using intersection operation this method is

called as NAÏVE intersection algorithm and result

again converted back into an interval list. The

SCANLINEISECT algorithm enumerates the lower and

upper bound in ascending order and returns the

intersected intervals based on a reference counter. The

performance of the basic scan-line algorithm can be

improved by maintaining an active interval that

indicates the interval currently being processed.

However, a single heap is not sufficient because the

lower and upper bounds must be maintained separately.

The new TWINHEAPISECT [2] algorithm is

illustrated as follows:

Algorithm TWINHEAPISECT (R)

Input : R A set of interval lists.

Output : G The resulting interval list.

1: Let L be a max-heap and U be a min-heap

2: for all k ɛ[1,n]• do

3: Let rk be the frontier interval of Rk

4: Insert lb(rk) and ub(rk) to L and U respectively

5: while U ≠Ф do

6: Let l be the top (maximum) element in L

7: Let u be the top (minimum) element in U

8: if l <=u then Add [l,u]• to G

9: Let r ɛ Rj be the corresponding interval of u

10: Remove lb(r) from L and pop u from U

11: Let r0 be the next interval (if any) of r in Rj

12: Insert lb(r’)and ub(r’) to L and U respectively

13: return G

 The TWINHEAPISECT algorithm manages the

lower and upper bounds of the frontier intervals in two

separate heaps instead of a single heap as in the basic

scan-line algorithm. As a result, heap insertions are

more efficient than in the basic scan-line algorithm

since each heap is 50% smaller (so it takes less time to

adjust the heap structures when inserting an element).

Thus the TWINHEAPISECT algorithm is more

efficient than SCANLINEISECT,

5. RELATED WORK

Users use keyword search to access text data.

Keyword search is used for accessing structured or

semi structured data, such as XML document and

relational databases[4][5]. To answer for keyword

queries in keyword search system, inverted indexes are

used. Many techniques first convert each ID in an

inverted list to difference between it and the preceding

ID, called d-gaps, and then encodes the list using

compression algorithm. Variable Byte Encoding is used

in systems as it simple and provides fast encoding.

686

International Journal of Engineering Research & Technology (IJERT)

Vol. 3 Issue 1, January - 2014

IJ
E
R
T

IJ
E
R
T

ISSN: 2278-0181

www.ijert.orgIJERTV3IS10345

6. CONCLUSION

This paper describes the drawback of traditional

inverted index and how general form of inverted index

overcomes it. Paper describes how to convert inverted

list into interval list. General form of inverted index

have an effective index structure which require

minimum space and an efficient method to provide

keyword search.

REFERENCES

[1] M. Hadjieleftheriou, A. Chandel, N. Koudas, and

D. Srivastava, Fast indexes and algorithms for set

similarity selection queries, in Proc. of the 24th

InternationaL Conference on Data Engineering,

Cancun, Mexico, 2008, pp. 267-276.

[2] Hao Wu_, Guoliang Li, and Lizhu Zhou, gINIx,

TSINGHUA SCIENCE AND TECHNOLOGY,

ISSNl l1007-0214l l10/12l lpp77-87,Volume 18,

Number 1, February 2013.

[3] W. J. Bouknight, A procedure for generation of

threedimensional half-toned computer graphics

presentations, Communications of the ACM, vol.

13, no. 9, pp.527-536, September 1970.

[4] G. Li, B. C. Ooi, J. Feng, J.Wang, and L. Zhou,

EASE: An effective 3-in-1 keyword search method

for unstructured, semi-structured and structured

data, in Proc. of the ACM SIGMOD International

Conference on Management of Data, Vancouver,

BC, Canada, 2008, pp. 903-914.

[5] G. Li, J. Feng, and L. Zhou, Interactive search in

XML data, in Proc. of the 18th International

Conference on World Wide Web, Madrid, Spain,

2009, pp. 1063-1064.

[6] Manish Patil, Sharma V. Thankachan, Rahul Shah,

Inverted Indexes for Phrases and Strings,

Copyright 2011 ACM 978-1-4503-0757-4/11/07.





687

International Journal of Engineering Research & Technology (IJERT)

Vol. 3 Issue 1, January - 2014

IJ
E
R
T

IJ
E
R
T

ISSN: 2278-0181

www.ijert.orgIJERTV3IS10345

