
LINEAR ALGEBRAIC METHODS IN

 NEURAL NETWORKS
1Ms.R.Divya

Assistant Professor, Department of Mathematics,

Sri Bharathi Engineering College for Women, Pudukkottai-622 303 , Tamilnadu, India.

Email: 1rdivya2610@gmail.com

Abstract - Neural networks have emerged as

powerful tools for solving complex problems in

various domains, ranging from image recognition

to natural language processing. Understanding the

mathematical foundations of neural networks is

crucial for optimizing their performance and

unlocking their full potential. This paper focuses

on the application of linear algebraic methods in

the analysis and enhancement of neural networks.

A comprehensive review of matrix

decompositions, such as Singular Value

Decomposition (SVD) and Eigen value

Decomposition, is presented in the context of

neural networks. These techniques provide

insights into the network's structure, aiding in

model interpretation and identifying critical

features that contribute to its performance.

Additionally, the paper discusses how these

methods can be employed for regularization,

dimensionality reduction, and feature extraction

in neural networks. Finally, practical applications

of linear algebraic methods in neural networks are

illustrated through case studies, demonstrating

their efficacy in tasks such as transfer learning,

adversarial robustness, and model compression.

The paper concludes with a discussion on the

potential avenues for future research in leveraging

linear algebra to advance the field of neural

network design and optimization.

Keywords---Neural Networks, Linear

Algebra,Matrix representation, Matrix

Decomposition, Singular Value

Decomposition(SVD), Computational efficiency.

I.INTRODUCTION

Neural networks have become a cornerstone

of modern artificial intelligence, revolutionizing

various fields including computer vision, natural

language processing, and reinforcement learning.

These networks, inspired by the structure and

function of the human brain, consist of
interconnected layers of neurons capable of learning

complex patterns and relationships from data.

While neural networks exhibit remarkable

performance in many tasks, understanding their inner

workings and optimizing their performance remains a
challenging endeavor. At the heart of neural network

theory lies linear algebra, a branch of mathematics

concerned with vector spaces and linear

transformations. The application of linear algebraic

methods in neural networks provides a rigorous

framework for analyzing their behavior, interpreting

their decisions, and enhancing their capabilities. By

representing neural network operations in terms of

matrices and vectors, we can leverage powerful

mathematical tools to gain insights into their structure

and dynamics.

This paper aims to explore the role of linear

algebraic methods in advancing the theory and

practice of neural networks. We begin by providing

an overview of neural network architecture,

highlighting the flow of information through layers of

neurons and the mathematical operations involved in

processing input data. Emphasis is placed on the non-

linear transformations introduced by activation

functions, which play a crucial role in enabling neural

networks to model complex relationships.

Next, we delve into the matrix

representations of neural network operations,

demonstrating how concepts from linear algebra can

be used to succinctly describe the computations

performed by the network. We explore matrix

decompositions such as Singular Value

Decomposition (SVD) and Eigenvalue

Decomposition, showcasing their utility in model

interpretation, regularization, and dimensionality

reduction.

The intersection of linear algebra and

optimization is then explored in the context of neural

network training. We discuss gradient descent

variants and their connection to linear algebraic

operations, highlighting the importance of efficient

optimization techniques for training deep neural

networks. Additionally, we investigate the role of

weight initialization strategies and their impact on the

convergence and generalization of neural network

models.

International Journal of Engineering Research & Technology (IJERT)

ISSN: 2278-0181Published by, www.ijert.orgVolume 12, Issue 01

NCAAIET – 2024

mailto:1rdivya2610@gmail.com
www.ijert.org

Throughout the paper, we provide practical

examples and case studies illustrating the application

of linear algebraic methods in neural network design

and optimization. Topics such as transfer learning,

adversarial robustness, and model compression are

discussed, demonstrating how linear algebra can be
leveraged to address real-world challenges in

machine learning.

This paper serves as a comprehensive

exploration of the synergy between linear algebra and

neural networks. By leveraging the rich mathematical

framework provided by linear algebra, we can gain

deeper insights into the behavior of neural networks

and develop more efficient and robust learning

algorithms. The integration of linear algebraic

methods paves the way for further advancements in

the field of neural network research and holds
promise for unlocking the full potential of artificial

intelligence.

