
Literature Survey on Distributed Mutual

Exclusion Algorithm for Mobile Ad-Hoc Network

Prabhjot Singh
Department of ECE,

CGC-COE, LANDRAN,

Punjab

Namita Naag

Assistant Professor,

Department of ECE,

CGC-COE, LANDRAN,

Punjab

Abstract- In a distributed system several devices are connected

to each other to share resources like software’s or hardware’s,

which makes Mutual Exclusion essential for distributed

system during the sharing process. The region where all the

sharing takes place is the Critical region. Mutual Exclusion on

Distributed system allows critical resource to be shared

between different mobile nodes in a Mobile Ad-Hoc Network.

In this the region is divided and in a logical way sharing is

done. Critical section can be defined as a state when a node or

device is actually sharing or using the resources which are

required in the process of communicating with each other. A

request is involved for making decision regarding that which

node or device would enter critical section. This request can

be made to neighboring nodes or by imposing any algorithm

which can make it possible the sharing process to be fair for

each node i.e. no node should wait for an infinite time for its

turn or no node should get infinite access to resources. In this

paper, several mutual exclusion algorithms are discussed by

comparing their advantages and disadvantages. Section 1

includes the introduction of the Distributed Mutual Exclusion

problem and its categories. In Section 2 the basic

requirements for a system to attain mutual exclusion. In

section 3 discussions of all the algorithms is covered.

Keywords: Distributed Mutual Exclusion (DME), Critical

Section, Mobile Ad-Hoc Networks (MANET).

I. INTRODUCTION

The problem with mutual exclusion which occurs is when

some two or more processes or devices try to work at same

instant of time simultaneously [1]. When they compete for

the critical section at the same time, no one of the devices

get chance to share resources, and none of them can’t use it

fruitfully [2, 3, 4].So, to prevent from this issue, a

distributed algorithms is designed to manage the critical

region [5].

Critical section (CS) is a code in which sharing of

resources is done or accessed. Now practically sharing

common resources simultaneously is not possible and

cannot be synchronized for sharing resources. So, if two

nodes try to access the critical section can lead to crisis.

Mutual exclusion is to ensure that at a time only one of the

concurrent processes are allowed to access the common or

shared resources at an instant of time. In case of distributed

systems, where multiple sites are considered it is named as

distributed mutual exclusion (DME).

MANETs has no restrictions when it comes to topology and

the sites are free to move within a region i.e. the critical

region. This free moving of the sites in the region can

generate link failure which is a main issue for us discussing

Mutual Exclusion. Also the nodes use the battery power for

the processing which makes them totally relay on those

batteries. This is the major problem which is observed in

MANETs than static networks. Another factor which has to

be considered is to satisfy the Combinatorial Stability. It is a

state when a node is waiting for making a decision of

whether to enter critical section or not, at the same time the

underlying topology of the network can change. So, the

processing time of the algorithm should be fast enough that

a change in the network layout does not affect the objective

of the algorithm. It is a concern when it comes to token-

based DME algorithms or permission-based algorithms [8].

Distributed Mutual Exclusion Algorithm can be classified

into two major categories: Token-based algorithm and Non

token-based/Permission-based algorithm. Token-based

algorithm depends on the site entering to critical section by

accessing a token. Further it can be classified as circulating

and requesting method. In the circulating method a token is

passed among all the participating sites and the site which

possess the token gets the chance to enter the critical section

and after that it releases the token back in the circulation.

The other method is requesting one in which it a site

requests the other participants for entering into the critical

section. Suzuki-kasami’s algorithm is an example of token-

based mutual exclusion algorithm for distributed systems. In

the case of Permission-based a site desiring to enter to

critical section must first get permission from all the sites

before it enters in the critical section or from some nodes, it

varies according to the algorithm. Lamport, Ricart-

Agrawala,Roucairol and Carvalho’s algorithm are some

examples of Non token-based mutual exclusion algorithms

for distributed systems.

Distributed Mutual Exclusion Algorithm can also be

classified by three approaches named: Token-based

approach, Non Token-based approach and Quorum based

approach [9]. Below are listed the main requirements for

mutual exclusion algorithm.

International Journal of Engineering Research & Technology (IJERT)

ISSN: 2278-0181

www.ijert.orgIJERTV4IS090773

(This work is licensed under a Creative Commons Attribution 4.0 International License.)

