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Abstract - Neural networks have emerged as 

powerful tools for solving complex problems in 

various domains, ranging from image recognition 

to natural language processing. Understanding the 

mathematical foundations of neural networks is 

crucial for optimizing their performance and 

unlocking their full potential. This paper focuses 

on the application of linear algebraic methods in 

the analysis and enhancement of neural networks. 

A comprehensive review of matrix 

decompositions, such as Singular Value 

Decomposition (SVD) and Eigen value 

Decomposition, is presented in the context of 

neural networks. These techniques provide 

insights into the network's structure, aiding in 

model interpretation and identifying critical 

features that contribute to its performance. 

Additionally, the paper discusses how these 

methods can be employed for regularization, 

dimensionality reduction, and feature extraction 

in neural networks. Finally, practical applications 

of linear algebraic methods in neural networks are 

illustrated through case studies, demonstrating 

their efficacy in tasks such as transfer learning, 

adversarial robustness, and model compression. 

The paper concludes with a discussion on the 

potential avenues for future research in leveraging 

linear algebra to advance the field of neural 

network design and optimization. 

 

Keywords---Neural Networks, Linear 

Algebra,Matrix representation, Matrix 

Decomposition, Singular Value 

Decomposition(SVD), Computational efficiency. 

I.INTRODUCTION 

 

Neural networks have become a cornerstone 

of modern artificial intelligence, revolutionizing 

various fields including computer vision, natural 

language processing, and reinforcement learning. 

These networks, inspired by the structure and 

function of the human brain, consist of 
interconnected layers of neurons capable of learning 

complex patterns and relationships from data.  

 

 

While neural networks exhibit remarkable 

performance in many tasks, understanding their inner 

workings and optimizing their performance remains a 
challenging endeavor. At the heart of neural network 

theory lies linear algebra, a branch of mathematics 

concerned with vector spaces and linear 

transformations. The application of linear algebraic 

methods in neural networks provides a rigorous 

framework for analyzing their behavior, interpreting 

their decisions, and enhancing their capabilities. By 

representing neural network operations in terms of 

matrices and vectors, we can leverage powerful 

mathematical tools to gain insights into their structure 

and dynamics. 
 

This paper aims to explore the role of linear 

algebraic methods in advancing the theory and 

practice of neural networks. We begin by providing 

an overview of neural network architecture, 

highlighting the flow of information through layers of 

neurons and the mathematical operations involved in 

processing input data. Emphasis is placed on the non-

linear transformations introduced by activation 

functions, which play a crucial role in enabling neural 

networks to model complex relationships. 

 
Next, we delve into the matrix 

representations of neural network operations, 

demonstrating how concepts from linear algebra can 

be used to succinctly describe the computations 

performed by the network. We explore matrix 

decompositions such as Singular Value 

Decomposition (SVD) and Eigenvalue 

Decomposition, showcasing their utility in model 

interpretation, regularization, and dimensionality 

reduction. 

 
The intersection of linear algebra and 

optimization is then explored in the context of neural 

network training. We discuss gradient descent 

variants and their connection to linear algebraic 

operations, highlighting the importance of efficient 

optimization techniques for training deep neural 

networks. Additionally, we investigate the role of 

weight initialization strategies and their impact on the 

convergence and generalization of neural network 

models. 
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Throughout the paper, we provide practical 

examples and case studies illustrating the application 

of linear algebraic methods in neural network design 

and optimization. Topics such as transfer learning, 

adversarial robustness, and model compression are 

discussed, demonstrating how linear algebra can be 
leveraged to address real-world challenges in 

machine learning. 

 

This paper serves as a comprehensive 

exploration of the synergy between linear algebra and 

neural networks. By leveraging the rich mathematical 

framework provided by linear algebra, we can gain 

deeper insights into the behavior of neural networks 

and develop more efficient and robust learning 

algorithms. The integration of linear algebraic 

methods paves the way for further advancements in 

the field of neural network research and holds 
promise for unlocking the full potential of artificial 

intelligence. 

