
Linux Kernel Noise from The Operating System

Aheesh Bharadwaj K K
Department of Computer Science and engineering,

P.E.S College Of Engineering, Mandya

Likhith H L
Department of Computer Science and engineering,

P.E.S College Of Engineering, Mandya

Abstract— A new set of specifications are put forth for

operating system developers as modern network

infrastructure transitions from hardware-based to

software-based employing Network Function

Virtualization. For this new architecture that promises to

provide a new set of low latency networked services, Linux

is becoming a key building piece by utilising the real-time

kernel choices and enhanced CPU isolation capabilities

common to the HPC use-cases. The Linux execution

model, as well as the combination of user-space tooling

and tracing features, must be thoroughly understood in

order to tune Linux for these applications. This paper

explains how Linux's intrinsic components affect

operating system noise from a time standpoint. The

relevant application areas, difficulties, and most crucially,

the gaps for future research, are described in depth.

Additionally, it introduces Linux's in-kernel osnoise tracer,

which enables integrated measurement of operating

system noise as experienced by a workload and tracing of

the sources of the noise to aid in system analysis and

debugging. This study concludes with a series of

experiments showing Linux's capability to give minimal

OS noise (in the single-digit ms order) as well as the

capability of the suggested tool to provide accurate

information about the root-cause of timing-related OS

noise concerns.

Keywords— High-performance computing, the Linux

kernel, operating system noise, and soft real-time systems.

1. INTRODUCTION

Despite being general-purpose, the Linux Operating System

(OS) has shown to be a viable solution for a variety of extremely

specialised applications. For instance, all 500 of the top

supercomputers in the High-Performance Computing (HPC)

sector run Linux.1 It can also be found in the field of embedded

real-time systems, extending beyond the realms of space and

industrial automation and robot control [1]. These

accomplishments are made possible by Linux's extensive

configuration choices, particularly its kernel.The creation of

fundamental services that enable contemporary networking

infrastructures and the Internet is another noteworthy area

where Linux plays a crucial role.

This domain is transitioning from the old paradigm of

hardware appliances sized for peak-hour to the new one of

flexible software- based and programmable networking

services with horizontal elasticity abilities to adapt

dynamically to the workload conditions with the help of

Network Function Virtualization (NFV) [2] and Software-

Defined Networking (SDN) [3]. These new architectures

frequently rely on all-purpose hardware [4] and Linux-based

software stacks [5]. This paradigm serves as the foundation

for the 5G network stack, which is enabling a new set of

services with stringent timing constraints [6]. In previous

networks, these were typically satisfied by using physical

equipment. However, the new5 G stack mandates that these

standards be met by software- based appliances, which calls

for the assistance of a real-time operating system. Latencies,

for instance, are on the order of tens of microseconds in the

Virtualized Radio Access Network (vRAN) [4]. Time and

processing delay became one of the key criteria for suppliers

in this market as a result of this necessity [3], hardware.and

Linux are set in accordance with best practises from both the

real- time and HPC domains to meet these stringent timing

constraints.

To this purpose, the hardware is set up to provide the best

performance/determinism trade-off. This configuration

involves changing the processor's speed and power-saving

settings while eliminating elements like system management

interrupts (SMIs) that can result in hardware- induced

latencies.

In terms of the Linux configuration, an HPC system will

often be divided into a number of separated and

housekeeping CPUs. The CPUs used for housekeeping are

those that perform the tasks required for routine system

operation. This includes threads dispatched by daemons and

users as well as kernel threads in charge of internal

operations like RCU (read-copy-update) call- back threads

[1] and kworkers, which are kernel threads that carry out

postponed tasks. Housekeeping CPUs are also forwarded the

IRs (Interrupt Requests) from general systems. In this

manner, the isolated CPUs are subsequently assigned to the

NFV tasks. Although Linux now offers a high level of CPU

isolation, all CPUs still require some housekeeping work.

For instance, in some circumstances, the timer IRQ must still

occur, and certain kernel operations require the dispatch of

a kworker for all active CPUs. In order to offer bounded

wakeup latencies, the kernel is typically configured with the

fully preemptive mode (using the PREEMPT_RT patch-set

[2]) and NFV threads are frequently configured with real-

time priority.

Linux experts utilise synthetic workloads that imitate the

behaviour of these intricate circumstances in order to

diagnose and assess the system configuration. While

waiting for packets, NFV applications can be

International Journal of Engineering Research & Technology (IJERT)

ISSN: 2278-0181http://www.ijert.org

IJERTV12IS110098
(This work is licensed under a Creative Commons Attribution 4.0 International License.)

Published by :

Vol. 12 Issue 11, November-2023

www.ijert.org
www.ijert.org

continuously running or interrupted by polling the

network device. However, this is not the case for the

interference that threads experience. The Linux wakeup

latency has been thoroughly researched from the real-time

perspective [3]. However, the HPC community has

already extensively examined this topic in a metric known

as OS noise [5], [6]. This study focuses on the Linux OS

noise measurement and analysis in practise from a real-

time perspective.