II.SINGULAR VALUE DECOMPOSITION

The singular value decomposition (SVD) of

a matrix is a decomposition of the matrix into a

product of an orthogonal matrix, a diagonal matrix,

and another orthogonal matrix. It is one of the most

powerful ideas in linear algebra. However, to

understand it fully one must first understand certain
facts about symmetric matrices. Thus, our first

section will show that all symmetric matrices are

orthogonally diagonalizable. Not only can we

construct a basis of eigenvectors for any symmetric

matrix, but the the matrix formed out of these

vectors, P, will be an orthogonal matrix! We will then

make this relationship between orthogonal

diagonalization and symmetric matrices even tighter;

a matrix is orthogonally diagonalizable if and only if

it is a symmetric matrix. This result is known as the

spectral theorem.

Definition: A symmetric matrix is a n × n matrix A

that is equal to its transpose. This means that for all 1

≤ i, j ≤ n 𝑎𝑖𝑗 = 𝑎𝑗𝑖 .

Definition: A matrix A is orthogonally

diagonalizable if there exists an orthogonal matrix P

and a diagonal matrix D such that 𝐴 = 𝑃 𝐷𝑃−1 =
 𝑃𝐷𝑃𝑇
Definition: For a symmetric n × n matrix A, we

define a spectral decomposition of A as being a sum

of the form

𝐴 = 𝜆1𝑢1𝑢1
𝑇 + 𝜆2𝑢2𝑢2

𝑇 + ⋯ . . +𝜆𝑛𝑢𝑛𝑢𝑛
𝑇

where P = [𝑢1, 𝑢2, ..., 𝑢𝑛] is an orthogonal set of unit

eigenvectors, and 𝜆1, 𝜆2, ..., 𝜆𝑛 are the eigenvalues of

A corresponding to P. The spectral decomposition is

in fact found by orthogonally diagonalizing A.

Theorem: Let A be any 𝑚 × 𝑛 matrix with rank r.

Then, 𝐴 = 𝑈𝛴𝑉𝑇 where 𝑈 is an 𝑚 × 𝑚 orthogonal

matrix, 𝑉 is an 𝑛 × 𝑛 orthogonal matrix, and Σ is an

m × n matrix such that

𝛴 = 𝐷 0
0 0

 where D is a r × r diagonal matrix. The remaining

𝑚 − 𝑟 rows and 𝑛 − 𝑟 columns of Σ will be 0. D

will be the first r non-zero singular values of A, (𝜎1, .

. . , 𝜎𝑟), such that

𝜎 1 ≥ 𝜎2 ≥ . . .≥ 𝜎𝑟 > 0
We call 𝐴 = 𝑈𝛴𝑉𝑇 a singular value

decomposition of A.

The power of the singular value

decomposition is that it exists for any matrix without

restrictions. Because of this, the applications of the

singular value decomposition are extremely powerful

for data analysis.

III.NEURAL NETWORKS

A neural network is composed of neurons

and edges with the neurons usually organized in

layers and the directed edges connecting neurons
from one layer to the next. We can think of neurons

as variables with assigned values which we calculate

through “forward propagation” which will be defined

later. They are also called activation units. We can

think of edges as variables whose value indicates

how strongly one neuron influences another. The

weights will serve as a type of scalar to the neuron it

recieves.

These edges’ values will be used to define

functions that take the values of the neurons in one
layer and use these to define values in the next layer.

There will be a pre-determined number of layers in

the network and the activation units in the final layer

will signify something about the data inputted into

the neural network. For example, suppose we have a

data point with two variables and we want to classify

the point as “on” or “off”. Consider figure 1 which

displays a neural network with one “hidden layer”,

the layers that do not contain input or output neurons

and with three neurons inside this layer.