 

II.SINGULAR VALUE DECOMPOSITION 

 

The singular value decomposition (SVD) of 

a matrix is a decomposition of the matrix into a 

product of an orthogonal matrix, a diagonal matrix, 

and another orthogonal matrix. It is one of the most 

powerful ideas in linear algebra. However, to 

understand it fully one must first understand certain 
facts about symmetric matrices. Thus, our first 

section will show that all symmetric matrices are 

orthogonally diagonalizable. Not only can we 

construct a basis of eigenvectors for any symmetric 

matrix, but the the matrix formed out of these 

vectors, P, will be an orthogonal matrix! We will then 

make this relationship between orthogonal 

diagonalization and symmetric matrices even tighter; 

a matrix is orthogonally diagonalizable if and only if 

it is a symmetric matrix. This result is known as the 

spectral theorem. 

 
Definition:  A symmetric matrix is a n × n matrix A 

that is equal to its transpose. This means that for all 1 

≤ i, j ≤ n 𝑎𝑖𝑗 = 𝑎𝑗𝑖 . 

Definition: A matrix A is orthogonally 

diagonalizable if there exists an orthogonal matrix P 

and a diagonal matrix D such that 𝐴 =  𝑃 𝐷𝑃−1  =
 𝑃𝐷𝑃𝑇 
Definition:  For a symmetric n × n matrix A, we 

define a spectral decomposition of A as being a sum 

of the form  

𝐴 = 𝜆1𝑢1𝑢1
𝑇 + 𝜆2𝑢2𝑢2

𝑇 + ⋯ . . +𝜆𝑛𝑢𝑛𝑢𝑛
𝑇 

where P = [𝑢1, 𝑢2, ..., 𝑢𝑛 ] is an orthogonal set of unit 

eigenvectors, and 𝜆1, 𝜆2, ..., 𝜆𝑛  are the eigenvalues of 

A corresponding to P. The spectral decomposition is 

in fact found by orthogonally diagonalizing A. 

 

Theorem: Let A be any 𝑚 ×  𝑛 matrix with rank r. 

Then, 𝐴 =  𝑈𝛴𝑉𝑇  where 𝑈 is an 𝑚 ×  𝑚 orthogonal 

matrix, 𝑉 is an 𝑛 ×  𝑛 orthogonal matrix, and Σ is an 

m × n matrix such that 

𝛴 =  𝐷 0
0 0

  

 where D is a r × r diagonal matrix. The remaining 

𝑚 −  𝑟 rows and 𝑛 −  𝑟 columns of Σ will be 0. D 

will be the first r non-zero singular values of A, (𝜎1, . 

. . , 𝜎𝑟 ), such that 

𝜎 1 ≥  𝜎2  ≥ . . .≥  𝜎𝑟  >  0 
We call 𝐴 =  𝑈𝛴𝑉𝑇  a singular value 

decomposition of A.  

The power of the singular value 

decomposition is that it exists for any matrix without 

restrictions. Because of this, the applications of the 

singular value decomposition are extremely powerful 

for data analysis. 

 

III.NEURAL NETWORKS 

 

A neural network is composed of neurons 

and edges with the neurons usually organized in 

layers and the directed edges connecting neurons 
from one layer to the next. We can think of neurons 

as variables with assigned values which we calculate 

through “forward propagation” which will be defined 

later. They are also called activation units. We can 

think of edges as variables whose value indicates 

how strongly one neuron influences another. The 

weights will serve as a type of scalar to the neuron it 

recieves.  

 

These edges’ values will be used to define 

functions that take the values of the neurons in one 
layer and use these to define values in the next layer. 

There will be a pre-determined number of layers in 

the network and the activation units in the final layer 

will signify something about the data inputted into 

the neural network. For example, suppose we have a 

data point with two variables and we want to classify 

the point as “on” or “off”. Consider figure 1 which 

displays a neural network with one “hidden layer”, 

the layers that do not contain input or output neurons 

and with three neurons inside this layer. 