Why Another Tool Again? Over the years, a number of

techniques have been presented to measure OS noise, and

they can be divided into two groups: workload-based

methods and trace-based methods.Both of them have

benefits and drawbacks, which are covered in great detail

later in the paper. In conclusion, workload simulation

techniques can consider the OS noise measurement as a

statistic supplied by the workload. For instance, by

determining how much time passed between two

consecutive time reads or by counting the number of

processes that were successfully completed. The

drawback of workload- based solutions is that they don't

offer any insight into what is causing the noise in the first

place. Contrarily, trace-based approachesreveal plausible

reasons for latency spikes but are unable to take into

consideration how the workload interprets thenoise

Since version 5.14, the os noise tracer has been a

recognised component of the Linux kernel. This shows

that the abstractions and technologies utilised by os noise

have been approved by real-time, scheduling, and tracing

experts during the extensive kernel revision process. Since

the 5.17 release of the Linux kernel, the tracer is a user-

space tool that can be used through the rtla (Real-Time

Linux Analysis) toolset. This makes it simple for

developers to add new features and practitioners to test

their systems.

Contributions in paper. This article offers three

contributions:

present a kernel tracer that can measure OS noise

using the workload approach and provide tracing

information necessary to identify the tasks affected

by OS noise, which can be caused not only by the

OS but also by the hardware or virtualization

layer; (II) propose a precise definition of the causes

of OS noise in Linux, from the real-time

perspective; (III) describe empirical measurements

of the OS noise from several Linux configurations

that are frequently used in NFV systems,

demonstrating how the tool may be used to

identify the underlying causes of excessive latency

spikes and allow for more precise system tuning.

2 BACKGROUND

We begin by providing the necessary context. The Linux

execution contexts are first presented in Section 2.1 along

with their relationship. The hierarchy of Linux schedulers

is then outlined in Section 2.2, along with a list of the

most popular tracers.Keep your text and graphic files

separate until after the text has been formatted and styled.

Do not use hard tabs, and limit use of hard returns to only

one return at the end of a paragraph. Do not add any kind

of pagination anywhere in the paper. Do not number text

heads-the template will do that for you.

2.1 Linux Execution Contexts and Their Relation

Non-maskable interrupts (NMIs), maskable

interrupts (IRQs), softirqs (delayed IRQ activities)

(notice that in the PREEMPT_RT, the softirq context is

relocated from its own execution context to operate as a

regular thread), and threads are the four primary

execution contexts in Linux [12]. In the following, we

simply refer to all of them as tasks when there is no clear

reason to differentiate between them. The interrupt

controller, which queues and dispatches numerous IRQs

and one NMI for each CPU, is in charge of managing

interrupts. Since the NMI handler has the greatest

priority on each CPU and cannot be hidden, it has the

ability to preempt IRQs and threads. Softirqs and threads

can both be preempted by IRQs, unless they have been

momentarily disabled within crucial kernel regions.

Software abstraction called Ssoftirq executes after IRQ

execution in the default kernel setup, preempting threads.

The task abstraction that is controlled by Linux

schedulers is threads.The following guidelines define the

execution contexts in

 LINUX:

The per-CPU NMI, once begun, runs to completion.

R1 The per- CPU NMI preempts IRQs, softirqs, and

threads.Softirqs and threads may be preempted by R3

IRQs. R4 An IRQ that has already begun is not

interrupted by another IRQ.Threads may preempt

using R5 Softirqs. R6 A softirq cannot be preempted

by another softirq once it has begun. R7 The NMI,

IRQs, and SOFIRQs are not preemptibleby threads.

Fig. 1. The single-program multiple-data (SPMD) model used for

HPC workloads, and the effects of the OS noise.

International Journal of Engineering Research & Technology (IJERT)

ISSN: 2278-0181http://www.ijert.org

IJERTV12IS110098
(This work is licensed under a Creative Commons Attribution 4.0 International License.)

Published by :

Vol. 12 Issue 11, November-2023

www.ijert.org
www.ijert.org

2.2 Schedulers and tracing for Linux

The Linux scheduler and tracing mechanisms are then

introduced.

Schedulers. Linux contains a hierarchy of five

schedulers that manage all threads regardless of their

memory contexts (such as kernel threads or user-space

process context). The following thread to run is chosen

by querying the five schedulers in a predetermined

order. The first one is thestop-machine, which

functions as a phoney scheduler for kernel facilities.

The second is SCHED_DEADLINE [1], a real-time

scheduler based on earliest deadline first (EDF) that

uses deadlines. A POSIX-compliant fixed-priority

real-time scheduler is the third option. This scheduler

supports both aSCHED_RR and aSCHED_- FIFO

thread types. In this scenario, SCHED_RR threads are

scheduled in a round-robin fashion with a specific time

slice, while SCHED_FIFO threads only release the

CPU on suspension, termination, or preemption. The

difference between the two is only for threads with the

same priority. The perfectly fair scheduler (CFS), also

known as SCHED_OTHER, is the fifth scheduler and

is a general-purpose scheduler. Finally, theIDLE

scheduler returns the idle thread when no ready threads

are available from these schedulers.

Tracers. There are many tracing features available in

Linux. For instance, various functions called in kernel

context can be tracked, as can individual events like

scheduling choices. Due in large part to the fact that

they do not increase system overhead when not in use,

these features are available for usage in the majority of

Linux distributions. Ftrace is a set of tracing features

built into the kernel that are intended to make it easier

for users to monitor in-kernel operations.

