
Lexi Con-Text Understanding the Context of a

Sentence

Raj Kotadia

Dept. of Information Technology

Vidyavardhini’s College of

University of Mumbai

Mumbai, India

Akash Rajpurohit

Dept. of Information Technology

Vidyavardhini’s College of

University of Mumbai

Mumbai, India

Abhay Tank

Dept. of Information Technology

Vidyavardhini’s College of

University of Mumbai

Mumbai, India

Abstract—Natural Language Processing is one of the evolving

fields given the ever growing amount of textual data and the
need to analyze it. One of the important aspects of Natural Lan-
guage Processing is computing the similarity between different
sentences. Sentence similarity task has wide applications ranging
from AI and chat bots to Plagiarism Analysis as well as for
removal of duplicate entries. Although it has many applications
the different approaches that exists to compare sentences are
very naive, most to these methods compute similarity based on
common keywords between them. Such a method tends to falter
in most cases apart from having very less accuracy. It is essential
to also consider the semantics of the sentences apart from
matching keywords while making the comparison. We propose
an approach for comparing the sentences by considering their
underlying context. The comparison is made based on syntactic
as well as semantic analysis of the sentences through the use of
word embeddings to give better results.

Index Terms—Natural Language Processing, sentence similar-
ity, word embeddings, vectorization

I. INTRODUCTION

Natural Language Processing, also known as NLP, is one
the advancing fields in Computer Science whose applications
range over a variety of use cases. NLP falls under the category
of AI which is the ability of computers to understand human
language. One of the prime domains of NLP is sentence
similarity which is still in its evolving phase. The application
in focus for this paper is the comparison between sentences
to check for similarity between them. Computers generally
require us humans to ”talk” to them in terms of a programming
language that is unambiguous, precise and highly structured,
or through clearly defined voice commands in order to carry
out a certain task. However,the human speech is generally not
so precise; it is often tends to be ambiguous and the linguistic
structure can depend on many complex parameters. Apart from
that the textual data that prevails is semi-structured in nature,
a computer cannot interpret it as it is. This textual data is
to be converted into a form which enables the computers to
understand it and make sense out of it.

Given the above complications, the methods available are
naive as they only compare sentences based on the common
keywords they contain. Such methods do not take the underly-
ing meaning into consideration while comparing the sentences.

That is they only make syntactic comparisons. It might so
happen that the sentences in question contain similar words but
have a completely different context. To counter these problems
our proposed algorithm effectively helps in finding out the
similarity among various sentences by enabling computers to
have a deep sense of understanding about the sentences they
are dealing with. The algorithm will measure the similarity
based on syntactic analysis while considering the semantics of
the sentence as well. The algorithm employs a method which
makes use of tokenization, parts of speech tagging and word
embeddings for an effective representation of words in vector
space to extract a more precise meaning out of each of the
words and then make the necessary comparison.

With recent advancements in AI it is possible to develop
such models which helps in making a computer understand the
natural language and extract information from it. The idea is
to develop such an algorithm which takes a pair of sentences
as input and then computes the similarity between them to
produce the output in a percentage format.

II. RELATED WORK

Multitudinous research work has been done in the field of
NLP with fair degree of implementation. In this section, we
study and understand the modules which were referred for our
algorithm. These practices could be utilized and combined to
generate an algorithm with other approaches, methodologies
and objectives. The related work covers the articles and
papers with different problem statements and their solution
and modules which were relevant to our algorithm or had
approaches which were statistically and tactically appropriate
for workflow of current algorithm.

Modular approach was implemented in [1] where sentence
breakdown was performed based on three layers.

1) Shallow Layer - Tokenization.
2) Syntactic Layer - Checking the grammar
3) Semantic Layer - Checking the Semantics
• In Shallow layer lexical analysis, stop words removal and

name entity recognizing is performed. Here tokens are

International Journal of Engineering Research & Technology (IJERT)

ISSN: 2278-0181

Published by, www.ijert.org

NTASU - 2020 Conference Proceedings

Volume 9, Issue 3

Special Issue - 2021

473

www.ijert.org

created and only relevant information is considered for
further text processing.