Vol. 4 Issue 09, September-2015

860

II. REQUIREMENTS

Main requirement for a mutual exclusion algorithm is that

only one site at a time can execute the critical section and

execution of critical section by two sites simultaneously is

not possible. Besides this there are some other requirements

essential for distributed mutual exclusion algorithm to have

[9]:

1) Safety: No two sites must be allowed entering in critical

section at same time.

2) Freedom from deadlocks: Mutual exclusion should be

free from deadlocks. Site entering into critical section

should release it in a finite time so, that a fair chance is

given to all other sites.

3) Freedom from starvation: If a site request for entering

into critical section, it should not be forced to wait for an

infinite time for critical section i.e. every site should get a

chance to execute the critical section.

4) Fairness: A site requesting for entering into critical

section must get a chance to enter critical section regardless

of any seniority list or first-come-first-service (FCFS). This

can be ensured by using queue in the algorithm.

5) Fault-correctness and Fault-Tolerance: If during a process

a state of failure i.e. a node is dead which can be by losing

its battery power then there should be measure for

controlling or correcting so that the process keeps on

working [8, 9].

III. DISTRIBUTED MUTUAL EXCLUSION

ALGORITHM

Lamport [10] gave the idea of distributed algorithm for

mutual exclusion systems in 1978 [7]. His idea was to

make use of timestamp. Timestamp is the time at which a

request for entering in critical section is made by a node.

Based on the idea, each site which is going to critical

section has to send a message involving a timestamp and

it’s Id (A unique name given to each node in the critical

region). So, when a site enters into critical section by

sending a request message to all the sites and waits for

reply message from all the sites and when it releases the

critical section it has to send a message to inform all the

other sites that they can access critical section. Also a site

has to maintain a queue of requests as when a site receives

more requests it adds the later request in to request queue

or the one which has less priority than the other one and

sees to it when the earlier request is processed. But if a

situation occurs when two sites in a critical region ask for

critical section then it makes decision on considering the

timestamp in the message generated by the two sites. In

this the site which has the lower timestamp gets access to

critical section and those having higher timestamp have to

wait for a finite time for their turn [6]. In this election is

distributed between all sites, thus the damage point is

absent, also the mutual exclusion is totally work out, but

due to extra messages it makes traffic when a number of

requests are flowing. This algorithm creates 3(N − 1)

messages per request, (N − 1) total number of requests,

(N − 1) total number of replies, (N − 1) total number of

releases.

Ricart-Agrawal [10] proposed an optimized algorithm of

Lamport’s algorithm and it was a permission-based

algorithm for MANETs. Ricart-Agrawala used two

messages REQUEST and REPLY message from site to attain

and to release the critical section that dispenses the release

message with replay message. In this a node can enter in

critical section only after notifying all the other nodes. A

node makes an attempt by sending a Time stamped

REQUEST message to all the other nodes upon which it gets

an REPLY message immediately or it has to wait for a

message to enter in critical section. If any of the node has

smaller timestamp in comparison to the requesting node then

it will process it own request and after that the requesting

node would be given possession to critical section. This

algorithm creates about 2 (N - 1) messages per request,

where (N - 1) are the REQUEST messages and (N – 1) are

the REPLY messages i.e. permission messages. Here N is

the number sites [8, 10].

Roucairol and Carvalho [17] proposed an improvement to

the Ricart-Agrawala algorithm. In which they stated that if a

site has received a REPLY message from another site, then

the site can use the critical section till it sends the REPLY

message to any other site i.e. the site can use the critical

section for as many time it want and the possible condition

for other to use it is when they send REQUEST message to

the site for having possession over critical section or the site

itself releases it. Now this could last for a single round to a

number of times if no other site is requesting for critical

section. With this change in the algorithm of Ricart-

Agrawala a site requesting for critical section by their

algorithm the number of REQUEST messages required to

access the critical section are can be 0 or 2 (N - 1). By this if

a site is possesses the critical section it need not request

again to any other site for using it again but on the other

hand it increases the condition of starvation for other sites

which could be requesting for critical section but have to

wait for a finite period or more time for their turn. This

algorithm also not gives fairness to all sites as it violates the

basic requirement of a distributed system. A site can attain

the critical section for an infinite time as it gets permission

for using the critical section from all of the other sites. But,

it cannot be implemented as it removes starvation for one

site but adds for other sites in the critical region.

Suzuki and Kasami’s reduced the number of minimum

messages which are required to attain the critical section.

Suzuki and Kasami’s algorithm [16] reduced it to N

(number of sites) number of messages in comparison to the

Ricart-Agrawala Algorithm. It is a token-based algorithm in

which mutual exclusion is achieved by maintaining a token

among all nodes for entering the critical section. In this if a

node sends a request to another node it sends its

identification and sequence number along with its request.