 MOTIVATING FACTORS AND PROPOSED

STRATEGY

The issue and the driving forces behind this study are

then introduced. A common issue in the HPC

community is OS noise, often known as OS jitter [5],

[6]. Most HPC workloads adhere to the single-program

multiple-data (SPMD) model, which is seen in Figure

1. A parallel job in this model consists of one process

for each of the M processors that make up the system

[1]. The execution starts with a simultaneous dispatch

of all processes. After the execution is complete, the

process synchronises to create the finished product and

then repeats itself repeatedly. The scheduler decisions of

each local processor significantly affect the response time

of a parallel workload in this scenario, as some operating

system-specific jobs need to run on all processors for the

correct operation of the system, such as the periodic

scheduler tick, critical kernel threads, or others. The

adaptability of the system setup is one of the primary

factors that contributed to Linux dominating the list of the

top 500 supercomputers. In the configuration of these

systems, a small number of CPUs are chosen to handle all

operations required for system execution and operation,

such as managing user access to the system for monitoring

activities, running system daemons, and performing

routine maintenance tasks, while a large number of CPUs

are shielded from the majority of operating noise that users

or the OS may produce. In NFV, the generic network stack

of the operating system is frequently bypassed in order to

achieve high throughput, with all network packet

processing taking place in user-space by a dedicated

process that manages the network flows. Similar to the

HPC scenario, these processes are given exclusive access

to resources, such as exclusive isolated CPUs. Some of

these network applications poll the network in a busy-wait

mode, most notably using the DPDK's Poll Mode Driver

(PMD), to further reduce the latency for handling new

packets.2 The Linux setup follows the same procedure as

HPC in this use scenario. Real-time limitations, like those

in the order of tens of microseconds for vRAN, are what

set this usecase apart from the HPC one.

Although there are some ready-made alternatives for

providing CPU isolation, such as transferring all threads

and IRQs to a smaller number of house-keeping CPUs, it

is not easy to fine-tune the settings for certain time-

sensitive use-cases. The OS still needs to do some per-

CPU operations like scheduler ticks, virtual memory stat

operations, processing of legacy network packets, etc.

While some of these noise sources can be reduced by fine-

tuning the configuration, such as turning on NOHZ_FULL

to lower the scheduler tick frequency, others may even

require reworking the current kernel algorithms to either

eliminate the noise source or add a technique to reduce the

problem.

International Journal of Engineering Research & Technology (IJERT)

ISSN: 2278-0181http://www.ijert.org

IJERTV12IS110098
(This work is licensed under a Creative Commons Attribution 4.0 International License.)

Published by :

Vol. 12 Issue 11, November-2023

www.ijert.org
www.ijert.org

Linux is a general-purpose operating system with a

primary focus on providing general-purpose

functionality, notwithstanding the compelling use-case.

Real-time and HPC groups in particular need to

continuously monitor OS development in order to adapt

potential non-HPC and non-RT aware capabilities for

these particular use- cases. When there is no

straightforward way to examine and debug them, forcing

Linux developers to test their new algorithms against all

the metrics for each individual use-case is impractical.

A practitioner typically starts by producing a

synthetic workload tomeasure the OS noise. Workload

examples include sysjitter and itsclone, oslat. These

utilities use architecture-specific instructions toloop

over reading the time.

When there is a gap between two successive time

 readings that is more than a specific threshold, they

classify that as a jitter. These tools don't try to link jitter to

an underlying issue.

Practitioners must watch the system to determine the root

cause. Tracing is the most effective method of system

observation. The trade-off between information and

overhead is where employing tracing runs into trouble.

The user must establish a relationship between the noise

and the tracing data using a workload and tracing features.

The fundamental reason why this link isn't always

achievable is that the workload and the tracing features

aren't always aware of one another. It is important to note

that workload can also detect hardware-induced noise at

dozens of microseconds. Hardware stalls brought on by

shared resources, such as those in hyper-threaded

processors or execution contexts with a higher priority

than the OS, such as SMIs, can have a side effect called

hardware noise. It is difficult to see the occurrences via

trace because these acts are not a consequence of the

operating system. This noise, which the workload sees but

the trace doesn't, generates a grey region that frequently

leads the analysis astray.

 Proposed Approach

In this research, we offer an integrated synthetic

workload and tracing solution that tries to combine the

benefits of workload- and tracing-based approaches

while reducing the shortcomings of each solution.

• Define the composition of the OS Noise on

Linux from a real-time HPC point of view,

among other actions performed for such an

approach.

• Identify the minimal number of tracing events

necessary to demonstrate the underlying cause

of each noise with a finite overhead.

• Make a synthetic workload that is aware of

tracing to enable a clear correlation between

the trace and the noise.

• Make the method production-ready with a

uniform and user-friendly interface.

1.2 Composition of OS Noise for Real-Time HPC

Workload:The generalised definition of OS noise

adopted in this study is as follows:((OS)-

Generalized Noise) Definition 1. When a job is

allocated to a CPU and is ready to begin, the OS

noise is all the time the CPU spends executing

instructions that are not related to that task.

The definition broadens the traditional interpretation of

OS noise, which normally only accounts for OS-

related activities and overheads, by taking into account

the time consumed by any intervening computational

activity, including both OS-related activities and

threads running in regular user-space. This is

important because it means that any computational

activity that could interfere with the measurement

thread would also interfere with any other user thread

running with the same scheduler and scheduler settings

(for example, priority), regardless of whether it is an

OS thread or not. As a result, it would be a real source

of noise that the system's fine-grained tuning would

need to take into account.

This expanded definition allows for an intriguing

connection to be made between the high-priority

interference frequently taken into account in real-time

systems theory and OS noise, a metric from the HPC

realm.

