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Abstract— A new set of specifications are put forth for 

operating system developers as modern network 

infrastructure transitions from hardware-based to 

software-based employing Network Function 

Virtualization. For this new architecture that promises to 

provide a new set of low latency networked services, Linux 

is becoming a key building piece by utilising the real-time 

kernel choices and enhanced CPU isolation capabilities 

common to the HPC use-cases. The Linux execution 

model, as well as the combination of user-space tooling 

and tracing features, must be thoroughly understood in 

order to tune Linux for these applications. This paper 

explains how Linux's intrinsic components affect 

operating system noise from a time standpoint. The 

relevant application areas, difficulties, and most crucially, 

the gaps for future research, are described in depth. 

Additionally, it introduces Linux's in-kernel osnoise tracer, 

which enables integrated measurement of operating 

system noise as experienced by a workload and tracing of 

the sources of the noise to aid in system analysis and 

debugging. This study concludes with a series of 

experiments showing Linux's capability to give minimal 

OS noise (in the single-digit ms order) as well as the 

capability of the suggested tool to provide accurate 

information about the root-cause of timing-related OS 

noise concerns. 

Keywords— High-performance computing, the Linux 

kernel, operating system noise, and soft real-time systems. 

1. INTRODUCTION

Despite being general-purpose, the Linux Operating System 

(OS) has shown to be a viable solution for a variety of extremely 

specialised applications. For instance, all 500 of the top 

supercomputers in the High-Performance Computing (HPC) 

sector run Linux.1 It can also be found in the field of embedded 

real-time systems, extending beyond the realms of space and 

industrial automation and robot control [1]. These 

accomplishments are made possible by Linux's extensive 

configuration choices, particularly its kernel.The creation of 

fundamental services that enable contemporary networking 

infrastructures and the Internet is another noteworthy area 

where Linux plays a crucial role. 

This domain is transitioning from the old paradigm of 

hardware appliances sized for peak-hour to the new one of 

flexible software- based and programmable networking 

services with horizontal elasticity abilities to adapt  

dynamically to the workload conditions with the help of 

Network Function Virtualization (NFV) [2] and Software-

Defined Networking (SDN) [3]. These new architectures 

frequently rely on all-purpose hardware [4] and Linux-based 

software stacks [5]. This paradigm serves as the foundation 

for the 5G network stack, which is enabling a new set of 

services with stringent timing constraints [6]. In previous 

networks, these were typically satisfied by using physical 

equipment. However, the new5 G stack mandates that these 

standards be met by software- based appliances, which calls 

for the assistance of a real-time operating system. Latencies, 

for instance, are on the order of tens of microseconds in the 

Virtualized Radio Access Network (vRAN) [4]. Time and 

processing delay became one of the key criteria for suppliers 

in this market as a result of this necessity [3], hardware.and 

Linux are set in accordance with best practises from both the 

real- time and HPC domains to meet these stringent timing 

constraints. 

To this purpose, the hardware is set up to provide the best 

performance/determinism trade-off. This configuration 

involves changing the processor's speed and power-saving 

settings while eliminating elements like system management 

interrupts (SMIs) that can result in hardware- induced 

latencies. 

In terms of the Linux configuration, an HPC system will 

often be divided into a number of separated and 

housekeeping CPUs. The CPUs used for housekeeping are 

those that perform the tasks required for routine system 

operation. This includes threads dispatched by daemons and 

users as well as kernel threads in charge of internal 

operations like RCU (read-copy-update) call- back threads 

[1] and kworkers, which are kernel threads that carry out

postponed tasks. Housekeeping CPUs are also forwarded the

IRs (Interrupt Requests) from general systems. In this

manner, the isolated CPUs are subsequently assigned to the

NFV tasks. Although Linux now offers a high level of CPU

isolation, all CPUs still require some housekeeping work.

For instance, in some circumstances, the timer IRQ must still

occur, and certain kernel operations require the dispatch of

a kworker for all active CPUs. In order to offer bounded

wakeup latencies, the kernel is typically configured with the

fully preemptive mode (using the PREEMPT_RT patch-set

[2]) and NFV threads are frequently configured with real-

time priority.

Linux experts utilise synthetic workloads that imitate the 

behaviour of these intricate circumstances in order to 

diagnose and assess the system configuration. While 

waiting for packets, NFV applications can be 
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continuously running or interrupted by polling the 

network device. However, this is not the case for the 

interference that threads experience. The Linux wakeup 

latency has been thoroughly researched from the real-time 

perspective [3]. However, the HPC community has 

already extensively examined this topic in a metric known 

as OS noise [5], [6]. This study focuses on the Linux OS 

noise measurement and analysis in practise from a real-

time perspective. 