 
Figure 1. Structure of a Neural Network 
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The depth of the network is equal to the total 

number of layers in the network. Each layer will also 

have a width which is based on the number of 

neurons at each layer. We call the value of the edges 

that connect neurons to different layers, the weights 

of the network. The weights are used to define a 
function that uses one layer to define how one input 

neuron becomes another input neuron. We have 

𝑥1 ,𝑥2 as the input neurons, where 𝑤𝑖𝑗 represents the 

weights applied to the them. Also 𝑆1 , 𝑆2 , 𝑆3  are the 

neurons at the hidden layer, and y is the output 

neuron. Consider figure  

 
 

How do these weights transform the 

neurons? The best way to understand this is by 

viewing a neural network as simply layers of matrix-

vector multiplication composed together.  

 

If we have a data set the entire data set will 
usually be a data matrix X, where each vector is a 

data point. In our previous example, each data point 

would have two variables, 𝑥1and 𝑥2 . Thus, we can 

think of each layer of neurons as a vector. If a layer 

has 3 neurons, it would be represented as a vector 

with dimension 3. In a fully connected layer, there is 

an edge between each input neuron and each output 

neuron. In this case, we can represent the edges 

together as a matrix as well. We will call this the 

weight matrix. Thus, the action of the weights on the 
first layer becomes 

 

 

𝑤11 𝑤12

𝑤21 𝑤22

𝑤31 𝑤32

  
𝑥1

𝑥2
 =  

𝑤11𝑥1 + 𝑤12𝑥2

𝑤21𝑥1 + 𝑤22𝑥2

𝑤31𝑥1+𝑤32𝑥2

  

 

which would then undergo another matrix 

multiplication to produce the output neuron y.  

     We previously only described the 

interactions between neurons and edges as matrix-

transformation. However, neural networks will be 

made up of non linear  transformations. The goal of 

many neural networks is to identify complicated 
patterns to solve complicated problems. Having our 

functions limited to be linear functions would 

severely restrict the ability for neural networks to 

identify complicated patterns that will most likely not 

be linear. Therefore, at each layer we introduce, non 

linear activation functions which transform our linear 

functions into non linear functions. Consider the 

activation function σ as ℝ → ℝ. Let σb : ℝ𝑛  → ℝ 

where b ∈ ℝ𝑛  . We now describe the interaction 

between neurons and edges as an non linear function 

becomes 

𝜎𝑏   

𝑤11 𝑤12

𝑤21 𝑤22

𝑤31 𝑤32

  
𝑥1

𝑥2
 =  

𝑤11𝑥1 + 𝑤12𝑥2

𝑤21𝑥1 + 𝑤22𝑥2

𝑤31𝑥1+𝑤32𝑥2

   

= 𝜎𝑏   
𝑤11𝑥1 + 𝑤12𝑥2

𝑤21𝑥1 + 𝑤22𝑥2

𝑤31𝑥1+𝑤32𝑥2

   

=  

𝜎 𝑤11𝑥1 + 𝑤12𝑥2 − 𝑏1 

𝜎 𝑤21𝑥1 + 𝑤22𝑥2 − 𝑏2 

𝜎 𝑤31𝑥1+𝑤32𝑥2 − 𝑏3 
  

 

where 𝜎𝑏maps the dimension of the output neurons to 

the same dimension. Thus if we have 𝑦1 , . . . 𝑦𝑛  

output neurons at each layer, we have 
 

𝜎𝑏   

𝑦1

:
𝑦𝑛

  =  
𝜎 𝑦1 − 𝑏1 

:
𝜎 𝑦𝑛 − 𝑏𝑛 

  

Figure 2. Non Linear Transformation 

 

Example: Let’s consider a helpful, but slightly 

unrealistic example. Suppose we have images 

representing two numbers: a 1 and a 0. A one would 

be a 3 × 3 matrix with values down the middle. A 0 

will also be a 3 × 3 matrix but with values all the way 

across the perimeter. Let’s consider that our data set 

has just a 1 and a 2. 
 

