
Learning Based Job Scheduling Algorithm Based

On Map Reduce Framework

Rohit Attri
Dept of Computer Science and Engineering

SRM University Kattankulathur

Chennai, India

A. Selva Kumar
Dept of Computer Science and Engineering

SRM University, Kattankulathur

Chennai, India

Abstract— MapReduce has become a popular paradigm for

large scale data processing in the cloud. The sheer scale of

MapReduce deployments make job scheduling in MapReduce an

interesting problem. The scale of MapReduce applications

presents unique opportunity to use data driven algorithms in

resource management. We present a learning based scheduler

that tries to allocate a task on a node if the incoming task does

not affect the tasks already running on that node.We propose an

approach which tries to find a good mix of jobs for each worker

node, and in turn decrease their runtime. In our model, the

scheduler is made aware of different types of jobs running on the

cluster. From the list of available pending tasks, our algorithm

selects the one that is most compatible with the tasks already

running on that node. We bring up machine learning based

solution to our approach and try to maintain a resource balance

on the cluster by not overloading any of the nodes, thereby

reducing the overall runtime of the jobs.

Keywords: Job Scheduling, Machine Learning,

MapReduce

I. INTRODUCTION

Since its introduction, MapReduce [4] has become a

standard programming model for large scale data analysis. It

has seen a tremendous growth in recent years especially for

text indexing, log processing, web crawling, data mining,

machine learning etc [3]. MapReduce is mainly used for batch

oriented jobs which tend to run for hours to days over a large

dataset on limited resources of the cluster. This makes Job

scheduling in MapReduce is an interesting problem, because

efficient job scheduling can significantly lower runtime, or

improve resource utilization. Both of the improvements result

in reducing costs maintaining the cost savings that the

providers expect.

Also Clouds are created to provide services to users;

therefore providers have to compensate for sharing their

resources and capabilities [1]. Because these computing

resources are limited, efficient resource allocation algorithms

for the cloud platforms are required. Efficient resource

allocation would help in reducing the number of virtual

machines used and in turn reduce the carbon footprint leading

to a lot of energy saving [2]. Scheduling in MapReduce is

analogous to this problem. The scheduling algorithms need to

be designed in a more intelligent way to avoid overloading

any node and utilize most of the resources on a particular

node. Thus, the runtime of the jobs could be lowered to a

greater extent leading to a lot of energy saving. This paper

deals with scheduling of jobs on MapReduce cluster without

degrading their runtime while still maintaining the cost

savings expected by the users.

In this paper, we propose an approach that takes into

account the compatibility of MapReduce tasks running on a

node of the cluster. The algorithm ensures that the

performance of an already running task will not be affected by

a new task. For this, the scheduler should be aware of the

resource usage information of each task running on the cluster.

We present a machine learning based approach for job

scheduling. The scheduling algorithm selects a task from the

list of pending tasks that is most compatible with the tasks

already running on the node.

II. KEY CONCEPTS IN HADOOP

To better understand our approach and the limitations of

current Hadoop schedulers, we now explain the key concepts

involved in Hadoop scheduling. Hadoop's MapReduce

implementation borrows much of its architecture from the

original MapReduce system at Google[4]. Figure 1 depicts the

architecture of Hadoop's MapReduce implementation.

Although the architecture is centralized, Hadoop is known to

scale well for small (single node) to very large (up to 4000

nodes) installations [5].

Scheduling decisions are taken by a master node (Job-

Tracker), whereas the worker nodes (TaskTrackers) are

responsible for task execution. The JobTracker keeps track of

the heartbeat messages received periodically from the

TaskTrackers and uses the information contained in them

while assigning tasks to the TaskTracker. If a heartbeat is not

received from a TaskTracker for a specified time interval, the

TaskTracker is assumed to be dead. In such a case, the

JobTracker re-launches all the incomplete tasks previously

assigned to the dead TaskTracker. Task assignments are sent

to the TaskTracker as a response to the heartbeat message. The

TaskTracker spawns each MapReduce task in a separate

process, in order to isolate itself from faults due to user code

in other tasks.

Fig. 1. shows the architecture of MapReduce in Hadoop.

The scheduler runs at JobTracker (Master Node) which

schedules the tasks of a particular job on various TaskTrackers

(TT).