Why Another Tool Again? Over the years, a number of 

techniques have been presented to measure OS noise, and 

they can be divided into two groups: workload-based 

methods and trace-based methods.Both of them have 

benefits and drawbacks, which are covered in great detail 

later in the paper. In conclusion, workload simulation 

techniques can consider the OS noise measurement as a 

statistic supplied by the workload. For instance, by 

determining how much time passed between two 

consecutive time reads or by counting the number of 

processes that were successfully completed. The 

drawback of workload- based solutions is that they don't 

offer any insight into what is causing the noise in the first 

place. Contrarily, trace-based approachesreveal plausible 

reasons for latency spikes but are unable to take into 

consideration how the workload interprets thenoise 

Since version 5.14, the os noise tracer has been a 

recognised component of the Linux kernel. This shows 

that the abstractions and technologies utilised by os noise 

have been approved by real-time, scheduling, and tracing 

experts during the extensive kernel revision process. Since 

the 5.17 release of the Linux kernel, the tracer is a user-

space tool that can be used through the rtla (Real-Time 

Linux Analysis) toolset. This makes it simple for 

developers to add new features and practitioners to test 

their systems. 

Contributions in paper. This article offers three 

contributions: 

present a kernel tracer that can measure OS noise 

using the workload approach and provide tracing 

information necessary to identify the tasks affected 

by OS noise, which can be caused not only by the 

OS but also by the hardware or virtualization 

layer; (II) propose a precise definition of the causes 

of OS noise in Linux, from the real-time 

perspective; (III) describe empirical measurements 

of the OS noise from several Linux configurations 

that are frequently used in NFV systems, 

demonstrating how the tool may be used to 

identify the underlying causes of excessive latency 

spikes and allow for more precise system tuning. 

2 BACKGROUND 

We begin by providing the necessary context. The Linux 

execution contexts are first presented in Section 2.1 along 

with their relationship. The hierarchy of Linux schedulers 

is then outlined in Section 2.2, along with a list of the 

most popular tracers.Keep your text and graphic files 

separate until after the text has been formatted and styled. 

Do not use hard tabs, and limit use of hard returns to only 

one return at the end of a paragraph. Do not add any kind 

of pagination anywhere in the paper. Do not number text 

heads-the template will do that for you. 

2.1 Linux Execution Contexts and Their Relation 

Non-maskable interrupts (NMIs), maskable 

interrupts (IRQs), softirqs (delayed IRQ activities) 

(notice that in the PREEMPT_RT, the softirq context is 

relocated from its own execution context to operate as a 

regular thread), and threads are the four primary 

execution contexts in Linux [12]. In the following, we 

simply refer to all of them as tasks when there is no clear 

reason to differentiate between them. The interrupt 

controller, which queues and dispatches numerous IRQs 

and one NMI for each CPU, is in charge of managing 

interrupts. Since the NMI handler has the greatest 

priority on each CPU and cannot be hidden, it has the 

ability to preempt IRQs and threads. Softirqs and threads 

can both be preempted by IRQs, unless they have been 

momentarily disabled within crucial kernel regions. 

Software abstraction called Ssoftirq executes after IRQ 

execution in the default kernel setup, preempting threads. 

The task abstraction that is controlled by Linux 

schedulers is threads.The following guidelines define the 

execution contexts in 

 LINUX: 

The per-CPU NMI, once begun, runs to completion. 

R1 The per- CPU NMI preempts IRQs, softirqs, and 

threads.Softirqs and threads may be preempted by R3 

IRQs. R4 An IRQ that has already begun is not 

interrupted by another IRQ.Threads may preempt 

using R5 Softirqs. R6 A softirq cannot be preempted 

by another softirq once it has begun. R7 The NMI, 

IRQs, and SOFIRQs are not preemptibleby threads. 

Fig. 1. The single-program multiple-data (SPMD) model used for 

HPC workloads, and the effects of the OS noise. 
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2.2 Schedulers and tracing for Linux 

The Linux scheduler and tracing mechanisms are then 

introduced. 

Schedulers. Linux contains a hierarchy of five 

schedulers that manage all threads regardless of their 

memory contexts (such as kernel threads or user-space 

process context). The following thread to run is chosen 

by querying the five schedulers in a predetermined 

order. The first one is thestop-machine, which 

functions as a phoney scheduler for kernel facilities. 

The second is SCHED_DEADLINE [1], a real-time 

scheduler based on earliest deadline first (EDF) that 

uses deadlines. A POSIX-compliant fixed-priority 

real-time scheduler is the third option. This scheduler 

supports both aSCHED_RR and aSCHED_- FIFO 

thread types. In this scenario, SCHED_RR threads are 

scheduled in a round-robin fashion with a specific time 

slice, while SCHED_FIFO threads only release the 

CPU on suspension, termination, or preemption. The 

difference between the two is only for threads with the 

same priority. The perfectly fair scheduler (CFS), also 

known as SCHED_OTHER, is the fifth scheduler and 

is a general-purpose scheduler. Finally, theIDLE 

scheduler returns the idle thread when no ready threads 

are available from these schedulers. 

Tracers. There are many tracing features available in 

Linux. For instance, various functions called in kernel 

context can be tracked, as can individual events like 

scheduling choices. Due in large part to the fact that 

they do not increase system overhead when not in use, 

these features are available for usage in the majority of 

Linux distributions. Ftrace is a set of tracing features 

built into the kernel that are intended to make it easier 

for users to monitor in-kernel operations. 