This broadens the scope of the approach beyond the

HPC and NFV use cases, making it possible to

practically profile all the sources of interference that

may impact a task running under a specific scheduler

configuration, such as a thread running at a specific

priority under Linux's fixed-priority scheduler. In

fact, because of this more inclusive definition, the

osnoise tracer can now be used to monitor all high-

priority interference in a broader sense, in addition to

to noise that is specifically connected to the operating

system.

Under Fixed-Priority Scheduling, Generalised (OS)-

Noise. We consider the situation where a designer must

decide whether a thread of interest (such as a

constrained-deadline sporadic task [2]) will finish on

time in a partitioned scheduling setting where

workloads are considered for each processor

separately. In order to achieve this, the conventional

worst-case response time equation might be used.

Although it is theoretically possible to use Equation

at design time, it is frequently challenging. In fact, it is

challenging to obtain accurate WCET estimates for

user threads on modern heterogeneous computing

platforms due to a number of design principles used to

improve average-case performance (e.g., complex

cache hierarchies [2], un-revealed memory controller

policies [3], out-of-order execution, etc.). It is

considerably more challenging to obtain an arrival

curve for OS threads and interrupt service routines

because

International Journal of Engineering Research & Technology (IJERT)

ISSN: 2278-0181http://www.ijert.org

IJERTV12IS110098
(This work is licensed under a Creative Commons Attribution 4.0 International License.)

Published by :

Vol. 12 Issue 11, November-2023

www.ijert.org
www.ijert.org

they also lack knowledge about the arrival pattern. In these

circumstances, the high-priority interference in Equation

(1) can be empirically measured using osnoise. For

instance, the system engineer can configure osnoise to run

under SCHED_FIFO at the same priority, exposing the

measurement thread to the same sources of noise, to

estimate the high-priority interference faced by an NFV

workload running at a given priority under SCHED_FIFO

(a common use-case).

4. CONNECTED WORK

Operating system noise has long been acknowledged to

have detrimental effects on workload performance [7].

Petrini et al.'s [5] study is one of the earliest efforts

addressing the issue of identifying OS noise, and it

discovered and reduced several sources of noise for an

HPC application operating on the ASCI Q supercomputer.

In a subsequent work, the investigation was expanded [2].

By injecting interference at the OS level, Ferreira et al. [2]

presented a characterization of application sensitivity to

the noise.

Workload and trace-based approaches are the two

categories into which Linux tools for detecting OS noise

are split in the paper's introduction.

For example, if Γh is a sporadic thread with minimum

inter-arrival time Ti, it holds ηhΔ=Th. Some workload-

based methods run micro- benchmarks with a known

duration and measure the difference between the expected

duration of the micro benchmark and the actual time

needed to process it. For this category, Sottile and

Minnich's [3] Finite-Time Quantum (FTQ) benchmark is

one pertinent example. The number of fundamental

operations carried out in a given amount of time was

assessed by FTQ. Another study by Tsafrir et al. [1]

measured OS noise using micro benchmarks in

combination with a "smart timers"-based technique. of

these technologies, however, are unable to identify the

underlying sources of the OS noise.

The usage of additional tools that take a trace-based

approach can solve this issue. De et al. [3], for instance,

proposed a technique to locate the OS jitter sources using

kernel instrumentation and OProfile. The authors gathered

data on interruptions and preemptions. Later, Morari et al.

[6] suggested an alternative instrument to measure OS

noise, but they did so by utilising a similar (but extended)

method based on kernel instrumentation and extending the

LTTng [37] tracer. Regarding [3], the work by Morari et

al. enables the capture of other OS noise causes, such as

softirqs. Another method to instrument the Linux kernel

and quantify OS noise during application execution by

using KTAU [3] was suggested by Nataraj et al. [3].

Gonzalez et al. [4], in more recent work, introduce Jitter-

Trace, a programme that makes use of data from the perf

tracer. However, none of these trace-based approaches

take into account how workloads interpret noise.

Fig. 2. Osnoise summary output from ftrace interface.4

International Journal of Engineering Research & Technology (IJERT)

ISSN: 2278-0181http://www.ijert.org

IJERTV12IS110098
(This work is licensed under a Creative Commons Attribution 4.0 International License.)

Published by :

Vol. 12 Issue 11, November-2023

www.ijert.org
www.ijert.org

Fig. 2. Osnoise summary output from ftrace interface.4

Sysjitter [2] is a workload-based solution that is

frequently used by professionals. By running a thread on

each CPU and keeping note of how long the thread is not

operating, for example because of OS operations, it

analyses OS noise. Oslat [3], jHicckup [4], and

MicroJitterSampler [5] are further comparable tools. All .

In contrast to earlier work, the osnoise tool suggested in

this research combines the best aspects of workload- and

trace-based approaches, making it possible to identify the

underlying causes of operating system noise while also

taking into account how the workload interprets the noise.

The only tool for directly monitoring OS noise that has

lately been included in the core Linux kernel [1] is

osnoise, which is available for use on a vast array of

devices.

5. The Osnoise Tracer

This part introduces the osnoise tracer, which

makes use of the guidelines in part 2.1 to accurately

profile each task's execution time by deducting the

time spent on each interfering activity from the task's

measured runtime. The programme can be used with

any of Linux's preemption models, from the non-

preemptive kernel through PREEMPT_RT, and is not

restricted to any one particular preemption model.We

first give a high-level overview of the tool before

getting into the internals. Osnoise includes two parts,

the workload and the tracing components, as was

already described.