1829

Vol. 3 Issue 3, March - 2014

International Journal of Engineering Research & Technology (IJERT)

IJ
E
R
T

IJ
E
R
T

ISSN: 2278-0181

www.ijert.orgIJERTV3IS031434

Fig. 1. Architecture of MapReduce in Hadoop

III. PROPOSED ALGORITHM

 Our algorithm runs at the JobTracker. Whenever a

heartbeat from a TaskTracker is received at the JobTracker,

the scheduler chooses a task from the MapReduce job that is

most compatible with the already running tasks. This

algorithm aims to maintain stability at node and cluster level

through clever scheduling of the tasks. The uniqueness of this

scheduler is its ability to take into account the resource usage

pattern of the job before its tasks are scheduled on the cluster.

 A task can be broadly classified into cpu-intensive,

memory-intensive, network-intensive and disk-intensive based

on its resource usage pattern. A task should be categorized as

a weighted-linear combination of parameters from each of

these categories that will describe the true nature of the tasks.

The complete nature of the task is represented through its

TaskVector Tv as given below

Tv = T cpu + T mem + T disk + T nw (1.)

Where Tx (x is cpu, mem, disk, nw) is a resource usage pattern

for cpu, memory, disk and network of a particular job

respectively.

 Whenever the JobTracker (master node) receives an

incoming job through the client, it queues the job into Pending

Job Queue (J).The Task Selection algorithm takes the pending

jobs from J and split it into map and reduce tasks.

 For scheduling any task of a particular job, the algorithm

calculates the TaskVector for the task. Each task has its own

Map-TaskVector (Tk-map) and Reduce-TaskVector (Tk-reduce)

that needs to be calculated. To calculate TaskVectors(Map-

TaskVector (Tk-map) and Reduce-TaskVector (Tk-reduce)), the

algorithm uses an event capturing mechanism on the

TaskTrackers which listens to events related to memory, disk,

network and cpu through ‘atop’ utility[6] to monitor resource

usage patterns of that task and creates a TaskVector. The

algorithm queues the map/reduce tasks into the TaskQueue.

This queue is filled up with the tasks asynchronously as the

new jobs arrive at the JobTracker. This task queue acts as the

input to the algorithm. The algorithm picks up the task taskk in

FIFO manner. This taskk is is submitted to the Task Assignment

algorithm along with TT details to be approved for its

scheduling.

 The task assignment algorithm decides if a task can be

assigned on a particular TaskTracker or not. The main aim of

this algorithm is to avoid overloading any of the TaskTrackers

by meticulous scheduling of only compatible tasks on a

particular node. Compatible task means task that does not

affect already running tasks on that node. We present a

machine learning approach for compatibility checking.

A. Compatibility Checker using Machine Learning

A machine learning based approach of the algorithm is

presented for checking the compatibility of incoming task on a

particular TaskTracker. An automatically supervised

Incremental Naive-Baye’s classifier is used for this puspose.

Whenever the TaskSelection algorithm checks for the

compatibility of a task on a TaskTracker, the algorithm

computes the compatibility through the outcome of the

classifier. A Naive-Bayes classifier is a simple probabilistic

classifier based on applying Baye's Theorem with strong

(naive) independence assumptions. The classifier is trained on

the basis of Hardware specifications of TaskTrackers (Φ),

TaskVector of Incoming Task (Tv), and TaskVectors of tasks

running on the TaskTracker (Tcompound(i)).

Tcompound(i) = T1 + T2+….+Tn (2.)

where n is the number of tasks currently running on the

TaskTracker.

1. TaskAssignment(task, TT)

2. Φ = getHardwareSpecifications(T)

3. Σ = getNetworkDistance(taskk , TT)

4. T = getTaskVector(taskk)

5. Tcompound=getVectorsOfTasksOnTaskTracker(TT)

6. compatibility = classifier(taskk , {Φ, Σ, Tv , Tcompound

})

7. if compatibility ≥ Cml then

8. return TRUE

9. else

10. return FALSE

11. end

Fig. 2. The Task Assignment Algorithm based on the Machine

Learning Approach

taskk = compatible denotes the event that the taskk would

be compatible with the other tasks running on TT. The

probability P(taskk = compatible|F) is conditional on the

feature set F. The classifier uses the prior knowledge

accumulated to make decisions for the compatibility of a task.