 MOTIVATING FACTORS AND PROPOSED 

STRATEGY 

The issue and the driving forces behind this study are 

then introduced. A common issue in the HPC 

community is OS noise, often known as OS jitter [5], 

[6]. Most HPC workloads adhere to the single-program 

multiple-data (SPMD) model, which is seen in Figure 

1. A parallel job in this model consists of one process

for each of the M processors that make up the system

[1]. The execution starts with a simultaneous dispatch

of all processes. After the execution is complete, the

process synchronises to create the finished product and

then repeats itself repeatedly. The scheduler decisions of 

each local processor significantly affect the response time 

of a parallel workload in this scenario, as some operating 

system-specific jobs need to run on all processors for the 

correct operation of the system, such as the periodic 

scheduler tick, critical kernel threads, or others. The 

adaptability of the system setup is one of the primary 

factors that contributed to Linux dominating the list of the 

top 500 supercomputers. In the configuration of these 

systems, a small number of CPUs are chosen to handle all 

operations required for system execution and operation, 

such as managing user access to the system for monitoring 

activities, running system daemons, and performing 

routine maintenance tasks, while a large number of CPUs 

are shielded from the majority of operating noise that users 

or the OS may produce. In NFV, the generic network stack 

of the operating system is frequently bypassed in order to 

achieve high throughput, with all network packet 

processing taking place in user-space by a dedicated 

process that manages the network flows. Similar to the 

HPC scenario, these processes are given exclusive access 

to resources, such as exclusive isolated CPUs. Some of 

these network applications poll the network in a busy-wait 

mode, most notably using the DPDK's Poll Mode Driver 

(PMD), to further reduce the latency for handling new 

packets.2 The Linux setup follows the same procedure as 

HPC in this use scenario. Real-time limitations, like those 

in the order of tens of microseconds for vRAN, are what 

set this usecase apart from the HPC one. 

Although there are some ready-made alternatives for 

providing CPU isolation, such as transferring all threads 

and IRQs to a smaller number of house-keeping CPUs, it 

is not easy to fine-tune the settings for certain time-

sensitive use-cases. The OS still needs to do some per-

CPU operations like scheduler ticks, virtual memory stat 

operations, processing of legacy network packets, etc. 

While some of these noise sources can be reduced by fine-

tuning the configuration, such as turning on NOHZ_FULL 

to lower the scheduler tick frequency, others may even 

require reworking the current kernel algorithms to either 

eliminate the noise source or add a technique to reduce the 

problem. 
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Linux is a general-purpose operating system with a 

primary focus on providing general-purpose 

functionality, notwithstanding the compelling use-case. 

Real-time and HPC groups in particular need to 

continuously monitor OS development in order to adapt 

potential non-HPC and non-RT aware capabilities for 

these particular use- cases. When there is no 

straightforward way to examine and debug them, forcing 

Linux developers to test their new algorithms against all 

the metrics for each individual use-case is impractical. 

A practitioner typically starts by producing a 

synthetic workload tomeasure the OS noise. Workload 

examples include sysjitter and itsclone, oslat. These 

utilities use architecture-specific instructions toloop 

over reading the time. 

When there is a gap between two successive time 

  readings that is more than a specific threshold, they 

classify that as a jitter. These tools don't try to link jitter to 

an underlying issue. 

Practitioners must watch the system to determine the root 

cause. Tracing is the most effective method of system 

observation. The trade-off between information and 

overhead is where employing tracing runs into trouble. 

The user must establish a relationship between the noise 

and the tracing data using a workload and tracing features. 

The fundamental reason why this link isn't always 

achievable is that the workload and the tracing features 

aren't always aware of one another. It is important to note 

that workload can also detect hardware-induced noise at 

dozens of microseconds. Hardware stalls brought on by 

shared resources, such as those in hyper-threaded 

processors or execution contexts with a higher priority 

than the OS, such as SMIs, can have a side effect called 

hardware noise. It is difficult to see the occurrences via 

trace because these acts are not a consequence of the 

operating system. This noise, which the workload sees but 

the trace doesn't, generates a grey region that frequently 

leads the analysis astray. 

   Proposed Approach 

In this research, we offer an integrated synthetic 

workload and tracing solution that tries to combine the 

benefits of workload- and tracing-based approaches 

while reducing the shortcomings of each solution. 

• Define the composition of the OS Noise on

Linux from a real-time HPC point of view,

among other actions performed for such an

approach.

• Identify the minimal number of tracing events

necessary to demonstrate the underlying cause

of each noise with a finite overhead.

• Make a synthetic workload that is aware of

tracing to enable a clear correlation between

the trace and the noise.

• Make the method production-ready with a

uniform and user-friendly interface.

1.2 Composition of OS Noise for Real-Time HPC 

Workload:The generalised definition of OS noise 

adopted in this study is as follows:((OS)-

Generalized Noise) Definition 1. When a job is 

allocated to a CPU and is ready to begin, the OS 

noise is all the time the CPU spends executing 

instructions that are not related to that task. 