5.1 The osnoise Workload Threads

Measurement threads for the osnoise workload

operate per- CPU.On each CPU, osnoise automatically

spawns a periodic kernel thread. Any Linux scheduler,

including SCHED_DEADLINE, SCHED_FIFO,

SCHED_RR, or CFS, may be given the task of

scheduling the kernel thread.Every thread has a

runtime that is predetermined. The workload thread's

main goal is to identify time that was taken from its

execution and is therefore regarded OS noise. Every

osnoise thread functions by reading the time

repeatedly. A fresh noise sample is gathered

whenever it notices a gap between two successive

measurements that is greater than a predetermined

tolerance level.

The function trace_- local_clock() is used to read the

time. This architecture-specific nonblocking function

offers a compact CPU- level coherent timestamp with

the same precision as other ftrace tracing techniques,

at the nanosecond granularity.

Preemption and IRQs are turned on for the thread. This

makes it possible for any Linux task abstraction to

preempt it at any time.

The workload presents a summary of the OS noise

encountered by the current activation after runtime

microseconds have passed since the first time read of

the current period. This summary is shown utilising

Linux's tracing features, as shown in Fig. 2.

According to the osnoise summary, RUNTIME IN US,

or the number of milliseconds that OSNOISE looped

over the timestamp. NOISE IN US, or the total

quantity of noise measured in milliseconds during the

related runtime. PERCENTAGE OF CPU

AVAILABLE, or the portion of the CPU that the

osnoise thread had access to throughout the

measurement period. MAX SINGLE NOISE IN US,

or the longest single instance of noise that was recorded

during the runtime in milliseconds.

The interference counters: osnoise keeps an

interference counter for each type of interference

among the classes NMI, IRQs, softirqs, and threads.

The interference counter is raised in response to an

entrance event of an activity of that type.

Because osnoise was running on a virtual system,

the interference caused by virtualization is identified as

hardware noise, which is why Fig. 2 displays a high number

of hardware noise samples.

5.2 The Osnoise Dimensions

There are a few parameters for the osnoise tracer.

These choices are available through the ftrace interface,

and they are:

CPUs on which an osnoise thread will run are listed as

osnoise/cpus. osnoise/period_us: the osnoise thread s's

International Journal of Engineering Research & Technology (IJERT)

ISSN: 2278-0181http://www.ijert.org

IJERTV12IS110098
(This work is licensed under a Creative Commons Attribution 4.0 International License.)

Published by :

Vol. 12 Issue 11, November-2023

www.ijert.org
www.ijert.org

period (in milliseconds).osnoise/runtime_us: the duration

(in milliseconds) for which an osnoise thread will search

for noise occurrences.When a single noise event occurs

that exceeds the configured value in milliseconds, the

system tracing is stopped by the osnoise/stop_tracing_us

command. This option is disabled by writing 0.When total

noise occurrence exceeds the configured value in

milliseconds, the system tracing is stopped using the

osnoise/stop_tracing_total_us command. This option is

disabled by writing 0.tracing_threshold: the minimum

difference in time between two time reads to be regarded

as a noise occurrence, expressed in milliseconds. The

default value will be utilised if the value is set to 0, which

currently 5µs.

entry and exit events and uses it to: 1) account for how

often each of these task classes added noise to the

workload; 2) compute the value of the interference

counter used by the workload to determine how many

interferences occurred between two consecutive reads of

the time; and, 3) compute the value of the interference

counter used by the workload to determine how long the

present interrupting task will take to complete; 4) using

the procedures discussed in Section 2.1 to deduct the

noise occurrence time of a preempted noise

occurrence.A single tracepoint from osnoise is generated

at the exit probe of each of these interference sources,

indicating the noise-free execution duration of the task's

noise detected via trace.The osnoise workload emits a

tracepoint whenever a noise is discovered in addition to

the tracepoints and the summary at the end of the period.

This tracepoint provides information on the interference

that occurred between the two successive time reads as

well as the noise that was detected by workload. To

clearly identify the source of a given noise, interference

counters are essential.For instance, in Fig. 4, the last line

represents the tracepoint produced by the workload and

refers to the previous four interferences, while the first

four lines reflect the noise as recognised by the trace.

The data for Figs. 3 and 4 came from the same trace

file.The former contains the tracepoints that were

previously present, whereas the latter contains the new

tracepointsthat osnoise added to the kernel. With these

two examples, it is clear to see that the information the

osnoise tracepoints relay is less and more

comprehensible.It is significant to note that the duration

supplied by the irq_noise and thread_noise are free of

interference with regard to the noise reported in Fig.

4.For instance, the start time of the local_timer:236 is

later than that of the sleep-5843.This indicates that, in a

case of nested noise, local_timer:236 preempted sleep-

5843.However, the local_timer:236 subtracted its own

length from that of sleep-5843.By eliminating the

meticulous work of manually computing these variables

or computing them using a script in user-space, this

makes it easier to debug the system.

The osnoise Tracing Features

One of the fundamental building blocks of Linux

kernel tracing is the tracepoint. The tracepoints are locations

in the kernel code where a probe can be connected to

execute a function. They are most frequently used to gather

trace data. Take the callback function that ftrace registers to

the tracepoints as an example.These callback processes

gather the information and store it in a trace buffer. A

tracing interface can then access the data in the trace buffer.

An illustration of tracepoint output using the ftrace interface

is shown in Fig. 3.Tracepoints can be used for more than just

buffering data. Many more use cases have made use of

them. For instance, alter network packets or modify the

kernel at runtime [2].