1 =  
0 5 0
0 8 0
0 1 0

  ,0 =  
1 3 4
1 0 5
3 7 6
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Note that if we vectorize both matrices, which is 

common in neural networks, the number in vector for 

will be 

1 =

 
 
 
 
 
 
 
 
 
0
5
0
0
8
0
0
1
0 
 
 
 
 
 
 
 
 

, 0 =

 
 
 
 
 
 
 
 
 
1
3
4
1
0
5
3
7
6 
 
 
 
 
 
 
 
 

 

Imagine we constructed a two-layer neural network, 

with 9 input neurons and one output neuron. 

 
 

As explained later, the values of our weights 
will be randomly initialized. Nevertheless, their 

values would determine the value of the neurons in 

the final layer. 

𝜎

 

 
 
 
 
 
 

 4 4 3 3 1 6 7 9 10 

 
 
 
 
 
 
 
 
 
0
5
0
0
8
0
0
1
0 
 
 
 
 
 
 
 
 

 

 
 
 
 
 
 

= 𝜎  37   

𝜎

 

 
 
 
 
 
 

 4 4 3 3 1 6 7 9 10 

 
 
 
 
 
 
 
 
 
1
3
4
1
0
5
3
7
6 
 
 
 
 
 
 
 
 

 

 
 
 
 
 
 

= 𝜎  205   

 

Both the non linear activation function and 

the bias vector work in tandem to improve our 

network’s ability to make accurate predictions on 
complicated problems.  

 

Applying the activation function first 

introduces this non linearity to our function, allowing 

our network to recognize more complex patterns. 

Secondly, together with the bias vector it helps 

normalize the values of neurons between a certain 

range. The bias vector helps determine the cut-off in 
how neurons will transitions between a certain range.  

 

For example, consider a commonly used 

activation function where each neuron is scaled to a 

value between 0 and 1. 

𝜎 =
1

1 + 𝑒−𝛽𝑥
 

 

IV.CONVOLUTIONAL NEURAL NETWORKS 

Convolution as a Sliding Dot Product: 

 Particularly for image-processing, most 

neural networks have multiple layers that involve 

convolution before they reach fully-connected layers. 
The purpose of convolutional layers is to extract 

features from the input image. The input layer will be 

some input image which can be represented with an 

m × n matrix A where each entry corresponds to a 

pixel in the image. This is the standard for grey-scale 

pictures. However, for color images where we are 

using the RGB color model, each RGB component of 

the image is represented by a matrix. Viewing these 

three separate m×n matrices as one object, we obtain 

a higher-dimensional version of a matrix called a 

tensor. 

Consider the case of a grey-scale image represented 
by the following matrix 

𝐴 =

 
 
 
 
 
3 3 2 1 0 5
0 0 1 3 1 6
3 1 2 2 3 7
2 0 0 2 2 8
2 0 0 0 1 9 

 
 
 
 

 

We can consider the following 9 different sub-

matrices 𝐴1, . . . 𝐴12respectively 

 

 

 
 

3 3 2 1 0 5
0 0 1 3 1 6
3 1 2 2 3 7
2 0 0 2 2 8
2 0 0 0 1 9 

 
 

      

 

 
 

3 3 2 1 0 5
0 0 1 3 1 6
3 1 2 2 3 7
2 0 0 2 2 8
2 0 0 0 1 9 

 
 

 

 

 

 
 

3 3 2 1 0 5
0 0 1 3 1 6
3 1 2 2 3 7
2 0 0 2 2 8
2 0 0 0 1 9 

 
 

      

 

 
 