The definition broadens the traditional interpretation of 

OS noise, which normally only accounts for OS-

related activities and overheads, by taking into account 

the time consumed by any intervening computational 

activity, including both OS-related activities and 

threads running in regular user-space. This is 

important because it means that any computational 

activity that could interfere with the measurement 

thread would also interfere with any other user thread 

running with the same scheduler and scheduler settings 

(for example, priority), regardless of whether it is an 

OS thread or not. As a result, it would be a real source 

of noise that the system's fine-grained tuning would 

need to take into account. 

This expanded definition allows for an intriguing 

connection to be made between the high-priority 

interference frequently taken into account in real-time 

systems theory and OS noise, a metric from the HPC 

realm. 

This broadens the scope of the approach beyond the 

HPC and NFV use cases, making it possible to 

practically profile all the sources of interference that 

may impact a task running under a specific scheduler 

configuration, such as a thread running at a specific 

priority under Linux's fixed-priority scheduler. In 

fact, because of this more inclusive definition, the 

osnoise tracer can now be used to monitor all high-

priority interference in a broader sense, in addition to 

to noise that is specifically connected to the operating 

system. 

Under Fixed-Priority Scheduling, Generalised (OS)-

Noise. We consider the situation where a designer must 

decide whether a thread of interest (such as a 

constrained-deadline sporadic task [2]) will finish on 

time in a partitioned scheduling setting where 

workloads are considered for each processor 

separately. In order to achieve this, the conventional 

worst-case response time equation might be used. 

Although it is theoretically possible to use Equation 

at design time, it is frequently challenging. In fact, it is 

challenging to obtain accurate WCET estimates for 

user threads on modern heterogeneous computing 

platforms due to a number of design principles used to 

improve average-case performance (e.g., complex 

cache hierarchies [2], un-revealed memory controller 

policies [3], out-of-order execution, etc.). It is 

considerably more challenging to obtain an arrival 

curve for OS threads and interrupt service routines 

because 
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they also lack knowledge about the arrival pattern. In these 

circumstances, the high-priority interference in Equation 

(1) can be empirically measured using osnoise. For

instance, the system engineer can configure osnoise to run

under SCHED_FIFO at the same priority, exposing the

measurement thread to the same sources of noise, to

estimate the high-priority interference faced by an NFV

workload running at a given priority under SCHED_FIFO

(a common use-case).

4. CONNECTED WORK

Operating system noise has long been acknowledged to 

have detrimental effects on workload performance [7]. 

Petrini et al.'s [5] study is one of the earliest efforts 

addressing the issue of identifying OS noise, and it 

discovered and reduced several sources of noise for an 

HPC application operating on the ASCI Q supercomputer. 

In a subsequent work, the investigation was expanded [2]. 

By injecting interference at the OS level, Ferreira et al. [2] 

presented a characterization of application sensitivity to 

the noise. 

Workload and trace-based approaches are the two 

categories into which Linux tools for detecting OS noise 

are split in the paper's introduction. 

For example, if Γh is a sporadic thread with minimum 

inter-arrival time Ti, it holds ηhΔ=Th. Some workload-

based methods run micro- benchmarks with a known 

duration and measure the difference between the expected 

duration of the micro benchmark and the actual time 

needed to process it. For this category, Sottile and 

Minnich's [3] Finite-Time Quantum (FTQ) benchmark is 

one pertinent example. The number of fundamental 

operations carried out in a given amount of time was 

assessed by FTQ. Another study by Tsafrir et al. [1] 

measured OS noise using micro benchmarks in 

combination with a "smart timers"-based technique. of 

these technologies, however, are unable to identify the 

underlying sources of the OS noise. 

The usage of additional tools that take a trace-based 

approach can solve this issue. De et al. [3], for instance, 

proposed a technique to locate the OS jitter sources using 

kernel instrumentation and OProfile. The authors gathered 

data on interruptions and preemptions. Later, Morari et al. 

[6] suggested an alternative instrument to measure OS

noise, but they did so by utilising a similar (but extended)

method based on kernel instrumentation and extending the

LTTng [37] tracer. Regarding [3], the work by Morari et

al. enables the capture of other OS noise causes, such as

softirqs. Another method to instrument the Linux kernel

and quantify OS noise during application execution by

using KTAU [3] was suggested by Nataraj et al. [3].

Gonzalez et al. [4], in more recent work, introduce Jitter-

Trace, a programme that makes use of data from the perf

tracer. However, none of these trace-based approaches

take into account how workloads interpret noise.

Fig. 2. Osnoise summary output from ftrace interface.4  
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Fig. 2. Osnoise summary output from ftrace interface.4 

Sysjitter [2] is a workload-based solution that is 

frequently used by professionals. By running a thread on 

each CPU and keeping note of how long the thread is not 

operating, for example because of OS operations, it 

analyses OS noise. Oslat [3], jHicckup [4], and 

MicroJitterSampler [5] are further comparable tools. All  . 

In contrast to earlier work, the osnoise tool suggested in 

this research combines the best aspects of workload- and 

trace-based approaches, making it possible to identify the 

underlying causes of operating system noise while also 

taking into account how the workload interprets the noise. 

The only tool for directly monitoring OS noise that has 

lately been included in the core Linux kernel [1] is 

osnoise, which is available for use on a vast array of 

devices. 

