
Load Balancer Scheduling Over Streaming Data in Federated Databases
A. Sreeja 1 I. V. Sailaxmiharitha 2 N. Bhaskar 3

1M-Tech in CSE, CMRTC, Hyderabad, India,

2M-Tech in CSE, CMRTC, Hyderabad, India,
3Associate Professor CSE, CMRTC, Hyderabad, India,

Abstract

The project includes a streaming data warehouse

update problem as a scheduling problem where jobs

correspond to the process that load new data into

tables and the objective is to minimize data staleness

over time. The proposed scheduling framework that

handles the complications encountered by a stream

warehouse: view hierarchies and priorities, data

consistency, inability to pre-empt updates,

heterogeneity of update jobs caused by different inter

arrival times and data volumes among different sources

and transient overload. Update scheduling in

streaming data warehouses which combine the features

of traditional data warehouses and data stream

systems. The need for on-line warehouse refreshment

introduces several challenges in the implementation of

data warehouse transformations, with respect to their

Execution time and their overhead to the warehouse

processes. The problem with this approach is that new

data may arrive on multiple streams, but there is no

mechanism for limiting the number of tables that can

be updated simultaneously.

Keywords: Online Scheduling, Data Warehouse, Data

Modules, Web Database.

1. Introduction

Data mining is the process of analyzing data from

different perspectives and summarizing it into useful

information that can be used to increase revenue, cuts

costs, or both. Data mining software is one of a number

of analytical tools for analyzing data. It allows users to

analyze data from many different dimensions or angles,

categorize it, and summarize the relationships

identified. Technically, data mining is the process of

finding correlations or patterns among dozens of fields

in large relational databases. Traditional data

warehouses are updated during downtimes and store

layers of complex materialized views over terabytes of

historical data. On the other hand, Data Stream

Management Systems (DSMS) support simple analyses

on recently arrived data in real time. Streaming

warehouses such as Data Depot combine the features of

these two systems by maintaining a unified view of

current and historical data. This enables a real-time

decision support for business-critical applications that

receive streams of append-only data from external

sources.

Applications include:

 Online stock trading, where recent

transactions generated by multiple stock

exchanges are compared against historical

trends in nearly real time to identify profit

opportunities;

 Credit card or telephone fraud detection,

where streams of point-of-sale transactions or

call details are collected in nearly real time

and compared with past customer behavior;

 Network data warehouses maintained by

Internet Service Providers (ISPs), which

collect various system logs and traffic

summaries to monitor network performance

and detect network attacks.

 A load balancer can be used to increase the capacity of

a server farm beyond that of a single server. It can also

allow the service to continue even in the face of server

down time due to server failure or server maintenance.

A load balancer consists of a virtual server which, in

turn, consists of an IP Address and port. This virtual

server is bound to a number of physical services

running on the physical servers in a server farm. A

client sends a request to the virtual server, which in

turn selects a physical server in the server farm and

directs this request to the selected physical server. Load

balancers are sometimes referred to as "directors";

while originally a marketing name chosen by various

companies, it also reflects the load balancer's role in

managing connections between clients and servers. We

then propose a scheduling framework that handles the

complications encountered by a stream warehouse:

view hierarchies and priorities, data consistency,

1550

International Journal of Engineering Research & Technology (IJERT)

Vol. 2 Issue 8, August - 2013

IJ
E
R
T

IJ
E
R
T

ISSN: 2278-0181

www.ijert.orgIJERTV2IS80460

inability to pre-empt updates, heterogeneity of update

jobs caused by different inter-arrival times and data

volumes among different sources, and transient

overload.

The goal of a streaming warehouse is to propagate new

data across all the relevant tables and views as quickly

as possible. Once new data are loaded, the applications

and triggers defined on the warehouse can take

immediate action. This allows businesses to make

decisions in nearly real time, which may lead to

increased profits, improved customer satisfaction, and

prevention of serious problems that could develop if no

action was taken. Recent work on streaming

warehouses has focused on speeding up the Extract-

Transform-Load (ETL) process.

2. Extract Transform Load:

The term ETL which stands for extract, transform, and

load is a three-stage process in database usage and data

warehousing. It enables integration and analysis of the

data stored in different databases and heterogeneous

formats. After it is collected from multiple sources

(extraction), the data is reformatted and cleansed for

operational needs (transformation). Finally, it is loaded

into a target database, data warehouse or a data mart to

be analyzed. Most of numerous extraction and

transformation tools also enable loading of the data into

the end target. Except for data warehousing and

business intelligence, ETL Tools can also be used to

move data from one operational system to another.

2.1 Extraction.

The extraction step is conceptually the simplest task of

all, with the goal of identifying the correct subset of

source data that has to be submitted to the ETL

workflow for further processing. As with the rest of the

ETL process, extraction also takes place at idle times of

the source system - typically at night. Practically, the

task is of considerable difficulty, due to two technical

constraints:

 The source must suffer minimum overhead

during the extraction, since other

administrative activities also take place during

that period, and,

 Both for technical and political reasons,

administrators are quite reluctant to accept

major interventions to their system's

configuration; therefore, there must be

minimum interference with the software

configuration at the source side.

The purpose of the extraction process is to reach to the

source systems and collect the data needed for the data

warehouse. Usually data is consolidated from different

source systems that may use a different data

organization or format so the extraction must convert

the data into a format suitable for transformation

processing. The complexity of the extraction process

may vary and it depends on the type of source data. The

extraction process also includes selection of the data as

the source usually contains redundant data or data of

little interest. For the ETL extraction to be successful, it

requires an understanding of the data layout. A good

ETL tool additionally enables storage of an

intermediate version of data being extracted. This is

called "staging area" and makes reloading raw data

possible in case of further loading problem, without re-

extraction. The raw data should also be backed up and

archived.