So, if a node has the token then only it can enter the critical

section and the status to other nodes is busy. In this every

node maintains a list of the sequence number and the request

order by all the other nodes. The other node reply only if the

first node has the priority more than it has or it holds the

request until it fulfils all the other requests or its own use.

They came with an idea of a single PRIVILEGE message

International Journal of Engineering Research & Technology (IJERT)

ISSN: 2278-0181

www.ijert.orgIJERTV4IS090773

(This work is licensed under a Creative Commons Attribution 4.0 International License.)

Vol. 4 Issue 09, September-2015

861

and it is always the first node has the privilege and a node

having the privilege can enter the critical section repeatedly

till it passes it to another node and if there is no request for

critical section by any site, then the one which possess the

privilege last retains the privilege till a request is generated.

Also the allocation of the critical section is done by first-

come-first-served (FCFS) manner which makes it necessary

to maintain a queue which holds the requests for the critical

section. Unlike Ricart-Agrawala’s algorithm in which a

request has to complete a round-trip to all node in

communicating with them. They stated their algorithm to be

deadlock free and starvation free. In addition to that a list is

maintained which has the number of requests that are being

processed i.e. fulfilled for each node. So, we can say that

message complexity is of exactly N for N Processes. Or it is

zero in case when the node already has the privilege

message with it.

The algorithms which came after Ricart-Agrawala

algorithm were not able to remove mutual exclusion

effectively but Meaekawa [11] proposed one which uses

the ‘quorum’ for making the decision regarding taking

permission for using the critical section than taking

permission from each site, it was called as quorum-based

distributed mutual exclusion algorithm. In this it was

proposed that the nodes which are participation in the

process are in the quorum. The use of voting technique by

Thomas [12] is based on a majority attained by a node and

requires that a node requesting mutual exclusion obtain a

permission vote from only a majority of the nodes

regardless all the nodes in the critical region. Thus, in the

best case, we can say the number of permission messages

required to obtain mutual exclusion is reduced to a half i.e.

N/2. Thus if a node want to invoke to mutual exclusion a

REQUEST has to be send and get permission from only the

members of the quorum. By this the steps involved in

communicating with all the nodes is removed. So, when

REQUEST is sent it is verified by the quorum and if no

other participant is interested in using the resources then it

is allotted critical section. But when it comes to MANETs

it adds up the steps required for selection of the quorum,

when compared to its benefits. The message complexity is

of 3√N messages per mutual exclusion, √N messages to

convey a request, √N messages to obtain permissions, and

√N messages to release mutual exclusion

The algorithm proposed by Ricar-Agrawala [10] it requires

2 (N - 1) messages exchange for getting entry to critical

section, while in Suzuki and Kasami [16] they reduced it to

just N messages. Then Maekawa [11] improved the

algorithm and reduced the minimum messages to O√𝑁 (O

- quorum). After that Raymond and Kerry [19] came with

algorithm which enhanced the performance by using a tree

topology and reduced the message required to O (log N).
Raymond’s algorithm is a lock-based algorithm on

a distributed system for mutual exclusion. It requires a

logical structure of a K-ary tree on distributed resources.

As defined, each node has only a single parent, to which all

requests to attain the critical section are made. In this

algorithm each node has to communicate only with its

neighbor node in the tree structure and only holds the

information of its neighbor node only. In this each node has

a parent node to which it sends its entire request and each

node maintains a FIFO queue for recording the list of the

request sequence. So if a node has to forward the privilege

to another node it will first check the queue and if it is on

the top then it will forward the privilege to that node and

delete the first entry in the queue and in other state it will

add it to the queue. If a node itself wants the critical section

and it has requests pending in its queue it would place itself

in its own queue. They guaranteed that to enter critical

section O (log N) messages are required if we organized

the nodes into a K-ary tree. In addition, each site needs to

store at most O (log N) bits because it must track O

(1) neighbors.