• In Syntactic layer after NER is generated, relations and
directed graphs are created.

• In Frame layer, all the entities and actors and their roles
in the sentence are recognized. This is termed as Actor
annotation and verbs are considered as their actions.

Next paper was presented by Emil Brajkovic and Daniel
Vasic [2] is based on a system for evaluating answers for a
Tutoring System. Yahoo Question and Answer dataset was
used for their research. This research conducted was based
on sets. A sets of concepts, relations was extracted from
a sentences or a paragraph. This sets were then combined
to generate a new set called proposition. Collection of this
propositions is called Domain Knowledge. Next new sets i.e.
Questions and Answers were extracted form this propositions.
For measuring similarity between sequences, Levenshtein
distance algorithm was used but was infirm. Approach
proposed by authors is consider distances between sentence
structure using constituency based parse tree and contextual
information using Word2Vec representation.The constituency
parse tree was nothing but tree based representation of entities
and their attributes. Also they focused on a custom tree called
Knowledge tree and its performance against well known
algorithms.

Paper [3] is the study of word embedding in vector
space. Paper was proposed by the founders of Word2Vec
and is about foundations of Word2Vec tool. Here continuous
vector presentations can be computed using two architectures
which are proposed in paper. Machine learning models were
used to get Word Embeddings. The model is trained using 1.6
billion words dataset. The generated word embeddings are
then used to perform linear algebra which helps in Natural
language Processing. Continuous Bag of Words and Skip
Gram are the two models which are used to generate Word
Vectors. The implementation of these concepts are shown in
[4].

Another paper [4] present the significance of Natural
Language Toolkit for the course of Computational Linguistics
and for logical research in the same field. It focuses on usage
of NLTK toolkit for natural language processing. NLTK is a
python based library that provides multiple tools and modules
such as corpus which are nothing but linguistic corpora, tools
for processing strings, tagging part-of-speech, ML, parsing and
chunking, semantic interpretation, estimation of probability
etc. NLTK provides a huge documentation for users as well as
instructors with details of each and every method or module.
Also community utilizing NLTK library has a active user base.

A summary generation mechanism from multiple documents
as sources using similarity between sentences [5]. This
approach was taken by the authors to eliminate the redundant
sentences in the context of their meaning. Since the

summarization totally was dependent on graph, edges of
the graph depicts how similar the sentences are. Authors
differentiate between similarity algorithm Cosine Similarity
and their proposed similarity algorithm where rather than
considering words in global context they check the most
expected sub-sequences. For similarity measurement and
summarization they use this methodology to find the most
subsequent pairs of words.

To gain more insight about the impact of grammar and
spell checking on similarity computation, [6] present two
modules, Spell Checker and Grammar Checker. Spell checker
checks two things, whether the word exists or not and if
miss-spelled then error detection by dictionary lookup and
n-gram technique is used to find and correct errors. In
grammar checking module tensed based grammar checking
and correction is done. Spell correction is done on the basis
of frequency of the prefix, word is suggested and considered.

Distributional semantics is a methodology for computing
differences between linguistic items. [7] DSMs are used to
group words based upon the company it keeps. The article is
based upon Question and Answer with ranking the answers
which is most relative to Question. Representation of DSMs
are in vector space domain.

III. IMPLEMENTATION

Based on the above literature survey it becomes obvious
that it is necessary for making the computer understand the
context of different words so that the comparison task can then
be easily carried out. The algorithm implementation revolves
around preparing a dataset, preprocessing the inputs, preparing
the word embeddings and then calculating the similarity.

Fig. 1. Algorithm flowchart.

