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Abstract— MapReduce has become a popular paradigm for 

large scale data processing in the cloud. The sheer scale of 

MapReduce deployments make job scheduling in MapReduce an 

interesting problem. The scale of MapReduce applications 

presents unique opportunity to use data driven algorithms in 

resource management. We present a learning based scheduler 

that tries to allocate a task on a node if the incoming task does 

not affect the tasks already running on that node.We propose an 

approach which tries to find a good mix of jobs for each worker 

node, and in turn decrease their runtime. In our model, the 

scheduler is made aware of different types of jobs running on the 

cluster. From the list of available pending tasks, our algorithm 

selects the one that is most compatible with the tasks already 

running on that node. We bring up machine learning based 

solution to our approach and try to maintain a resource balance 

on the cluster by not overloading any of the nodes, thereby 

reducing the overall runtime of the jobs. 

Keywords: Job Scheduling, Machine Learning, 

MapReduce 

I.  INTRODUCTION  

Since its introduction, MapReduce [4] has become a 

standard programming model for large scale data analysis. It 

has seen a tremendous growth in recent years especially for 

text indexing, log processing, web crawling, data mining, 

machine learning etc [3]. MapReduce is mainly used for batch 

oriented jobs which tend to run for hours to days over a large 

dataset on limited resources of the cluster. This makes Job 

scheduling in MapReduce is an interesting problem, because 

efficient job scheduling can significantly lower runtime, or 

improve resource utilization. Both of the improvements result 

in reducing costs maintaining the cost savings that the 

providers expect.  

Also Clouds are created to provide services to users; 

therefore providers have to compensate for sharing their 

resources and capabilities [1]. Because these computing 

resources are limited, efficient resource allocation algorithms 

for the cloud platforms are required. Efficient resource 

allocation would help in reducing the number of virtual 

machines used and in turn reduce the carbon footprint leading 

to a lot of energy saving [2]. Scheduling in MapReduce is 

analogous to this problem. The scheduling algorithms need to 

be designed in a more intelligent way to avoid overloading 

any node and utilize most of the resources on a particular 

node. Thus, the runtime of the jobs could be lowered to a 

greater extent leading to a lot of energy saving. This paper 

deals with scheduling of jobs on MapReduce cluster without 

degrading their runtime while still maintaining the cost 

savings expected by the users.   

In this paper, we propose an approach that takes into 

account the compatibility of MapReduce tasks running on a 

node of the cluster. The algorithm ensures that the 

performance of an already running task will not be affected by 

a new task. For this, the scheduler should be aware of the 

resource usage information of each task running on the cluster. 

We present a machine learning based approach for job 

scheduling. The scheduling algorithm selects a task from the 

list of pending tasks that is most compatible with the tasks 

already running on the node. 

II. KEY CONCEPTS IN HADOOP 

To better understand our approach and the limitations of 

current Hadoop schedulers, we now explain the key concepts 

involved in Hadoop scheduling. Hadoop's MapReduce 

implementation borrows much of its architecture from the 

original MapReduce system at Google[4]. Figure 1 depicts the 

architecture of Hadoop's MapReduce implementation. 

Although the architecture is centralized, Hadoop is known to 

scale well for small (single node) to very large (up to 4000 

nodes) installations [5]. 

Scheduling decisions are taken by a master node (Job-

Tracker), whereas the worker nodes (TaskTrackers) are 

responsible for task execution. The JobTracker keeps track of 

the heartbeat messages received periodically from the 

TaskTrackers and uses the information contained in them 

while assigning tasks to the TaskTracker. If a heartbeat is not 

received from a TaskTracker for a specified time interval, the 

TaskTracker is assumed to be dead. In such a case, the 

JobTracker re-launches all the incomplete tasks previously 

assigned to the dead TaskTracker. Task assignments are sent 

to the TaskTracker as a response to the heartbeat message. The 

TaskTracker spawns each MapReduce task in a separate 

process, in order to isolate itself from faults due to user code 

in other tasks. 

Fig. 1. shows the architecture of MapReduce in Hadoop. 

The scheduler runs at JobTracker (Master Node) which 

schedules the tasks of a particular job on various TaskTrackers 

(TT).  