Fig. 3. Example of tracepoints: IRQ and thread context switch events read from ftrace interface4

International Journal of Engineering Research & Technology (IJERT)

ISSN: 2278-0181http://www.ijert.org

IJERTV12IS110098
(This work is licensed under a Creative Commons Attribution 4.0 International License.)

Published by :

Vol. 12 Issue 11, November-2023

www.ijert.org
www.ijert.org

Fig. 4. Example of tracepoints: osnoise events read from ftrace interface with
equivalent data highlighted4

.

Additionally, tracepoints can be used to enhance the tracing

process. While the overhead associated with writing data to the

trace buffers

has been minimised, it is still feasible to pre-process data in the

tracepoints in a way that reduces the amount of data written to the

trace buffer. When trace processing has a lower overhead than

writing trace to the buffer, this strategy has demonstrated good

success in lowering tracing overhead [4].

The present tracing infrastructure is used by the

osnoise tracer in two different ways. It creates a new set of

tracepoints with pre- processed information and adds

probes to existing tracepoints to collect information.

Linux already provides tracepoints that stop threads,

softirqs, and IRQs at their entry and exit points. Osnoise

attaches a probe to all

Additionally, by lowering the amount of data stored in the trace

buffer, resource consumption and overhead are

decreased.Another crucial point to note is that, as shown in Fig.

5, the overall noise noticed via trace accounts for 1409532 ns6,

whereas the noise observed by workload reports 5092 ns more

(1414624 ns).

fig. 5. Graphical representation of Fig. 4.

5.3 The osnoise Internals

The Linux kernel's parallel and re-entrant code makes

it difficult for the osnoise tracer to measure potential noise

sources at the single- digit millisecond scale. This section

lists some of these difficulties along with solutions.

5.3.1 Task and Memory Model

The SPMD model, which is described in Section 2, is

used in osnoise to simulate applications created with it.

The osnoise workload component is run via a per-CPU

kernel thread that is created when the tracer is dispatched.

Each per-CPU thread's affinity is set up to only run on the

target CPU. The user can modify the configuration of each

thread while the workload is executed. Since this data is

only retrieved sometimes outside of the primary workload

loop, it is not a concern for the measurement stage. The

configuration is secured with a mutex.

The thread only accesses the per-CPU structure that

corresponds to the CPU on which it is now running, which

is where the runtime data used during the measurement

phase is organised. The goal of osnoise is to mimic a user-

space workload that adheres to the specifications listed in

Section 2.1. All of the OS job types discussed in Section 2

can specifically preempt a userspace workload on Linux.

There are ways to temporarily turn off thread preemption,

softirqs, and interrupts, but they come with certain

unfavourable consequences. For instance, turning off

interrupts is an expensive action that should be avoided

when overhead is to be kept to a minimum, such as on the

Linux tracing subsystem.

5.3.2 Addressing Code Reentry

Osnoise's capacity to correlate the workload with the

quantity of interferences that result in an observed noise is

one of its primary advantages. This capability is crucial to

prevent debugging from going in the wrong directions and

delaying the troubleshooting of crucial and expensive

systems by preventing conjecture about the events that

generated a noise. However, while taking into account the

probability of preemption, reading the current time

consistently with the interference counter is not a simple

task. Think about the pseudo- code in Fig. 6, for instance.

One interrupt more than the number at the moment the

timer was read would be taken into consideration by the

interference counter.

These issues have primarily been resolved in osnoise

via two techniques: compiler barriers and local atomic

variables. Fig. 7 displays an excerpt from the present code.

International Journal of Engineering Research & Technology (IJERT)

ISSN: 2278-0181http://www.ijert.org

IJERTV12IS110098
(This work is licensed under a Creative Commons Attribution 4.0 International License.)

Published by :

Vol. 12 Issue 11, November-2023

www.ijert.org
www.ijert.org

A local atomic integer, also known as an atomic type

of integer coherent in the local CPU, is the definition of

the interference counter. The current time is read between

two interference counter reads to make sure it agrees with

the interference counter. Compiler barriers are also used

to prevent compiler improvements that can reorder the

interference counter read and cause the current time to no

longer be protected.Other non-atomic processes, include

calculating the interference-free noise for the osnoise

tracepoints in Fig. 4 using the interference-free noise

technique.

6. EXPERIMENTAL RESULTS

This section provides information on how osnoise is

used to measure and trace a system. The computer is a

Dell workstation with a 12-core, 24-thread AMD

Ryzen 9 5900 processor. The machine is set up with

Fedora Linux 35 server and utilises a PREEMPT_RT

patched kernel 5.15. To get a summary of the OS noise

and a histogram of each noise event, the osnoise tool

from rtla has been used.The system's initial

configuration under consideration is referred to as "as-is"

and has no adjustment applied. When best practises for

CPU isolation are used, the system is considered to be

tuned. In this scenario, the CPUs f0; 1g are set aside for

user housekeeping and operating system duties.The

workload execution is reserved for CPUs f2;... ; 23g, and

osnoise is configured to execute on these CPUs. One

step in system tuning is to set the CPU frequency

governor for performance. Utilising CPU Isolation

Features, Enabling RCU Callbacks Offload, Enabling

Nohz_Full Configuration, and Transferring All

Potential Kernel Threads and IRQs to the CPUs F0; 1G

are the other four steps.

The task priority for osnoise workload threads is set to

default (SCHED_OTHER with 0 nice). Users

frequently establish a real- time priority for the task in the

NFV use case, though. Additional experiments have

been carried out to assess this particular

circumstance as well. The osnoise workload has been

configured to run with priority 1 under SCHED_FIFO in

the experiments designated as FIFO:1.