Figure 1. Structure of a Neural Network

International Journal of Engineering Research & Technology (IJERT)

ISSN: 2278-0181Published by, www.ijert.orgVolume 12, Issue 01

NCAAIET – 2024

www.ijert.org

The depth of the network is equal to the total

number of layers in the network. Each layer will also

have a width which is based on the number of

neurons at each layer. We call the value of the edges

that connect neurons to different layers, the weights

of the network. The weights are used to define a
function that uses one layer to define how one input

neuron becomes another input neuron. We have

𝑥1 ,𝑥2 as the input neurons, where 𝑤𝑖𝑗 represents the

weights applied to the them. Also 𝑆1 , 𝑆2 , 𝑆3 are the

neurons at the hidden layer, and y is the output

neuron. Consider figure

How do these weights transform the

neurons? The best way to understand this is by

viewing a neural network as simply layers of matrix-

vector multiplication composed together.

If we have a data set the entire data set will
usually be a data matrix X, where each vector is a

data point. In our previous example, each data point

would have two variables, 𝑥1and 𝑥2 . Thus, we can

think of each layer of neurons as a vector. If a layer

has 3 neurons, it would be represented as a vector

with dimension 3. In a fully connected layer, there is

an edge between each input neuron and each output

neuron. In this case, we can represent the edges

together as a matrix as well. We will call this the

weight matrix. Thus, the action of the weights on the
first layer becomes

𝑤11 𝑤12

𝑤21 𝑤22

𝑤31 𝑤32

𝑥1

𝑥2
 =

𝑤11𝑥1 + 𝑤12𝑥2

𝑤21𝑥1 + 𝑤22𝑥2

𝑤31𝑥1+𝑤32𝑥2

which would then undergo another matrix

multiplication to produce the output neuron y.

 We previously only described the

interactions between neurons and edges as matrix-

transformation. However, neural networks will be

made up of non linear transformations. The goal of

many neural networks is to identify complicated
patterns to solve complicated problems. Having our

functions limited to be linear functions would

severely restrict the ability for neural networks to

identify complicated patterns that will most likely not

be linear. Therefore, at each layer we introduce, non

linear activation functions which transform our linear

functions into non linear functions. Consider the

activation function σ as ℝ → ℝ. Let σb : ℝ𝑛 → ℝ

where b ∈ ℝ𝑛 . We now describe the interaction

between neurons and edges as an non linear function

becomes

𝜎𝑏

𝑤11 𝑤12

𝑤21 𝑤22

𝑤31 𝑤32

𝑥1

𝑥2
 =

𝑤11𝑥1 + 𝑤12𝑥2

𝑤21𝑥1 + 𝑤22𝑥2

𝑤31𝑥1+𝑤32𝑥2

= 𝜎𝑏
𝑤11𝑥1 + 𝑤12𝑥2

𝑤21𝑥1 + 𝑤22𝑥2

𝑤31𝑥1+𝑤32𝑥2

=

𝜎 𝑤11𝑥1 + 𝑤12𝑥2 − 𝑏1

𝜎 𝑤21𝑥1 + 𝑤22𝑥2 − 𝑏2

𝜎 𝑤31𝑥1+𝑤32𝑥2 − 𝑏3

where 𝜎𝑏maps the dimension of the output neurons to

the same dimension. Thus if we have 𝑦1 , . . . 𝑦𝑛

output neurons at each layer, we have

𝜎𝑏

𝑦1

:
𝑦𝑛

 =
𝜎 𝑦1 − 𝑏1

:
𝜎 𝑦𝑛 − 𝑏𝑛

Figure 2. Non Linear Transformation

Example: Let’s consider a helpful, but slightly

unrealistic example. Suppose we have images

representing two numbers: a 1 and a 0. A one would

be a 3 × 3 matrix with values down the middle. A 0

will also be a 3 × 3 matrix but with values all the way

across the perimeter. Let’s consider that our data set

has just a 1 and a 2.

1 =
0 5 0
0 8 0
0 1 0

 ,0 =
1 3 4
1 0 5
3 7 6

International Journal of Engineering Research & Technology (IJERT)

ISSN: 2278-0181Published by, www.ijert.orgVolume 12, Issue 01

NCAAIET – 2024

www.ijert.org

Note that if we vectorize both matrices, which is

common in neural networks, the number in vector for

will be

1 =

0
5
0
0
8
0
0
1
0

, 0 =

1
3
4
1
0
5
3
7
6

Imagine we constructed a two-layer neural network,

with 9 input neurons and one output neuron.