Then Singhal, el al. [13] came with an idea that if a site is

not competing for critical section then is it necessary to

take permission from that site? So, they observed that a site

need not consult other sites that are not currently in a need

of critical section. They introduced an idea of ‘look-ahead

technique’ in which before sending REQUEST message a

site identifies that which or how many sites are

concurrently competing for critical section and then

enforcing mutual exclusion on those sites which are

competing rather than to all the sites. The benefits of this

algorithm were it saved the resources as well as to low the

message overhead which makes it more suitable for mobile

systems. It also omitted the site requesting or replying to all

sites if it is not even participating in the resource sharing

practically. The motivation behind this was the

observations i.e. a site need not consult sites which are not

contenting for the critical section. A site is only required to

consult only those sites which are currently competing for

the Critical Section. Even the traffic depends upon the

number of active sites in a process in a certain critical

region and non participating sites have no request overhead

as requesting sites are not sending any messages to non

participating sites. They also introduced the concept of

dynamic distributed algorithm [14]. It used the dynamic

Information sets, Info_set and Status_set, to keep track of

sites that are currently involved in critical section or

waiting for critical section. The message complexity for a

request is 2 (Φ-1) where Φ is the sites which are competing

for accessing Critical Section.

 As singhal el al. introduced a ‘Look Ahead Technique’

which minimized the message overhead by interaction

between only those sites which are competing for critical

section. Along with these Wu et al. [15] introduced three

new messages DOZE, DISCONNECT and RECONNECT.

They also introduced FIFO (First-In-First-Out) service

which was not feasible in case of MANETs as the sites in

region have no fixed locations or topology to follow. The

important problems which are to be considered in case of

tolerance is link failure and host failure which is the very

frequent in MANETs. If we use timeout and retransmission

of REQUEST message then this link failure and host failure

can be removed or minimized. By using Info_set and

Status_set we can handle the doze and disconnection mode.

International Journal of Engineering Research & Technology (IJERT)

ISSN: 2278-0181

www.ijert.orgIJERTV4IS090773

(This work is licensed under a Creative Commons Attribution 4.0 International License.)

Vol. 4 Issue 09, September-2015

862

When a site wants to enter “DOZE” mode, it broadcast a

DOZE message to all the sites in its Status_set and

Info_set, and all the other sites moves the site to no

REQUEST zone in which no message is send to that site.

When the site wakes up it can resume the algorithm

without any special algorithm. The benefit of DOZE mode

is that the site can save its battery power when it does not

want to use the network resources for sending or receiving.

When a site wants to disconnect from the critical region, it

can simply generate a DISCONNECT message, rather than

DOZE message. When the site want to reconnect it can

inform all the sites in the region by sending a

RECONNECT message to inform all the sites. Last is the

measure which is used for handling the timeout of the

REQUEST message, in this fault tolerance is achieved.

When a site generates a request message it adds a timeout

with the message i.e. TOREQ which expires when the reply

for the request is not replied or the reply not reaches the

site. By this an infinite waiting by a node for reply from

other sites can be resolved i.e. starvation.

IV. CONCLUSIONS

This paper concludes, all the algorithms being used for

Distributed Mutual Exclusion. However there are many

difficulties for attaining mutual exclusion among all the

nodes, so still research is being carried out. A summarized

comparing of these algorithms in which we will refer to the

advantages, disadvantages and the number of message by

each site or message complexity for gaining the critical

section is required in these algorithms.

Algorithm Advantage Disadvantage
No. of

Messages

Lamport

1.Absolved the
Mutual

Exclusion

2.There is no

starvation

1. Increase in number
of messages

2. Traffic increased 3 (N-1)

Ricart-

Agrawala

1 Absolved the

Mutual

Exclusion

2. Reduced the

number of
messages.

1. Increase in number

of messages

2. if a node fails

starvation can occur

2 (N-1)

Roucairol and

Carvalho

1 Absolved the

Mutual
Exclusion

2. Reduced the

number of

messages

1. Increase in

starvation

2. No fairness as a

node can use CS for

infinite time

2 (N-1) or 0

Suzuki-

kasami

1 Absolved the
Mutual

Exclusion

2. Reduced the

number of

messages

1. Increase in
starvation

2. If a node has
Privilege it can use

the CS infinite times

and privilege is
forwarded in a fixed

way than

Dynamically

N or 0

Maekawa
1 Absolved the

Mutual

1. deadlocks possible

Exclusion

2. Only the

nodes in

quorum
participates and

no request is

send to non
quorum nodes

2. Additional steps

required for making

the quorum.

3. Complex method in

case of MANETs

3√𝑁

Raymonds

1. Follows a K-

ary type of

structure.

2. Reduced the

number of
messages

1. Nodes need to

maintain a queue of

requests.

2. Waiting time

increases.

O (log N)

Singhal et al.