The workload has been configured with default

parameters for the typical situation (i.e.,

SCHED_OTHER with 0 nice), thus it runs with a one-

second runtime and period while attempting to

monopolise the CPU.

It was necessary to configure the system and

workload in more detail for the FIFO:1 situation. In

order to prevent RCU [11] stalls, the system

configuration includes turning off Linux's runtime

throttling mechanism, allowing real-time threads to use

more than 95% of the CPU, and setting the

ksoftirqd (the thread in charge of processing softirqs

when using PREEMPT_RT) and RCU per-CPU

threads with FIFO 2 priority. The workload is set to run

for 10 seconds at a time, and the runtime is adjusted to

allow 100µs between each period so that any thread that

is starving for time can execute. The tolerance

threshold was set to 1 µs in the end.

6.1 Percentage of OS Noise

For all tune/FIFO priority scenarios collecting the

OS noise summary, a six-hour experiment was run.

Fig. 8 displays a summary of the percentage OS

noise.The greatest observed total noise for the As-is

system was 0:5484%, whereas the minimum for both

Tuned cases was 0:00001%. It is also feasible to

observe that the CPU isolation features are the primary

source of OS noise reduction. The majority of the work

still left for isolated CPUs is necessary for the OS,

mostly in the IRQ context, which is the cause.In order

to limit the worst-case scheduling latencies, these

experiments were carried out using the PREEMPT_RT

kernel, which has additional overheads in the average

scenario.In this configuration, Linux is able to offer

low OS noise for polling-based applications and low

latency for interrupt-based workloads in a single

solution. This adaptability is crucial for NFV

deployments that include dynamic and varied

workloads on the same host.

Fig. 6. Code reentrancy problem when incrementing the

International Journal of Engineering Research & Technology (IJERT)

ISSN: 2278-0181http://www.ijert.org

IJERTV12IS110098
(This work is licensed under a Creative Commons Attribution 4.0 International License.)

Published by :

Vol. 12 Issue 11, November-2023

www.ijert.org
www.ijert.org

6.2 Analysis of OS Noise Occurrence

For every tune/FIFO priority situation, an experiment lasting six

hours was run, capturing a histogram for every instance of noise that

was found. This experiment is crucial for the NFV use case since a

single extended noise event could result in a network packet

processing queue overflow.

Fig. 9 presents the findings.

With the help of this experiment, it is feasible to demonstrate in

Fig. 9a the primary issue with using the system As-is. The maximum

value of the Theosnoise workload, which recognised 230 out-of-scale

noise samples, was 13045 milliseconds. Additionally, Fig. 9b

demonstrates that employing FIFO:1 in the system as-is is a simple

way to lower the maximum single noise occurrence value.

As-is using FIFO:1: however, when compared to the Tuned

alternatives in Figs. 9c and 9d with or without employing FIFO:1, it

has two significant drawbacks. The high frequency of noise

occurrences is the first. The nohz_full option in the Tuned

experiment limits the frequency of scheduler ticks, which in turn

reduces the execution of the ksoftirqd kernel thread that checks for

expired timers and subsequent actions. The tail latency, which is less

on the Tuned instances, is another distinction. Section 6 explores this

distinction.3. When compared to the system as-is, the findings with

the system tuned in Figs. 9c and 9d reveal that the tune significantly

alters the entries and length of each noise event. To make the Tuned

examples easier to see, Figs. 9e and 9f have been included.

6.3. Using osnoise to Find Latency Sources

With regard to tail latency, the experiment using the system as-is

and FIFO:1 produced an intriguing result, with just a small number

of samples exceeding the 30 ms threshold. The osnoise tracer was

configured to trace the osnoise events, stopping the tracer when a

noise occurrence above 30 ms was detected, in order to better

understand the causes of these occurrences that last longer than 30

ms. Figure 10 depicts the trace with only osnoise events. It displays

an interrupt noise that is brought on by the eno1 ethernet driver's

interrupt number 62. Immediately following the ksoftirqd's

scheduling, a long-duration noise incident occurs. In the

PREEMPT_RT kernel, the softirq jobs context is managed by the

ksoftirqd thread (recall from Section 2.1 that under PREEMPT_RT,

the softirq context does not exist, and softirq jobs run in the thread

context).The only events that provide information on softirqs were

enabled after it became clear that softirqs are what's causing the issue

since choosing a minimal number of tracing events prevents

overhead from having a significant impact on the system's timing

behaviour. In Fig. 11, the trace once more displayed a comparable

output. This trace demonstrates that the ksoftirqd's activation was

caused by the network receive (NET_RX) softirq. The network

driver, which is running in the same CPU, activates the NET_RX

softirq. This is a consequence of the interrupt being caused by the

eno1 ethernet driver. In light of this proof, the IRQ 62 was set up to

fire in the CPUs 1:20:1. The experiment in Fig. 9b was repeated with

this configuration applied for six hours, and the results are displayed

in Fig. 12.

Fig. 7. Code excerpt of set_int_safe_time(): how osnoise deals with reentracy problems

The tuned kernel was able to produce consistent results, and the

tuned kernel employing FIFO:1 was able to deliver noise occurrences

with a maximum time below 5 ms. This is due to the real-time

scheduler deferring background OS processes that are carried out by

threads without causing a systemic problem. As an illustration, jobs

are distributed across all CPUs via k workers threads that carry out

deferrable work [5] to prevent serious issues, these still need to be

able to operate. As a result, it is wise to be aware of this property and

give up some CPU time when it would not negatively impact

performance (for example, when network buffers are empty), even if

it is only for a brief period of time like 100 µs once every 10 seconds.