International Journal of Engineering Research & Technology (IJERT)

ISSN: 2278-0181

Published by, www.ijert.org

NTASU - 2020 Conference Proceedings

Volume 9, Issue 3

Special Issue - 2021

474

www.ijert.org

A. Dataset Preparation

This is the most important task which would essentially
help in generating the base vocabulary upon which the word
vectors can be created for the input sentences. For this purpose
we used the Google News dataset that consisted of around 3
million words so that the word embeddings are generated in a
better way. The model uses this data to form a basic vocabulary
of words.

B. Text Input

Once the dataset is ready the next step is to collect the
textual inputs for which the similarity is to be calculated and
pass it on for further processing.

C. Tokenization

In order to get the individual word vectors it is necessary to
tokenize the input sentences. Tokenization, in simple terms
is breaking down a sentence into individual words. Many
different Tokenization methods that can be utilized for this
purpose. NLP [4] provides simple methods to make this task
of tokenization easy.

Fig. 2. Tokenization.

D. Morphological Analysis

Morphological analysis is referred as the process of obtain-
ing grammatical information from word tokens, given their
suffix information. Morphological analysis can be carried out
in three ways: morpheme-based morphology (arrangement
approach), lexeme-based morphology (process approach), and
word-based morphology (paradigm approach). In this process
we aim to find the base or dictionary form of the words
which are generated in the previous step. These dictionary
form of the word is also known as lemma. For example
by performing morphological analysis on word ”caring” will
give us the base word ”care” and not ”car”. NLTK [4]
provides easy to use classes and methods that can be used
for Morphological Analysis. The word is broken down into
root word by recognizing the root word or stem and affixes as
shown in Fig 3 .

E. Syntactic Analysis

The primary purpose of this step is to derive meaning from
the text basically to understand the complete structure of the
sentence in terms of Figures of Speech. Syntactic analysis may
be defined as the process of analyzing the word tokens formed
from the input sentences conforming to the rules of formal

Fig. 3. Morphological Analysis.

grammar. A data structure , generally, in the form of parse
tree or abstract syntax tree or other hierarchical structure.

F. Semantic Interpretation

Once the pre-processing task is completed and the tokens
are all generated the next step is Semantic Interpretation
which is basically deriving the context of the input sentences.
It is difficult to obtain relevant information from textual
input as computers do not tend to give favourable results
when working with strings of data. So the better approach
is to convert these strings into numerical form, specifically
in to vectors, so that they can then be processed easily.
This approach makes it easy to keep track of contextual
information and also for further mathematical calculation.

The above mentioned steps can be generalized into the
following approaches to achieve the desired tasks.

1) Word2Vec: This approach uses the steps outlined in fig.
1 but the main emphasis is given to Semantic Interpretation.
There are several methods that can be employed for this task.
”One Hot Encoding” is one method that converts the individual
words in the sentence into binary vectors. In this case, each
word is mapped into a vector having a dimension equal to
the number of words present in a sentence. Every dimension
contains a ”0” except the one which represents the index of
the word in the sentence. Consider the fig. 4 which provides
the way of how textual data is encoded into binary vectors.

Fig. 4. One Hot Encoding.

However, this method has certain drawbacks. The size of
these vectors goes on increasing with the increase in the length
of the sentences. Also this method does not work well for
semantics of the sentences.

International Journal of Engineering Research & Technology (IJERT)

ISSN: 2278-0181

Published by, www.ijert.org

NTASU - 2020 Conference Proceedings

Volume 9, Issue 3

Special Issue - 2021

475

www.ijert.org

A better approach is word2vec. Word2Vec is a two-layer
neural network which is used to produce word embeddings.
Given a blob of text, word2vec will generate a vocabulary
of all the words present in the text blob and map them
into vectors of some specific dimensions. Each dimension of
the vector represents a certain attribute related to the word.
Consider the fig. 6 which provides the example of how the
word ”king” is encoded using word2vec. Here, each dimension
of the vector encodes a certain quality that meaningfully
represents the given word. This method helps in generating
vectors from textual data which can then be easily handled by
the machine and also preserves the contextual information in
vector representation.

Fig. 5. Word Vector generated through Word2Vec.