As explained later, the values of our weights
will be randomly initialized. Nevertheless, their

values would determine the value of the neurons in

the final layer.

𝜎

 4 4 3 3 1 6 7 9 10

0
5
0
0
8
0
0
1
0

= 𝜎 37

𝜎

 4 4 3 3 1 6 7 9 10

1
3
4
1
0
5
3
7
6

= 𝜎 205

Both the non linear activation function and

the bias vector work in tandem to improve our

network’s ability to make accurate predictions on
complicated problems.

Applying the activation function first

introduces this non linearity to our function, allowing

our network to recognize more complex patterns.

Secondly, together with the bias vector it helps

normalize the values of neurons between a certain

range. The bias vector helps determine the cut-off in
how neurons will transitions between a certain range.

For example, consider a commonly used

activation function where each neuron is scaled to a

value between 0 and 1.

𝜎 =
1

1 + 𝑒−𝛽𝑥

IV.CONVOLUTIONAL NEURAL NETWORKS

Convolution as a Sliding Dot Product:

 Particularly for image-processing, most

neural networks have multiple layers that involve

convolution before they reach fully-connected layers.
The purpose of convolutional layers is to extract

features from the input image. The input layer will be

some input image which can be represented with an

m × n matrix A where each entry corresponds to a

pixel in the image. This is the standard for grey-scale

pictures. However, for color images where we are

using the RGB color model, each RGB component of

the image is represented by a matrix. Viewing these

three separate m×n matrices as one object, we obtain

a higher-dimensional version of a matrix called a

tensor.

Consider the case of a grey-scale image represented
by the following matrix

𝐴 =

3 3 2 1 0 5
0 0 1 3 1 6
3 1 2 2 3 7
2 0 0 2 2 8
2 0 0 0 1 9

We can consider the following 9 different sub-

matrices 𝐴1, . . . 𝐴12respectively

3 3 2 1 0 5
0 0 1 3 1 6
3 1 2 2 3 7
2 0 0 2 2 8
2 0 0 0 1 9

3 3 2 1 0 5
0 0 1 3 1 6
3 1 2 2 3 7
2 0 0 2 2 8
2 0 0 0 1 9

3 3 2 1 0 5
0 0 1 3 1 6
3 1 2 2 3 7
2 0 0 2 2 8
2 0 0 0 1 9

3 3 2 1 0 5
0 0 1 3 1 6
3 1 2 2 3 7
2 0 0 2 2 8
2 0 0 0 1 9

3 3 2 1 0 5
0 0 1 3 1 6
3 1 2 2 3 7
2 0 0 2 2 8
2 0 0 0 1 9

3 3 2 1 0 5
0 0 1 3 1 6
3 1 2 2 3 7
2 0 0 2 2 8
2 0 0 0 1 9

International Journal of Engineering Research & Technology (IJERT)

ISSN: 2278-0181Published by, www.ijert.orgVolume 12, Issue 01

NCAAIET – 2024

www.ijert.org

3 3 2 1 0 5
0 0 1 3 1 6
3 1 2 2 3 7
2 0 0 2 2 8
2 0 0 0 1 9

3 3 2 1 0 5
0 0 1 3 1 6
3 1 2 2 3 7
2 0 0 2 2 8
2 0 0 0 1 9

3 3 2 1 0 5
0 0 1 3 1 6
3 1 2 2 3 7
2 0 0 2 2 8
2 0 0 0 1 9

3 3 2 1 0 5
0 0 1 3 1 6
3 1 2 2 3 7
2 0 0 2 2 8
2 0 0 0 1 9

3 3 2 1 0 5
0 0 1 3 1 6
3 1 2 2 3 7
2 0 0 2 2 8
2 0 0 0 1 9

3 3 2 1 0 5
0 0 1 3 1 6
3 1 2 2 3 7
2 0 0 2 2 8
2 0 0 0 1 9

Convolution involves performing a dot-

product operation between each submatrix and a pre-

determined kernel matrix. The kernel matrix is the

matrix that slides through every sub-matrix and
performs a dot-product operation. The kernel