5. The Osnoise Tracer

This part introduces the osnoise tracer, which

makes use of the guidelines in part 2.1 to accurately 

profile each task's execution time by deducting the 

time spent on each interfering activity from the task's 

measured runtime. The programme can be used with 

any of Linux's preemption models, from the non-

preemptive kernel through PREEMPT_RT, and is not 

restricted to any one particular preemption model.We 

first give a high-level overview of the tool before 

getting into the internals. Osnoise includes two parts, 

the workload and the tracing components, as was 

already described. 

5.1 The osnoise Workload Threads 

Measurement threads for the osnoise workload 

operate per- CPU.On each CPU, osnoise automatically 

spawns a periodic kernel thread. Any Linux scheduler, 

including SCHED_DEADLINE, SCHED_FIFO, 

SCHED_RR, or CFS, may be given the task of 

scheduling the kernel thread.Every thread has a 

runtime that is predetermined. The workload thread's 

main goal is to identify time that was taken from its 

execution and is therefore regarded OS noise. Every 

osnoise thread functions by reading the time  

repeatedly. A fresh noise sample is gathered 

whenever it notices a gap between two successive 

measurements that is greater than a predetermined 

tolerance level. 

The function trace_- local_clock() is used to read the 

time. This architecture-specific nonblocking function 

offers a compact CPU- level coherent timestamp with 

the same precision as other ftrace tracing techniques, 

at the nanosecond granularity. 

Preemption and IRQs are turned on for the thread. This 

makes it possible for any Linux task abstraction to 

preempt it at any time. 

The workload presents a summary of the OS noise 

encountered by the current activation after runtime 

microseconds have passed since the first time read of 

the current period. This summary is shown utilising 

Linux's tracing features, as shown in Fig. 2. 

According to the osnoise summary, RUNTIME IN US, 

or the number of milliseconds that OSNOISE looped 

over the timestamp. NOISE IN US, or the total 

quantity of noise measured in milliseconds during the 

related runtime. PERCENTAGE OF CPU 

AVAILABLE, or the portion of the CPU that the 

osnoise thread had access to throughout the 

measurement period. MAX SINGLE NOISE IN US, 

or the longest single instance of noise that was recorded 

during the runtime in milliseconds. 

The interference counters: osnoise keeps an 

interference counter for each type of interference 

among the classes NMI, IRQs, softirqs, and threads. 

The interference counter is raised in response to an 

entrance event of an activity of that type. 

Because osnoise was running on a virtual system, 

the interference caused by virtualization is identified as 

hardware noise, which is why Fig. 2 displays a high number 

of hardware noise samples. 

5.2 The Osnoise Dimensions 

There are a few parameters for the osnoise tracer. 

These choices are available through the ftrace interface, 

and they are: 

CPUs on which an osnoise thread will run are listed as 

osnoise/cpus. osnoise/period_us: the osnoise thread s's 
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period (in milliseconds).osnoise/runtime_us: the duration 

(in milliseconds) for which an osnoise thread will search 

for noise occurrences.When a single noise event occurs 

that exceeds the configured value in milliseconds, the 

system tracing is stopped by the osnoise/stop_tracing_us 

command. This option is disabled by writing 0.When total 

noise occurrence exceeds the configured value in 

milliseconds, the system tracing is stopped using the 

osnoise/stop_tracing_total_us command. This option is 

disabled by writing 0.tracing_threshold: the minimum 

difference in time between two time reads to be regarded 

as a noise occurrence, expressed in milliseconds. The 

default value will be utilised if the value is set to 0, which 

currently 5µs. 

entry and exit events and uses it to: 1) account for how 

often each of these task classes added noise to the 

workload; 2) compute the value of the interference 

counter used by the workload to determine how many 

interferences occurred between two consecutive reads of 

the time; and, 3) compute the value of the interference 

counter used by the workload to determine how long the 

present interrupting task will take to complete; 4) using 

the procedures discussed in Section 2.1 to deduct the 

noise occurrence time of a preempted noise 

occurrence.A single tracepoint from osnoise is generated 

at the exit probe of each of these interference sources, 

indicating the noise-free execution duration of the task's 

noise detected via trace.The osnoise workload emits a 

tracepoint whenever a noise is discovered in addition to 

the tracepoints and the summary at the end of the period. 

This tracepoint provides information on the interference 

that occurred between the two successive time reads as 

well as the noise that was detected by workload. To 

clearly identify the source of a given noise, interference 

counters are essential.For instance, in Fig. 4, the last line 

represents the tracepoint produced by the workload and 

refers to the previous four interferences, while the first 

four lines reflect the noise as recognised by the trace. 

The data for Figs. 3 and 4 came from the same trace 

file.The former contains the tracepoints that were 

previously present, whereas the latter contains the new 

tracepointsthat osnoise added to the kernel. With these 

two examples, it is clear to see that the information the 

osnoise tracepoints relay is less and more 

comprehensible.It is significant to note that the duration 

supplied by the irq_noise and thread_noise are free of 

interference with regard to the noise reported in Fig. 