These embeddings are used to represent the word in the
vector space such that the words which share the similar
context are located close to one another with respect to the
corpus in the vector space. So words with similar meanings
are close to one another in the vector space. The Word2Vec
was developed by a team from Google which can trained any
given dataset which acts as the corpus upon which the model
generates a vocabulary of words wherein each word is mapped
into its corresponding vector. For the purpose of this project,
the Google News dataset was used to train the model and
generate the corresponding word embeddings.

In this method, we follow the basic step of tokenization and
stop words removal before feeding the input to the Word2Vec
model. Once the word embeddings are generated a distance
metric is used to calculate the similarity in terms of percentage.
Various metrics were tried like Jaccard Similarity, Soft Inverse
max but ”Cosine Similarity” provided better results. In this
case, however, the stop words like ”not” also gets removed
in the processing phase. In such cases the algorithm fails to
produce the intended output. For example considering two
sentences, ”John is a smart boy” and ”John is not a smart
boy”; since ”not” is a stop word, it gets removed from the
later sentence and before feeding the input to the model,
both the inputs become same which is ”John smart boy”,
leading to 100% similarity between them even though they
are contextually different.

Later, we tried not removing the stop words. Employing this
approach improved the accuracy of the algorithm. Since the
aim is to analyse the contextual meaning of the sentence, stop
words play a crucial part for analysis of sentimental context the
inference of which can be derived from the above mentioned
example.

2) Spacy: Another approach followed was by using Spacy.
The reason for using Spacy was that it allowed us to predict
linguistic attributes in the context such as Parts-of-Speech
tags, Syntactic dependencies and Named entities. For example

considering the statement ”John is intelligent boy”, the Spacy
model correctly predicted ”John” as Proper noun, ”intelligent”
as Adjective and ”boy” as noun.

Fig. 6. Spacy.

In addition to the part-of-speech tags, it can also predict
how the words are related like if a word is the subject or an
object of the sentence.

Named entities are basically real world objects that are
assigned a name. For example, a person, a city or any country.
Consider the statement, ”Elon Musk is ready to hire developers
without degree in U.S.A”. In this case, the model is correctly
predicting ”Elon Musk” as person and ”U.S.A” as country.
In this approach, we convert the sentence into doc object. Doc
object is nothing but collection of tokens. Tokens define the
type of word, its attribute etc. Suppose we get the named
entities from two sentences. First step would be to check
the nouns in both sentences, if they are same, the chances
are sentences are related. If nouns are same then we perform
the morphological analysis of other tokens, that is getting the
root word for each token. Then for each token we obtain its
word embeddings and then calculate the cosine similarity to
check how similar the tokens of both sentences are to each
other. To compare tokens of sentences we can use syntactic
dependencies as shown in fig 6 to determine the role and
relation of tokens to named entity or nouns or to tokens of
other sentence.

IV. RESULTS AND DISCUSSIONS

The algorithm was implemented using both of the above
mentioned approaches. The results differed from one another
by a great margin which can be compared by the following
results.

Fig. 7. Results by using Word2Vec.

International Journal of Engineering Research & Technology (IJERT)

ISSN: 2278-0181

Published by, www.ijert.org

NTASU - 2020 Conference Proceedings

Volume 9, Issue 3

Special Issue - 2021

476

www.ijert.org

As mentioned in the table above, we can see the similarity
percentage that is calculated by word2vec algorithm for a set
of sentences pairs. This percentage value ranges between 0
- 100% indicating how much similar are the two sentences
syntactically and semantically.

Fig. 8. Results by using Spacy.

Both approaches are relatively accurate, however accuracy
can be determined by adjusting the threshold values for both
implementations. however, Word2vec provides relatively better
results than Spacy to calculate the similarity having being
trained on a larger corpus of text. The results generated work
well with most of the cases leaving a few where negative
words are taken into consideration.

Further, the results can be evaluated by setting a threshold
on the percentage calculated to determine the output of the
system. For example, any value below 65% is considered as
”false” or ”0” and any value above 65% is considered ”true”
or ”1”. This metric helps us to generate crisp values for the
output produced instead of fuzzy values.