To achieve this, the posterior probability P(taskk =

compatible|F) is computed using Bayes theorem:

P (taskk = compatible | F) = (P(F|taskk=compatible)

 × P (taskk = compatible)) / P(F) (3.)

The quantity P (F |taskk = compatible) thus becomes:

P (F |taskk = compatible) =P (f1 , f2 , ..f4 |taskk = compatible)
 (4.)

where f1 , f2 , ..f4 are the features of the classifier ({Φ, Σ, T k ,

T compound (i)}). Assume that all the features are

independent of each other (Naive-Bayes assumption). Thus,

1830

Vol. 3 Issue 3, March - 2014

International Journal of Engineering Research & Technology (IJERT)

IJ
E
R
T

IJ
E
R
T

ISSN: 2278-0181

www.ijert.orgIJERTV3IS031434

P(F|taskk=compatible)=

 (5.)

The above equation is the foundation of learning in the

classifier. The classifier uses results of the decisions made in

the past to make the current decision. This is achieved by

keeping track of past decisions and their outcomes in the form

of posterior probabilities. If this posterior probability is greater

than or equal to the administrator configured Minimum

Acceptance Probability Cml , then the taskk is considered for

scheduling on T Ti (algorithm). The overload rule can be

configured based on the user requirements. For example, if the

jobs are known to be memory intensive, then memory

utilization can be used in deciding node overload.

The overload rules are used to supervise the classifier. But

learning in our algorithm is automatically supervised as this

process is completely automated. The overload rules are only

required so that they can correctly identify given state of a

node as being overloaded or underloaded.

Fig. 3. Task Selection algorithm: The received task is tested

for compatibility on a Incremental Naive-Baye’s classifier

IV. EVALUATION AND RESULTS

We now discuss the implementation, discuss the results of

the experiments conducted and compare the results with

existing Hadoop scheduler. The scheduler used as a baseline

for testing is Yahoo’s Capacity scheduler[7] which has

minimal resource awareness.

A. Testing Environment

The testing environment comprises of 16 nodes(1 master

and 15 slaves). One of the node was designated as the master

node which ran JobTracker and NameNode, whereas the

remaining 15 nodes were worker nodes which ran

TaskTrackers and DataNodes. The nodes were interconnected

with a gigabit Ethernet switch. All of the nodes had Intel Quad

Core, 2.4 GHzCPUs, with a hard disk capacity ranging from

160 GB to 1 TB, and 4 to 8 GB RAM. All of the nodes were

installed with Ubuntu Linux 12.04v OS and JAVA 1.7.0_6.

B. Experiments Description

Table 1 provides the the Hadoop and algorithms

description for testing our algorithm. Experiments were

conducted on jobs like wordcount, Maximumtemperature, file

conversions and terasort .

HDFS Block Size 64 MB

Heartbeat Interval 3 sec

Speculative execution Enabled

Number of map slots per node 4

Number of reduce slots per node 2

Replication Factor 3

Number of queues in Capacity scheduler 3

Cluster resources allocated for each queue in

Capacity scheduler

33.3%

Maximum Acceptance Probabilty 0.50

Table1. Hadoop And Algorithm Parameters

To compare our algorithm with the capacity scheduler, we

have based our experiments on runtime of jobs and resource

usage. Fig. 4 shows the comparison on the basis of runtime of

the jobs between the capacity scheduler and machine learning

algorithm. The overall runtime of the jobs is compared by

varying the number of input jobs submitted to the scheduler.

The experiments are expected to provide approximately 25%

saving in overall runtime in machine learning approach when

compared to Capacity scheduler. The amount of savings also

depends on the number of jobs given to the cluster. As the

number of jobs increase, the savings in the overall runtime

also increase.

Fig. 4. Comparison of runtime(in hours) of the jobs between

Capacity Scheduler and Machine learning based algorithm.
We also present the effect of the algorithm on the basis of

cpu usage of the TaskTracker. A random TaskTracker was

monitored for its resource requirements. Figure 4 shows

comparison of cpu requirement on a TaskTracker between

capacity scheduler and machine learning based scheduler.