4.For instance, the start time of the local_timer:236 is

later than that of the sleep-5843.This indicates that, in a

case of nested noise, local_timer:236 preempted sleep-

5843.However, the local_timer:236 subtracted its own

length from that of sleep-5843.By eliminating the

meticulous work of manually computing these variables

or computing them using a script in user-space, this

makes it easier to debug the system.

 

The osnoise Tracing Features  

One of the fundamental building blocks of Linux  

kernel tracing is the tracepoint. The tracepoints are locations 

in the kernel code where a probe can be connected to 

execute a function. They are most frequently used to gather 

trace data. Take the callback function that ftrace registers to 

the tracepoints as an example.These callback processes 

gather the information and store it in a trace buffer. A 

tracing interface can then access the data in the trace buffer. 

An illustration of tracepoint output using the ftrace interface 

is shown in Fig. 3.Tracepoints can be used for more than just 

buffering data. Many more use cases have made use of 

them. For instance, alter network packets or modify the 

kernel at runtime [2]. 

Fig. 3. Example of tracepoints: IRQ and thread context switch events read from ftrace interface4 

International Journal of Engineering Research & Technology (IJERT)

ISSN: 2278-0181http://www.ijert.org

IJERTV12IS110098
(This work is licensed under a Creative Commons Attribution 4.0 International License.)

Published by :

Vol. 12 Issue 11, November-2023

www.ijert.org
www.ijert.org


Fig. 4. Example of  tracepoints: osnoise events read from ftrace interface with 
equivalent data highlighted4    

. 

Additionally, tracepoints can be used to enhance the tracing 

process. While the overhead associated with writing data to the 

trace buffers 

has been minimised, it is still feasible to pre-process data in the 

tracepoints in a way that reduces the amount of data written to the 

trace buffer. When trace processing has a lower overhead than 

writing trace to the buffer, this strategy has demonstrated good 

success in lowering tracing overhead [4]. 

The present tracing infrastructure is used by the 

osnoise tracer in two different ways. It creates a new set of 

tracepoints with pre- processed information and adds 

probes to existing tracepoints to collect information. 

Linux already provides tracepoints that stop threads, 

softirqs, and IRQs at their entry and exit points. Osnoise 

attaches a probe to all 

Additionally, by lowering the amount of data stored in the trace 

buffer, resource consumption and overhead are 

decreased.Another crucial point to note is that, as shown in Fig. 

5, the overall noise noticed via trace accounts for 1409532 ns6, 

whereas the noise observed by workload reports 5092 ns more 

(1414624 ns). 

fig. 5. Graphical representation of Fig. 4. 

5.3 The osnoise Internals 

The Linux kernel's parallel and re-entrant code makes 

it difficult for the osnoise tracer to measure potential noise 

sources at the single- digit millisecond scale. This section 

lists some of these difficulties along with solutions. 

5.3.1 Task and Memory Model 

The SPMD model, which is described in Section 2, is 

used in osnoise to simulate applications created with it. 

The osnoise workload component is run via a per-CPU 

kernel thread that is created when the tracer is dispatched. 

Each per-CPU thread's affinity is set up to only run on the 

target CPU. The user can modify the configuration of each 

thread while the workload is executed. Since this data is 

only retrieved sometimes outside of the primary workload 

loop, it is not a concern for the measurement stage. The 

configuration is secured with a mutex. 

The thread only accesses the per-CPU structure that 

corresponds to the CPU on which it is now running, which 

is where the runtime data used during the measurement 

phase is organised. The goal of osnoise is to mimic a user-

space workload that adheres to the specifications listed in 

Section 2.1. All of the OS job types discussed in Section 2 

can specifically preempt a userspace workload on Linux. 

There are ways to temporarily turn off thread preemption, 

softirqs, and interrupts, but they come with certain 

unfavourable consequences. For instance, turning off 

interrupts is an expensive action that should be avoided 

when overhead is to be kept to a minimum, such as on the 

Linux tracing subsystem. 

5.3.2 Addressing Code Reentry 

Osnoise's capacity to correlate the workload with the 

quantity of interferences that result in an observed noise is 

one of its primary advantages. This capability is crucial to 

prevent debugging from going in the wrong directions and 

delaying the troubleshooting of crucial and expensive 

systems by preventing conjecture about the events that 

generated a noise. However, while taking into account the 

probability of preemption, reading the current time 

consistently with the interference counter is not a simple 

task. Think about the pseudo- code in Fig. 6, for instance. 

One interrupt more than the number at the moment the 

timer was read would be taken into consideration by the 

interference counter. 

These issues have primarily been resolved in osnoise 

via two techniques: compiler barriers and local atomic 

variables. Fig. 7 displays an excerpt from the present code. 
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A local atomic integer, also known as an atomic type 

of integer coherent in the local CPU, is the definition of 

the interference counter. The current time is read between 

two interference counter reads to make sure it agrees with 

the interference counter. Compiler barriers are also used 

to prevent compiler improvements that can reorder the 

interference counter read and cause the current time to no 

longer be protected.Other non-atomic processes, include 

calculating the interference-free noise for the osnoise 

tracepoints in Fig. 4 using the interference-free noise 

technique. 