   

1829

Vol. 3 Issue 3, March - 2014

International Journal of Engineering Research & Technology (IJERT)

IJ
E
R
T

IJ
E
R
T

ISSN: 2278-0181

www.ijert.orgIJERTV3IS031434



 
Fig. 1.  Architecture of MapReduce in Hadoop 

III. PROPOSED ALGORITHM 

   Our algorithm runs at the JobTracker. Whenever a 

heartbeat from a TaskTracker is received at the JobTracker, 

the scheduler chooses a task from the MapReduce job that is 

most compatible with the already running tasks. This 

algorithm aims to maintain stability at node and cluster level 

through clever scheduling of the tasks. The uniqueness of this 

scheduler is its ability to take into account the resource usage 

pattern of the job before its tasks are scheduled on the cluster. 

   A task can be broadly classified into cpu-intensive, 

memory-intensive, network-intensive and disk-intensive based 

on its resource usage pattern. A task should be categorized as 

a weighted-linear combination of parameters from each of 

these categories that will describe the true nature of the tasks. 

The complete nature of the task is represented through its 

TaskVector Tv as given below 

 

Tv  = T cpu + T mem  + T disk + T nw  (1.) 

 

Where Tx (x is cpu, mem, disk, nw) is a resource usage pattern 

for cpu, memory, disk and network of a particular job 

respectively. 

   Whenever the JobTracker (master node) receives an 

incoming job through the client, it queues the job into Pending 

Job Queue (J).The Task Selection algorithm takes the pending 

jobs from J and split it into map and reduce tasks.  

   For scheduling any task of a particular job, the algorithm 

calculates the TaskVector for the task. Each task has its own 

Map-TaskVector (Tk-map) and Reduce-TaskVector (Tk-reduce) 

that needs to be calculated. To calculate TaskVectors(Map-

TaskVector (Tk-map) and Reduce-TaskVector (Tk-reduce)), the 

algorithm uses an event capturing mechanism on the 

TaskTrackers which listens to events related to memory, disk, 

network and cpu through ‘atop’ utility[6] to monitor resource 

usage patterns of that task and creates a TaskVector. The 

algorithm queues the map/reduce tasks into the TaskQueue. 

This queue is filled up with the tasks asynchronously as the 

new jobs arrive at the JobTracker. This task queue acts as the 

input to the algorithm. The algorithm picks up the task taskk in 

FIFO manner. This taskk is is submitted to the Task Assignment 

algorithm along with TT details to be approved for its 

scheduling. 

   The task assignment algorithm decides if a task can be 

assigned on a particular TaskTracker or not. The main aim of 

this algorithm is to avoid overloading any of the TaskTrackers 

by meticulous scheduling of only compatible tasks on a 

particular node. Compatible task means task that does not 

affect already running tasks on that node. We present a 

machine learning approach for compatibility checking. 

A. Compatibility Checker using Machine Learning 

A machine learning based approach of the algorithm is 

presented for checking the compatibility of incoming task on a 

particular TaskTracker. An automatically supervised 

Incremental Naive-Baye’s classifier is used for this puspose. 

Whenever the TaskSelection algorithm checks for the 

compatibility of a task on a TaskTracker, the algorithm 

computes the compatibility through the outcome of the 

classifier. A Naive-Bayes classifier is a simple probabilistic 

classifier based on applying Baye's Theorem with strong 

(naive) independence assumptions. The classifier is trained on 

the basis of Hardware specifications of TaskTrackers (Φ), 

TaskVector of Incoming Task (Tv), and TaskVectors of tasks 

running on the TaskTracker (Tcompound(i)). 

 

Tcompound(i)  =  T1 + T2+….+Tn  (2.) 

 

where n is the number of tasks currently running on the  

TaskTracker. 