3 3 2 1 0 5
0 0 1 3 1 6
3 1 2 2 3 7
2 0 0 2 2 8
2 0 0 0 1 9 

 
 

 

 

 

 
 

3 3 2 1 0 5
0 0 1 3 1 6
3 1 2 2 3 7
2 0 0 2 2 8
2 0 0 0 1 9 

 
 

       

 

 
 

3 3 2 1 0 5
0 0 1 3 1 6
3 1 2 2 3 7
2 0 0 2 2 8
2 0 0 0 1 9 
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3 3 2 1 0 5
0 0 1 3 1 6
3 1 2 2 3 7
2 0 0 2 2 8
2 0 0 0 1 9 

 
 

        

 

 
 

3 3 2 1 0 5
0 0 1 3 1 6
3 1 2 2 3 7
2 0 0 2 2 8
2 0 0 0 1 9 

 
 

 

 

 

 
 

3 3 2 1 0 5
0 0 1 3 1 6
3 1 2 2 3 7
2 0 0 2 2 8
2 0 0 0 1 9 

 
 

        

 

 
 

3 3 2 1 0 5
0 0 1 3 1 6
3 1 2 2 3 7
2 0 0 2 2 8
2 0 0 0 1 9 

 
 

 

 

 

 
 

3 3 2 1 0 5
0 0 1 3 1 6
3 1 2 2 3 7
2 0 0 2 2 8
2 0 0 0 1 9 

 
 

        

 

 
 

3 3 2 1 0 5
0 0 1 3 1 6
3 1 2 2 3 7
2 0 0 2 2 8
2 0 0 0 1 9 

 
 

 

 

Convolution involves performing a dot-

product operation between each submatrix and a pre-

determined kernel matrix. The kernel matrix is the 

matrix that slides through every sub-matrix and 
performs a dot-product operation. The kernel 

represents some feature in the image that we are 

trying to recognize. Each entry in  the output matrix 

says something about the similarity between the 

kernel and the corresponding sub-matrix that was 

used to compute the dot product. Suppose our kernel 

matrix is 

𝑘 =  
0 1 2
2 2 0
0 1 2

  

 The result of the convolution of A with k would be 

 
𝐴1 .𝑘 𝐴2 .𝑘 𝐴3 .𝑘 𝐴4 .𝑘
𝐴5 .𝑘 𝐴6 .𝑘 𝐴7 .𝑘 𝐴8 .𝑘
𝐴9.𝑘 𝐴10 .𝑘 𝐴11 .𝑘 𝐴12 .𝑘

 

=  
12 12 17.0 35

10.0 17.0 19.0 41
9.0 6.0 14.0 44

  

Consider how we got 𝐴4 .𝑘 

1 ∗ 0 + 0 ∗ 1 + 2 ∗ 5 + 2 ∗ 3 + 1 ∗ 2 + 6 ∗ 0 + 2 ∗ 0
+ 1 ∗ 3 + 7 ∗ 2 

 

Note that the dot product of a matrix with 

itself is the square of its magnitude, so values in the 

matrix output that are close to the magnitude squared 

of the kernel, indicate that that part of the matrix held 

some important pattern. This is why convolution is so 

effective at feature extraction. As we will explain 

later, convolutional neural networks still have fully-
connected layers at the end of the network. 

 

 

 

 

 

 

 

 

V.CONCLUSION 

In conclusion, this paper has provided a 

comprehensive exploration of the integration of 

linear algebraic methods in the theory and practice of 

neural networks. Through the lens of linear algebra, 

we have gained deeper insights into the inner 
workings of neural networks, elucidating their 

structure, dynamics, and optimization. Throughout 

the discussion, we explored various matrix 

decompositions such as Singular Value 

Decomposition (SVD) and Eigenvalue 

Decomposition, showcasing their utility in model 

interpretation, regularization, and dimensionality 

reduction. These techniques have proven invaluable 

for understanding the underlying structure of neural 

networks and identifying critical features that 

contribute to their performance. 
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