6. EXPERIMENTAL RESULTS

This section provides information on how osnoise is 

used to measure and trace a system. The computer is a 

Dell workstation with a 12-core, 24-thread AMD 

Ryzen 9 5900 processor. The machine is set up with 

Fedora Linux 35 server and utilises a PREEMPT_RT 

patched kernel 5.15. To get a summary of the OS noise 

and a histogram of each noise event, the osnoise tool 

from rtla has been used.The system's initial 

configuration under consideration is referred to as "as-is" 

and has no adjustment applied. When best practises for 

CPU isolation are used, the system is considered to be 

tuned. In this scenario, the CPUs f0; 1g are set aside for 

user housekeeping and operating system duties.The 

workload execution is reserved for CPUs f2;... ; 23g, and 

osnoise is configured to execute on these CPUs. One 

step in system tuning is to set the CPU frequency 

governor for performance. Utilising CPU Isolation 

Features, Enabling RCU Callbacks Offload, Enabling 

Nohz_Full Configuration, and Transferring All 

Potential Kernel Threads and IRQs to the CPUs F0; 1G 

are the other four steps. 

The task priority for osnoise workload threads is set to 

default (SCHED_OTHER with 0 nice). Users 

frequently establish a real- time priority for the task in the 

NFV use case, though. Additional experiments have 

been carried out to assess this particular 

circumstance as well. The osnoise workload has been 

configured to run with priority 1 under SCHED_FIFO in 

the experiments designated as FIFO:1. 

The workload has been configured with default 

parameters for the typical situation (i.e., 

SCHED_OTHER with 0 nice), thus it runs with a one-

second runtime and period while attempting to 

monopolise the CPU. 

It was necessary to configure the system and 

workload in more detail for the FIFO:1 situation. In 

order to prevent RCU [11] stalls, the system 

configuration includes turning off Linux's runtime 

throttling mechanism, allowing real-time threads to use 

more than 95% of the CPU, and setting the 

ksoftirqd (the thread in charge of processing softirqs 

when using PREEMPT_RT) and RCU per-CPU 

threads with FIFO 2 priority. The workload is set to run 

for 10 seconds at a time, and the runtime is adjusted to 

allow 100µs between each period so that any thread that 

is starving for time can execute. The tolerance 

threshold was set to 1 µs in the end. 

6.1 Percentage of OS Noise 

For all tune/FIFO priority scenarios collecting the 

OS noise summary, a six-hour experiment was run. 

Fig. 8 displays a summary of the percentage OS 

noise.The greatest observed total noise for the As-is 

system was 0:5484%, whereas the minimum for both 

Tuned cases was 0:00001%. It is also feasible to 

observe that the CPU isolation features are the primary 

source of OS noise reduction. The majority of the work 

still left for isolated CPUs is necessary for the OS, 

mostly in the IRQ context, which is the cause.In order 

to limit the worst-case scheduling latencies, these 

experiments were carried out using the PREEMPT_RT 

kernel, which has additional overheads in the average 

scenario.In this configuration, Linux is able to offer 

low OS noise for polling-based applications and low 

latency for interrupt-based workloads in a single 

solution. This adaptability is crucial for NFV 

deployments that include dynamic and varied 

workloads on the same host. 

Fig. 6. Code reentrancy problem when incrementing the
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6.2 Analysis of OS Noise Occurrence 

For every tune/FIFO priority situation, an experiment lasting six 

hours was run, capturing a histogram for every instance of noise that 

was found. This experiment is crucial for the NFV use case since a 

single extended noise event could result in a network packet 

processing queue overflow. 

Fig. 9 presents the findings. 

With the help of this experiment, it is feasible to demonstrate in 

Fig. 9a the primary issue with using the system As-is. The maximum 

value of the Theosnoise workload, which recognised 230 out-of-scale 

noise samples, was 13045 milliseconds. Additionally, Fig. 9b 

demonstrates that employing FIFO:1 in the system as-is is a simple 

way to lower the maximum single noise occurrence value. 

As-is using FIFO:1: however, when compared to the Tuned 

alternatives in Figs. 9c and 9d with or without employing FIFO:1, it 

has two significant drawbacks. The high frequency of noise 

occurrences is the first. The nohz_full option in the Tuned 

experiment limits the frequency of scheduler ticks, which in turn 

reduces the execution of the ksoftirqd kernel thread that checks for 

expired timers and subsequent actions. The tail latency, which is less 

on the Tuned instances, is another distinction. Section 6 explores this 

distinction.3. When compared to the system as-is, the findings with 

the system tuned in Figs. 9c and 9d reveal that the tune significantly 

alters the entries and length of each noise event. To make the Tuned 

examples easier to see, Figs. 9e and 9f have been included. 