 

   

1. TaskAssignment(task, TT) 

2. Φ = getHardwareSpecifications(T) 

3. Σ = getNetworkDistance(taskk , TT)  

4. T = getTaskVector(taskk ) 

5. Tcompound=getVectorsOfTasksOnTaskTracker(TT)  

6. compatibility = classifier(taskk , {Φ, Σ, Tv , Tcompound 

})  

7. if compatibility ≥ Cml then  

8.  return TRUE  

9. else  

10.  return FALSE  

11. end  

Fig. 2. The Task Assignment Algorithm based on the Machine 

Learning Approach 

taskk = compatible denotes the event that the taskk would 

be compatible with the other tasks running on TT. The 

probability P(taskk = compatible|F) is conditional on the 

feature set F. The classifier uses the prior knowledge 

accumulated to make decisions for the compatibility of a task. 

To achieve this, the posterior probability P(taskk = 

compatible|F) is computed using Bayes theorem: 

 

P (taskk = compatible | F )  =  (P(F|taskk=compatible)

 × P (taskk = compatible)) / P(F)  (3.) 

  

The quantity P (F |taskk = compatible) thus becomes:  

 

P (F |taskk = compatible) =P (f1 , f2 , ..f4 |taskk = compatible) 
      (4.) 

 

where f1 , f2 , ..f4  are the features of the classifier ({Φ, Σ, T k , 

T compound (i)}). Assume that all the features are 

independent of each other (Naive-Bayes assumption). Thus,    
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P(F|taskk=compatible)=  

   (5.) 

 

The above equation is the foundation of learning in the 

classifier. The classifier uses results of the decisions made in 

the past to make the current decision. This is achieved by 

keeping track of past decisions and their outcomes in the form 

of posterior probabilities. If this posterior probability is greater 

than or equal to the administrator configured Minimum 

Acceptance Probability Cml , then the taskk is considered for 

scheduling on T Ti  (algorithm). The overload rule can be 

configured based on the user requirements. For example, if the 

jobs are known to be memory intensive, then memory 

utilization can be used in deciding node overload. 

The overload rules are used to supervise the classifier. But 

learning in our algorithm is automatically supervised as this 

process is completely automated. The overload rules are only 

required so that they can correctly identify given state of a 

node as being overloaded or underloaded. 

 
Fig. 3. Task Selection algorithm: The received task is tested 

for compatibility on a Incremental Naive-Baye’s classifier 

 

IV. EVALUATION AND RESULTS 

We now discuss the implementation, discuss the results of 

the experiments conducted and compare the results with 

existing Hadoop scheduler. The scheduler used as a baseline 

for testing is Yahoo’s Capacity scheduler[7] which has 

minimal resource awareness. 

A. Testing Environment 

The testing environment comprises of 16 nodes(1 master 

and 15 slaves). One of the node was designated as the master 

node which ran JobTracker and NameNode, whereas the 

remaining 15 nodes were worker nodes which ran 

TaskTrackers and DataNodes. The nodes were interconnected 

with a gigabit Ethernet switch. All of the nodes had Intel Quad 

Core, 2.4 GHzCPUs, with a hard disk capacity ranging from 

160 GB to 1 TB, and 4 to 8 GB RAM. All of the nodes were 

installed with Ubuntu Linux 12.04v OS and JAVA 1.7.0_6. 

B. Experiments Description 

Table 1 provides the the Hadoop and algorithms 

description for testing our algorithm. Experiments were 

conducted on jobs like wordcount, Maximumtemperature, file 

conversions and terasort . 

HDFS Block Size 64 MB 

Heartbeat Interval 3 sec 

Speculative execution Enabled 

Number of map slots per node 4 

Number of reduce slots per node 2 

Replication Factor 3 

Number of queues in Capacity scheduler 3 

Cluster resources allocated for each queue in 

Capacity scheduler 

33.3% 

Maximum Acceptance Probabilty 0.50 

Table1. Hadoop And Algorithm Parameters 

To compare our algorithm with the capacity scheduler, we 

have based our experiments on runtime of jobs and resource 

usage. Fig. 4 shows the comparison on the basis of runtime of 

the jobs between the capacity scheduler and machine learning 

algorithm. The overall runtime of the jobs is compared by 

varying the number of input jobs submitted to the scheduler. 

The experiments are expected to provide approximately 25% 

saving in overall runtime in machine learning approach when 

compared to Capacity scheduler. The amount of savings also 

depends on the number of jobs given to the cluster. As the 

number of jobs increase, the savings in the overall runtime 

also increase. 