1 Absolved the

Mutual

Exclusion

2. Sites who

require CS
should only be

considered

1. Reduced the

number of requests

2. But increase in

complexity when

MANETs are
considered

2 (Φ-1)

Φ are the
sites

competing

for CS

REFERENCE

[1] Ye-In Chang, A hybrid distributed mutual exclusion algorithm,

Microprocessing and Microprogramming, Volume 41, Issue 10, June

1996, Pages 715-731.
[2] Hoda Taheri, Peyman Neamatollahi, Mahmoud Naghibzadeh, A

hybrid token-based distributed mutual exclusion algorithm using

wraparound two-dimensional array logical topology, Information
Processing Letters, Volume 111, Issue 17, 15 September 2011,

Pages 841-847.

[3] Wim H. Hesselink, Alex A. Aravind, Queue based mutual exclusion
with linearly bounded overtaking, Science of Computer

Programming, Volume 76, Issue 7, 1 July 2011, Pages 542-554.

[4] Wang Zheng, Liu Xin song, Li Meian, Ad hoc distributed mutual
exclusion algorithm based on token-asking, Journal of Systems

Engineering and Electronics, Volume 18, Issue 2, 2007, Pages 398-

406.
[5] Weigang Wu, Jiannong Cao, Jin Yang, A fault tolerant mutual

exclusion algorithm for mobile ad hoc networks, Pervasive and

Mobile Computing, Volume 4, Issue 1, February 2008, Pages 139-
160.

[6] Yixin Chen, Ruoyun Huang, Zhao Xing, Weixiong Zhang, Long-

distance mutual exclusion For planning, Artificial Intelligence,
Volume 173, Issue 2, February 2009, Pages 365-391.

[7] Hossein Nick Khah et.al, SURVEY OF MUTUAL EXCLUSION

ALGORITHMS, International Journal of Computer and Electronics
Research [Volume 2, Issue 6, December 2013]

[8] Parameswaran, Murali, and Chittaranjan Hota. "A novel permission-

based reliable distributed mutual exclusion algorithm for
manets." Wireless And Optical Communications Networks

(WOCN), 2010 Seventh International Conference On. IEEE, 2010.
[9] Singhal, Mukesh, and Niranjan G. Shivaratri. Advanced concepts in

operating systems. McGraw-Hill, Inc., 1994.

[10] Ricart, Glenn, and Ashok K. Agrawala. "An optimal algorithm for
mutual exclusion in computer networks." Communications of the

ACM 24.1 (1981): 9-17.

[11] MAEKAWA, MAMORU. "A dA/Algorithm for Mutual Exclusion in
Decentralized Systems." ACM Transactions on Computer

Systems 3.2 (1985): 145-159.

[12] Thomas, Robert H. "A majority consensus approach to concurrency
control for multiple copy databases." ACM Transactions on

Database Systems (TODS)4.2 (1979): 180-209.

[13] Singhal, Mukesh, and D. Manivannan. "A distributed mutual
exclusion algorithm for mobile computing environments." Intelligent

Information Systems, 1997. IIS'97. Proceedings. IEEE, 1997.

[14] Singhal, Mukesh. "A dynamic information-structure mutual
exclusion algorithm for distributed systems." Distributed Computing

Systems, 1989., 9th International Conference on. IEEE, 1989.

International Journal of Engineering Research & Technology (IJERT)

ISSN: 2278-0181

www.ijert.orgIJERTV4IS090773

(This work is licensed under a Creative Commons Attribution 4.0 International License.)

Vol. 4 Issue 09, September-2015

863

[15] Wu, Weigang, Jiannong Cao, and Jin Yang. "A fault tolerant mutual

exclusion algorithm for mobile ad hoc networks." Pervasive and
Mobile Computing 4.1 (2008): 139-160.

[16] Suzuki, Ichiro, and Tadao Kasami. "A distributed mutual exclusion

algorithm."ACM Transactions on Computer Systems (TOCS) 3.4
(1985): 344-349.

[17] Carvalho O.S.F. and G. Roucairol, “On Mutual Exclusion in

Computer Science, Technical Correspondance,” Journal of ACM,
1985.

[18] Chen, Yu, and Jennifer L. Welch. "Self-stabilizing dynamic mutual

exclusion for mobile ad hoc networks." Journal of Parallel and
Distributed Computing 65.9 (2005): 1072-1089.

[19] Raymond, Kerry. "A tree-based algorithm for distributed mutual

exclusion."ACM Transactions on Computer Systems (TOCS) 7.1
(1989): 61-77.

International Journal of Engineering Research & Technology (IJERT)

ISSN: 2278-0181

www.ijert.orgIJERTV4IS090773

(This work is licensed under a Creative Commons Attribution 4.0 International License.)

Vol. 4 Issue 09, September-2015

864