6.3. Using osnoise to Find Latency Sources 

With regard to tail latency, the experiment using the system as-is 

and FIFO:1 produced an intriguing result, with just a small number 

of samples exceeding the 30 ms threshold. The osnoise tracer was 

configured to trace the osnoise events, stopping the tracer when a 

noise occurrence above 30 ms was detected, in order to better 

understand the causes of these occurrences that last longer than 30 

ms. Figure 10 depicts the trace with only osnoise events. It displays 

an interrupt noise that is brought on by the eno1 ethernet driver's 

interrupt number 62. Immediately following the ksoftirqd's 

scheduling, a long-duration noise incident occurs. In the 

PREEMPT_RT kernel, the softirq jobs context is managed by the 

ksoftirqd thread (recall from Section 2.1 that under PREEMPT_RT, 

the softirq context does not exist, and softirq jobs run in the thread 

context).The only events that provide information on softirqs were 

enabled after it became clear that softirqs are what's causing the issue 

since choosing a minimal number of tracing events prevents 

overhead from having a significant impact on the system's timing 

behaviour. In Fig. 11, the trace once more displayed a comparable 

output. This trace demonstrates that the ksoftirqd's activation was 

caused by the network receive (NET_RX) softirq. The network 

driver, which is running in the same CPU, activates the NET_RX 

softirq. This is a consequence of the interrupt being caused by the 

eno1 ethernet driver. In light of this proof, the IRQ 62 was set up to 

fire in the CPUs 1:20:1. The experiment in Fig. 9b was repeated with 

this configuration applied for six hours, and the results are displayed 

in Fig. 12. 

Fig. 7. Code excerpt of  set_int_safe_time(): how osnoise deals with reentracy problems  

The tuned kernel was able to produce consistent results, and the 

tuned kernel employing FIFO:1 was able to deliver noise occurrences 

with a maximum time below 5 ms. This is due to the real-time 

scheduler deferring background OS processes that are carried out by 

threads without causing a systemic problem. As an illustration, jobs 

are distributed across all CPUs via k workers threads that carry out 

deferrable work [5] to prevent serious issues, these still need to be 

able to operate. As a result, it is wise to be aware of this property and 

give up some CPU time when it would not negatively impact 

performance (for example, when network buffers are empty), even if 

it is only for a brief period of time like 100 µs once every 10 seconds. 

These tests further demonstrate the minimal influence the osnoise 

internals have on the evaluation, allowing the user to access data at 

the µs granularity commonly utilized by professionals on other tools 

like cyclic test. It is important to stress that the conclusions presented 

in this section only pertain to the specific case at hand. The hardware, 

CPU count, auxiliary operating system features, and ambient 

conditions may all affect the results. Thus, the value of a programme 

that provides an integrated OS noise benchmark and suggestions for 

system fine-tuning. 

The tail latency could be reduced to values like the system with 
just this configuration. tuned, with osnoise's debugging assistance. 

Fig. 8. Average percentage of OS noise observed by the workload 
on different scenarios. Error bars represent the range between 
minimum andmaximum percentage.     
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Fig 

Fig. 10. osnoise t racer finding source of latencies4.   

Fig. 11. osnoise tracer supplemented with other events determining the source of latencies4.  

Fig. 9. osnoise noise occurrence per-cpu histogram under different system setup, mixing CPU isolation tune and real-time 
priority for the workload (less noise occurrence and less occurrence count is better). 
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.   

Fig. 12. After moving the network IRQ as suggested by the trace in Fig. 

11, as-is utilising FIFO:1.     

7. CONCLUSION AND FUTURE WORK

Modern low latency communications and network function 

virtualization have increased the demand for Linux systems 

with minimal OS noise and scheduling lag.These real-time 

HPC tasks demand noise of a few tens of microseconds or 

less.debugging these situations is a difficult effort, though. 

Workload-based methods provide accurate measures 

but do not identify the underlying problem. Trace-based 

measures reveal the cause but do not accurately depict the 

noise that the thread has actually seen.Practitioners 

combine the two approaches, but doing so necessitates a 

thorough understanding of the tracing features and 

frequently causes the inquiry to be misled because the 

trace is out of sync with the workload or adds too much 

overhead. 

The osnoise tool combines the workload and tracing, 

delivering accurate information with little overhead by 

processing and exporting only the data required for 

identifying the primary reasons of the latency, providing a 

solid place to start the investigation.The use of the rtla 

osnoise interface to gather data has made it possible for the 

tool to function as a tracer and benchmark tool, according 

to the experimental results. The test demonstrates Linux's 

ability to produce exceptionally low OS noise, with 

maximum sample noises as low as less than 5 µs. However, 

the tool's ability to follow the kernel and produce results at 

the necessary scale is more significant.The osnoise 

tool and rtla osnoise interfaces are both built into the 

Linux kernel and are thus available to all Linux users.The 

osnoise tracer may be used with many other existing 

tracing tools because it makes use of the most 

fundamental components of the Linux tracing sub-

system, such as performance counters offered by the perf 

tool or graphical user interfaces offered by LTTng and 

KernelShark. This opens up an infinite number of 

opportunities for future research, such as expanding the 

osnoise measurements to incorporate data from the 

memory/cache, workload-dependent techniques, other 

clock sources, and energy-aware techniques. Another 

option is to extend the analysis using a more formal 

methodology. Another option is to carry out experimental 

evaluations using different Linux real-time schedulers, such 

as SCHED_DEADLIN 
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