 
Fig. 4. Comparison of runtime(in hours) of the jobs between 

Capacity Scheduler and Machine learning based algorithm. 
We also present the effect of the algorithm on the basis of 

cpu usage of the TaskTracker. A random TaskTracker was 

monitored for its resource requirements. Figure 4 shows 

comparison of cpu requirement on a TaskTracker between 

capacity scheduler and machine learning based scheduler.  
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From figure 5, we can deduce that the cpu requirements for 

the tasks running on the TaskTracker with capacity scheduler 

reaches upto 250% (resource requirement but not resource 

usage) whereas the cpu requirement remains below 100% in 

case of machine learning based algorithm except surges. This 

is because of the un-awareness of jobs in capacity scheduler.  

 
Figure 5. Comparison of cpu requirement on a TaskTracker 

between Capacity and Machine learning based algorithm. 

 

V. RELATED WORK 

    In [4], the authors discuss the initial work representing 

MapReduce. Their work only discusses resource management. 

Hadoop’s architecture [8] is inspired by their work. They also 

mention data execution and speculative execution  i.e. re-

execution of slow-tasks results in up to 40% improvement in 

response times. But they do not discuss ways to improve 

utilization on a cluster.  

In [9], authors discuss a self-adaptive MapReduce 

scheduling algorithm which tries to classify the nodes to map-

slow and reduce-slow nodes by using historical information. 

Whenever a task is found to be running slowly, the algorithm 

selects slow tasks and launches backup tasks accordingly on a 

faster node. In our approach, we try to understand the task 

compatibility on a node before a task is scheduled to avoid 

‘slow task’ condition for that particular task on a node. And 

after a task is scheduled on a particular node, we try to 

monitor that node for overload condition and re-train the 

classifier accordingly to enhance decision making in future. 

In [10], [11], the authors discussed about Bayesian 

Learning that has been used effectively in dealing with 

uncertainty in shared cluster environments .The authors have 

used a bayesian decision network (BDN) to handle the 

conditional dependence between different factors involved in a 

load balancing problems. Dynamic Bayesian Networks [12] 

have been used for load balancing as well. The similarity 

between their and our approach is the use of Bayesian 

inference. However whereas the authors in [11] have used a 

BDN, we use a Naive Bayes classifier, where all factors 

involved in making the decision are assumed to be 

conditionally independent of each other.  

In [13], the authors have shown how MapReduce 

framework can be leveraged to run heterogeneous sets of 

workloads, including accelerated and non-accelerated 

applications, on top of heterogeneous clusters, composed of 

regular nodes and accelerator-enabled systems. The authors 

propose ‘adaptive scheduler’ which provides dynamic 

resource allocation across jobs, hardware affinity when 

possible, and would even be able to spread jobs’ tasks across 

accelerated and non-accelerated nodes in order to meet 

performance goals in extreme conditions. 

In [17], [18], [19], the authors discussed about Stochastic 

Learning Automata that have been used in load balancing. 

Learning automata learn through rewards and penalties which 

are awarded after successful and unsuccessful decisions 

respectively. However, whereas the authors have focused on 

conventional load balancing and process migration, we 

concentrate on task assignment for better job scheduling on 

the nodes of the clusters. 

Existing Hadoop schedulers FAIR, Capacity, and Dynamic 

property [15, 7, and 16] offer very limited support for 

admission control. Existing schedulers have very little 

information regarding resource usage pattern of nodes. Thus, 

our work focuses on gathering much needed resource 

information on each node and thus uses that information in our 

learning so that tasks can be scheduled to the node on which it 

will be most compatible 

 

VI. CONCLUSION 

In this paper, we presented a scheduling algorithm that 

schedules tasks on a TaskTracker if it do not affect the normal 

execution of already running tasks on that TaskTracker. We 

discussed the benefits of having information about task and 

every node on the cluster. In this paper, we proposed machine 

learning based scheduling algorithm that selects the tasks that 

is best suited on a particular node. This algorithm aims to 

avoid overloading any node on the cluster and utilize 

maximum resources on a particular node thereby decreasing 

overall runtime of the jobs.  
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