These tests further demonstrate the minimal influence the osnoise

internals have on the evaluation, allowing the user to access data at

the µs granularity commonly utilized by professionals on other tools

like cyclic test. It is important to stress that the conclusions presented

in this section only pertain to the specific case at hand. The hardware,

CPU count, auxiliary operating system features, and ambient

conditions may all affect the results. Thus, the value of a programme

that provides an integrated OS noise benchmark and suggestions for

system fine-tuning.

The tail latency could be reduced to values like the system with
just this configuration. tuned, with osnoise's debugging assistance.

Fig. 8. Average percentage of OS noise observed by the workload
on different scenarios. Error bars represent the range between
minimum andmaximum percentage.

International Journal of Engineering Research & Technology (IJERT)

ISSN: 2278-0181http://www.ijert.org

IJERTV12IS110098
(This work is licensed under a Creative Commons Attribution 4.0 International License.)

Published by :

Vol. 12 Issue 11, November-2023

www.ijert.org
www.ijert.org

Fig

Fig. 10. osnoise t racer finding source of latencies4.

Fig. 11. osnoise tracer supplemented with other events determining the source of latencies4.

Fig. 9. osnoise noise occurrence per-cpu histogram under different system setup, mixing CPU isolation tune and real-time
priority for the workload (less noise occurrence and less occurrence count is better).

International Journal of Engineering Research & Technology (IJERT)

ISSN: 2278-0181http://www.ijert.org

IJERTV12IS110098
(This work is licensed under a Creative Commons Attribution 4.0 International License.)

Published by :

Vol. 12 Issue 11, November-2023

www.ijert.org
www.ijert.org

.

Fig. 12. After moving the network IRQ as suggested by the trace in Fig.

11, as-is utilising FIFO:1.

7. CONCLUSION AND FUTURE WORK

Modern low latency communications and network function

virtualization have increased the demand for Linux systems

with minimal OS noise and scheduling lag.These real-time

HPC tasks demand noise of a few tens of microseconds or

less.debugging these situations is a difficult effort, though.

Workload-based methods provide accurate measures

but do not identify the underlying problem. Trace-based

measures reveal the cause but do not accurately depict the

noise that the thread has actually seen.Practitioners

combine the two approaches, but doing so necessitates a

thorough understanding of the tracing features and

frequently causes the inquiry to be misled because the

trace is out of sync with the workload or adds too much

overhead.

The osnoise tool combines the workload and tracing,

delivering accurate information with little overhead by

processing and exporting only the data required for

identifying the primary reasons of the latency, providing a

solid place to start the investigation.The use of the rtla

osnoise interface to gather data has made it possible for the

tool to function as a tracer and benchmark tool, according

to the experimental results. The test demonstrates Linux's

ability to produce exceptionally low OS noise, with

maximum sample noises as low as less than 5 µs. However,

the tool's ability to follow the kernel and produce results at

the necessary scale is more significant.The osnoise

tool and rtla osnoise interfaces are both built into the

Linux kernel and are thus available to all Linux users.The

osnoise tracer may be used with many other existing

tracing tools because it makes use of the most

fundamental components of the Linux tracing sub-

system, such as performance counters offered by the perf

tool or graphical user interfaces offered by LTTng and

KernelShark. This opens up an infinite number of

opportunities for future research, such as expanding the

osnoise measurements to incorporate data from the

memory/cache, workload-dependent techniques, other

clock sources, and energy-aware techniques. Another

option is to extend the analysis using a more formal

methodology. Another option is to carry out experimental

evaluations using different Linux real-time schedulers, such

as SCHED_DEADLIN

REFERENCES

[1] "On certain integrals of Lipschitz-Hankel type involving

products of Bessel functions," Phil. Trans. Roy. Soc. London,

vol. A247, pp. 529–551, April 2018 (references)

[2] J. Clerk Maxwell, Third Edition, Volume 2 of A Treatise on
Electricity and Magnetism. Clarendon, 2019, Oxford, pp. 68– 73.

[3] C. P. Bean and I. S. Jacobs, "Fine Particles, Thin Films, and

Exchange Anisotropy," in Magnetism, vol. III, G. T. Rado, and
H. Suhl, Eds., New York: Academic, pp. 271-

350.K. Elissa, ―Title of paper if known,‖ unpublished.

[4] R. Nicole, "Title of paper with only first word capitalised,"
Journal of Name Abbreviation, under consideration.

[5] "Electron spectroscopy studies on magneto-optical media and

plastic substrate interface," IEEE Transl. J. Magn. Japan, vol. 2,
pp. 740–741, August 2018 [Digests 9th Annual Conf. Magnetics

Japan, p. 301, 2019]; Y. Yorozu, M. Hirano, K. Oka, and Y.

Tagawa.
[6] The Technical Writer's Handbook, M. Young [6]. University

Science, Mill Valley, California, 2020.

[7] The Technical Writer's Handbook by M.Young. University
Science,MillValley, California,2019

International Journal of Engineering Research & Technology (IJERT)

ISSN: 2278-0181http://www.ijert.org

IJERTV12IS110098
(This work is licensed under a Creative Commons Attribution 4.0 International License.)

Published by :

Vol. 12 Issue 11, November-2023

www.ijert.org
www.ijert.org