V. CONCLUSION

The algorithm developed is capable of finding a similarity
between two sentences in terms of percentage value. By
following the steps mentioned in the implementation section,
we were able to achieve an accuracy of 80-85% for single line
sentence and 60-65% for multi line sentences.

For negative sentences, the algorithm produces a non
satisfactory output as the word vector formed by the sentence
does not hold the magnitude of the negative words since they
get removed in the pre-processing step.

This algorithm can be used in a variety of use cases which
can be listed as follows -

A. Descriptive Examination and Result Assessment.

The system compares the semantics of sentences, thus it
can be implemented to assess Descriptive answers with the
data fed to system from trusted sources. Also the sequencing
of points of an answer can be tracked to correctly evaluate
procedural answer. The generated confidence for each answer
can be further reviewed by Higher Authority Examiners and
final result can be generated.

B. Plagiarism Analysis.

Many Plagiarism assessment systems fail to check for the
originality in paper as they compare the sentences based on

the syntactic comparison or words repeated. Since our system
understands the meaning of sentences it will be more effective
in checking the Plagiarism of Content with the fed data.

C. AI and Chat Bots.

Response of AI and Chat bots can be improved by feeding
them more refined data or by making them more capable of
understanding the Query or Request by the user.

D. Removal of duplicate entries.

There are many situations when people try to add or ask
similar kind of questions on any forum. In such cases manual
checking has to be done for removal of such duplicate entries.
With the help of our algorithm those tasks can be automated
as it will identify the similar questions and mark them as
duplicate.

The future aim is to increase the accuracy further more for
larger sentences and make the algorithm more performant by
increasing the corpus size to cover more words.

REFERENCES

[1] R. Ferreira, R. D. Lins, F. Freitas, B. Avila, S. J. Simske and M. Riss,
”A New Sentence Similarity Method Based on a Three-Layer Sentence
Representation”, 2014 IEEE/WIC/ACM International Joint Conferences
on Web Intelligence (WI) and Intelligent Agent Technologies (IAT),
Warsaw, 2014, pp. 110-117.

[2] E. Brajković and D. Vasić, ”Tree and word embedding based sentence
similarity for evaluation of good answers in intelligent tutoring system”,
2017 25th International Conference on Software, Telecommunications
and Computer Networks (SoftCOM), Split, 2017, pp. 1-5.

[3] Tomas Mikolov, Efficient estimation of word representations in vector
space, 2013.

[4] M. Lobur, A. Romanyuk and M. Romanyshyn, ”Using NLTK for
educational and scientific purposes”, 2011 11th International Conference
The Experience of Designing and Application of CAD Systems in
Microelectronics (CADSM), Polyana-Svalyava, 2011, pp. 426-428.

[5] Kamal Sarkar, Khushbu Saraf and Avishikta Ghosh, ”Improving Graph
Based Multidocument Text Summarization Using an Enhanced Sentence
Similarity Measure”, 2015 IEEE 2nd International Conference on Recent
Trends in Information Systems (ReTIS), 2015

[6] Shashi Pal Singh, Ajai Kumar, Lenali Singh, Mahesh Bhargava, Kritika
Goyal, Bhanu Sharma, ”Frequency based Spell Checking and Rule
based Grammar Checking”, 2016 International Conference on Electrical,
Electronics, and Optimization Techniques (ICEEOT), 2016

[7] Rutal S. Mahajan, Mukesh A. Zaveri, ”Novel Answer Ranking Approach
in Question Answering System using Compositional Distributional Se-
mantic Model”, 2018 2018 3rd International Conference for Conver-
gence in Technology (I2CT), 2018

International Journal of Engineering Research & Technology (IJERT)

ISSN: 2278-0181

Published by, www.ijert.org

NTASU - 2020 Conference Proceedings

Volume 9, Issue 3

Special Issue - 2021

477

www.ijert.org