1831

Vol. 3 Issue 3, March - 2014

International Journal of Engineering Research & Technology (IJERT)

IJ
E
R
T

IJ
E
R
T

ISSN: 2278-0181

www.ijert.orgIJERTV3IS031434

From figure 5, we can deduce that the cpu requirements for

the tasks running on the TaskTracker with capacity scheduler

reaches upto 250% (resource requirement but not resource

usage) whereas the cpu requirement remains below 100% in

case of machine learning based algorithm except surges. This

is because of the un-awareness of jobs in capacity scheduler.

Figure 5. Comparison of cpu requirement on a TaskTracker

between Capacity and Machine learning based algorithm.

V. RELATED WORK

 In [4], the authors discuss the initial work representing

MapReduce. Their work only discusses resource management.

Hadoop’s architecture [8] is inspired by their work. They also

mention data execution and speculative execution i.e. re-

execution of slow-tasks results in up to 40% improvement in

response times. But they do not discuss ways to improve

utilization on a cluster.

In [9], authors discuss a self-adaptive MapReduce

scheduling algorithm which tries to classify the nodes to map-

slow and reduce-slow nodes by using historical information.

Whenever a task is found to be running slowly, the algorithm

selects slow tasks and launches backup tasks accordingly on a

faster node. In our approach, we try to understand the task

compatibility on a node before a task is scheduled to avoid

‘slow task’ condition for that particular task on a node. And

after a task is scheduled on a particular node, we try to

monitor that node for overload condition and re-train the

classifier accordingly to enhance decision making in future.

In [10], [11], the authors discussed about Bayesian

Learning that has been used effectively in dealing with

uncertainty in shared cluster environments .The authors have

used a bayesian decision network (BDN) to handle the

conditional dependence between different factors involved in a

load balancing problems. Dynamic Bayesian Networks [12]

have been used for load balancing as well. The similarity

between their and our approach is the use of Bayesian

inference. However whereas the authors in [11] have used a

BDN, we use a Naive Bayes classifier, where all factors

involved in making the decision are assumed to be

conditionally independent of each other.

In [13], the authors have shown how MapReduce

framework can be leveraged to run heterogeneous sets of

workloads, including accelerated and non-accelerated

applications, on top of heterogeneous clusters, composed of

regular nodes and accelerator-enabled systems. The authors

propose ‘adaptive scheduler’ which provides dynamic

resource allocation across jobs, hardware affinity when

possible, and would even be able to spread jobs’ tasks across

accelerated and non-accelerated nodes in order to meet

performance goals in extreme conditions.

In [17], [18], [19], the authors discussed about Stochastic

Learning Automata that have been used in load balancing.

Learning automata learn through rewards and penalties which

are awarded after successful and unsuccessful decisions

respectively. However, whereas the authors have focused on

conventional load balancing and process migration, we

concentrate on task assignment for better job scheduling on

the nodes of the clusters.

Existing Hadoop schedulers FAIR, Capacity, and Dynamic

property [15, 7, and 16] offer very limited support for

admission control. Existing schedulers have very little

information regarding resource usage pattern of nodes. Thus,

our work focuses on gathering much needed resource

information on each node and thus uses that information in our

learning so that tasks can be scheduled to the node on which it

will be most compatible

VI. CONCLUSION

In this paper, we presented a scheduling algorithm that

schedules tasks on a TaskTracker if it do not affect the normal

execution of already running tasks on that TaskTracker. We

discussed the benefits of having information about task and

every node on the cluster. In this paper, we proposed machine

learning based scheduling algorithm that selects the tasks that

is best suited on a particular node. This algorithm aims to

avoid overloading any node on the cluster and utilize

maximum resources on a particular node thereby decreasing

overall runtime of the jobs.

ACKNOWLEDGMENT

I would like to thank my guide A. Selva Kumar , Dept of
Computer Science and Engineering for his able guidance,
effort and encouragement toward the entire period when this
work was in progress .

REFERENCES

[1] Rajkumar Buyya, Chee Shin Yeo, Srikumar Venugopal, JamesBroberg,

and Ivona Brandic. Cloud computing and emerging IT platforms:
Vision, hype, and reality for delivering computing as the 5th utility.
Future Generation Computer Systems,25(6):599 – 616, 2009.