represents some feature in the image that we are

trying to recognize. Each entry in the output matrix

says something about the similarity between the

kernel and the corresponding sub-matrix that was

used to compute the dot product. Suppose our kernel

matrix is

𝑘 =
0 1 2
2 2 0
0 1 2

 The result of the convolution of A with k would be

𝐴1 .𝑘 𝐴2 .𝑘 𝐴3 .𝑘 𝐴4 .𝑘
𝐴5 .𝑘 𝐴6 .𝑘 𝐴7 .𝑘 𝐴8 .𝑘
𝐴9.𝑘 𝐴10 .𝑘 𝐴11 .𝑘 𝐴12 .𝑘

=
12 12 17.0 35

10.0 17.0 19.0 41
9.0 6.0 14.0 44

Consider how we got 𝐴4 .𝑘

1 ∗ 0 + 0 ∗ 1 + 2 ∗ 5 + 2 ∗ 3 + 1 ∗ 2 + 6 ∗ 0 + 2 ∗ 0
+ 1 ∗ 3 + 7 ∗ 2

Note that the dot product of a matrix with

itself is the square of its magnitude, so values in the

matrix output that are close to the magnitude squared

of the kernel, indicate that that part of the matrix held

some important pattern. This is why convolution is so

effective at feature extraction. As we will explain

later, convolutional neural networks still have fully-
connected layers at the end of the network.

V.CONCLUSION

In conclusion, this paper has provided a

comprehensive exploration of the integration of

linear algebraic methods in the theory and practice of

neural networks. Through the lens of linear algebra,

we have gained deeper insights into the inner
workings of neural networks, elucidating their

structure, dynamics, and optimization. Throughout

the discussion, we explored various matrix

decompositions such as Singular Value

Decomposition (SVD) and Eigenvalue

Decomposition, showcasing their utility in model

interpretation, regularization, and dimensionality

reduction. These techniques have proven invaluable

for understanding the underlying structure of neural

networks and identifying critical features that

contribute to their performance.

REFERENCES

[1] Bamieh, Bassam. (2018). “Discovering

transforms: A tutorial on circulant matrices, circular

convolution, and the discrete fourier transform.”

arXiv preprint arXiv:1805.05533.

[2] Bronstein, M. (2022, January 2). “Deriving

convolution from first principles.” Medium.

Retrieved March 11, 2022, from

https://towardsdatascience.com/deriving-convolution-

from-first-principles4ff124888028

[3] Faisal, A. A., Ong, C. S. (2020). “Matrix

Approximation.” In “Mathematics for Machine

Learning." essay, Cambridge University Press. [4]

Goodfellow, Ian, Yoshua Bengio, and Aaron

Courville. (2016). “Deep learning.” MIT press.

[5] Kalman, D. (1996). “A Singularly Valuable

Decomposition: The SVD of a Matrix.” The College

Mathematics Journal, 27(1), 2–23.

[6] Lay, D. C., Lay, S. R., McDonald, J. (2022).
“Linear algebra and its applications.” Pearson

Education Limited.

[7] Murphy, Kevin P. (2012). “Machine Learning: A

Probabilistic Perspective.” Cambridge: MIT Press. p.

247.

[8] Nielsen, Michael A. (2015). “Neural networks

and deep learning.” Vol. 25. San Francisco, CA,

USA: Determination press.

[9] Nicholson, W. K. (2018). “Linear algebra with

applications ˙ ’’ Open Textbook Library.

[10] Sharma, Sagar, Simone Sharma, and Anidhya

Athaiya. (2017). “Activation functions in neural

networks.” towards data science 6.12: 310-316.

International Journal of Engineering Research & Technology (IJERT)

ISSN: 2278-0181Published by, www.ijert.orgVolume 12, Issue 01

NCAAIET – 2024

https://towardsdatascience.com/deriving-convolution-from-first-principles4ff124888028
https://towardsdatascience.com/deriving-convolution-from-first-principles4ff124888028
www.ijert.org