[2] Nitesh Maheshwari, Radheshyam Nanduri, and Vasudeva Varma.
Dynamic energy efficient data placement and cluster reconfiguration
algorithm for mapreduce framework. Future Generation Computer
Systems, 28(1):119 – 127, 2012

[3] Jaideep Dhok, Nitesh Maheshwari, and Vasudeva Varma. Learning
based opportunistic admission control algorithm for mapreduce as a
service. In ISEC ’10: Proceedings of the3rd India software engineering
conference, pages 153–160. ACM, 2010.

[4] Jeffrey Dean and Sanjay Ghemawat. Mapreduce: simplified data
processing on large clusters. Commun. ACM, 51(1):107–113, 2008.

[5] Scaling Hadoop to 4000 nodes at Yahoo!

1832

Vol. 3 Issue 3, March - 2014

International Journal of Engineering Research & Technology (IJERT)

IJ
E
R
T

IJ
E
R
T

ISSN: 2278-0181

www.ijert.orgIJERTV3IS031434

http://developer.yahoo.net/blogs/hadoop/2008/09/scaling_hadoop_to_40
00_nodes_a.html.

[6] ‘Atop’ utility. http://www.atoptool.nl/.

[7] Capacity Scheduler. http://.apache.org/common/docs/r0.20.2/capacity
scheduler.html

[8] Apache Hadoop. http://hadoop.apache.org.

[9] Quan Chen, Daqiang Zhang, Minyi Guo, Qianni Deng, and Song Guo.
Samr: A self-adaptive mapreduce scheduling algorithm in heterogeneous
environment. In Computer andInformation Technology (CIT), 2010
IEEE 10th InternationalConference on, 29 2010.

[10] Quan Chen, Daqiang Zhang, Minyi Guo, Qianni Deng, and Song Guo.
Samr: A self-adaptive mapreduce scheduling algorithm in heterogeneous
environment. In Computer andInformation Technology (CIT), 2010
IEEE 10th InternationalConference on, 29 2010.

[11] Quan Chen, Daqiang Zhang, Minyi Guo, Qianni Deng, and Song Guo.
Samr: A self-adaptive mapreduce scheduling algorithm in heterogeneous
environment. In Computer andInformation Technology (CIT), 2010
IEEE 10th InternationalConference on, 29 2010.

[12] Quan Chen, Daqiang Zhang, Minyi Guo, Qianni Deng, and Song Guo.
Samr: A self-adaptive mapreduce scheduling algorithm in heterogeneous
environment. In Computer andInformation Technology (CIT), 2010
IEEE 10th InternationalConference on, 29 2010.

[13] J. Polo, D. Carrera, Y. Becerra, V. Beltran, J. Torres, and E. Ayguade
and. Performance management of accelerated mapreduce workloads in
heterogeneous clusters. In Parallel Processing (ICPP), 2010 39th
International Conference on, pages 653 –662, 2010.

[14] Harry Zhang. The Optimality of Naive Bayes. In Valerie Barr and
Zdravko Markov, editors, FLAIRS Conference. AAAI Press, 2004.

[15] Fair Scheduler. http://hadoop.apache.org/common/docs/r0.20.2/fair
scheduler.html

[16] Dynamic Priority Scheduler for Hadoop. http://issues.apache
.org/jira/browse/HADOOP-4768.

[17] AmyW. Apon, Thomas D.Wagner, and LawrenceW. Dowdy. A
learning approach to processor allocation in parallel systems. In CIKM
’99: Proceedings of the eighth international conference on Information
and knowledge management, pages 531–537, New York, NY, USA,
1999. ACM.

[18] T. Kunz. The Learning Behaviour of a Scheduler using a Stochastic
Learning Automation. Technical report, Citeseer.

[19] T. Kunz. The influence of different workload descriptions on a heuristic
load balancing scheme. IEEE Transactions on Software Engineering,
17(7):725–730, 1991.

1833

Vol. 3 Issue 3, March - 2014

International Journal of Engineering Research & Technology (IJERT)

IJ
E
R
T

IJ
E
R
T

ISSN: 2278-0181

www.ijert.orgIJERTV3IS031434