2.2 Transformation.

The transform stage of an ETL process involves an

application of a series of rules or functions to the

extracted data. It includes validation of records and

their rejection if they are not acceptable as well as

integration part. The amount of manipulation needed

for transformation process depends on the data. Good

data sources will require little transformation, whereas

others may require one or more transformation

techniques to meet the business and technical

requirements of the target database or the data

warehouse. The most common processes used for

transformation are conversion, clearing the duplicates,

standardizing, filtering, sorting, translating and looking

up or verifying if the data sources are inconsistent. A

good ETL tool must enable building up of complex

processes and extending a tool library so custom user's

functions can be added.

2.3 Load.

 The loading is the last stage of ETL process and it

loads extracted and transformed data into a target

repository. There are various ways in which ETL load

the data. Some of them physically insert each record as

a new row into the table of the target warehouse

involving SQL insert statement build-in, whereas

others link the extraction, transformation, and loading

processes for each record from the source. The loading

part is usually a bottleneck of the whole process. To

increase efficiency with larger volumes of data we may

need to skip SQL and data recovery or apply external

high-performance sort that additionally improves

performance.

1551

International Journal of Engineering Research & Technology (IJERT)

Vol. 2 Issue 8, August - 2013

IJ
E
R
T

IJ
E
R
T

ISSN: 2278-0181

www.ijert.orgIJERTV2IS80460

 Jobs must be completed before their deadlines a simple

metric to understand and to prove results about. In a

firm real-time system, jobs can miss their deadlines,

and if they do, they are discarded. The performance

metric in a firm real-time system is the fraction of jobs

that meet their deadlines. However, a streaming

warehouse must load all of the data that arrive therefore

no updates can be discarded. In a soft real-time system,

late jobs are allowed to stay in the system, and the

performance metric is lateness which is the difference

between the completion times of late jobs and their

deadlines. However, concerned about properties of the

update jobs. Instead, we will define a scheduling metric

in terms of data staleness, roughly defined as the

difference between the current time and the time stamp

of the most recent record in a table.

3. Existing System

The closest work to ours is which finds the best way to

schedule updates of tables and views in order to

maximize data freshness. The traditional data

warehouses are typically refreshed during downtimes,

streaming warehouses are updated as new data arrive.

Where traditional data warehouse store layers of

complex materialized views over terabytes of historical

data. This existing system does not support to make

decisions in real time and immediately. This existing

system is not suitable for data warehouse maintenance.

The problem with this approach is that new data may

arrive on multiple streams, but there is no mechanism

for limiting the number of tables that can be updated

simultaneously.

4. Proposed System

In this paper, we motivated, formalized, and solved the

problem of nonpreemptively scheduling updates in a

real-time streaming warehouse. We proposed the notion

of average staleness as a scheduling metric and

presented scheduling algorithms designed to handle the

complex environment of a streaming data warehouse.

We then proposed a scheduling framework that assigns

jobs to processing tracks and uses basic algorithms to

schedule jobs within a track. The main feature of our

framework is the ability to reserve resources for short

jobs that often correspond to important frequently

refreshed tables, while avoiding the inefficiencies

associated with partitioned scheduling techniques.
The best way to schedule updates of tables and views in

order to maximize data freshness. Aside from using a

different definition of staleness, our Max Benefit basic

algorithm is analogous to the max-impact algorithm as

is our “Sum” priority inheritance technique. Our main

innovation is the Multi track Proportional algorithm for

scheduling the large and heterogeneous job sets

encountered by a streaming warehouse additionally; we

propose an update chopping to deal with transient

overload.

4.1 A Proposed System Architecture

 Figure 1: Proposed System Architecture

Every time, the seller sends details about share which

will be automatically streamed or updated in the top of

the form before the buyer buy the particular share. The

share details like company name, shares sold, available

quantity etc would be updating from the database.

These share details how in streaming format. The users

don’t need to refresh the page every time

.5. Literature Survey

5.1 Soft Real-Time Database System

The Proposed efficiently export a materialized view but

to knowledge none have studied how to efficiently

import one. To install a stream of updates, a real-time

database system must process new updates in a timely

fashion to keep the database fresh, but at the same time

must process transactions and meet their time

Constraints. Various properties of updates and views

that affects this trade-off. Examining through

simulation, four algorithms for scheduling transactions

and installing updates in a soft real-time database [1].

1552

International Journal of Engineering Research & Technology (IJERT)

Vol. 2 Issue 8, August - 2013

IJ
E
R
T

IJ
E
R
T

ISSN: 2278-0181

www.ijert.orgIJERTV2IS80460

5.2 Multiple View Consistency for Data

Warehouse

The proposed data warehouse stores integrated

information from multiple distributed data sources. In

effect, the warehouse stores materialized views over the

source data. The problem of ensuring data consistency

at the warehouse can be divided into two components:

ensuring that each view reflects a consistent stare of the

base data, and ensuring that multiple views are

mutually consistent. Guarantying multiple view

consistency (MVC) and identify and define formally

three layers of consistency for materialized views in a

distributed environment [2].

5.3 Synchronizing a Database to Improve

Freshness

The proposed a method to refresh a local copy of an

autonomous data source to maintain he copy up-to-

date. As the size of the data grows, difficult to maintain

the fresh copy making it crucial to synchronize the

copy electively. Two fresh Metrics, such as change

models of the underlying data and synchronization

policies [3].

5.4 Operator Scheduling For Memory

The proposed many applications involving continuous

data streams, data arrival are busty and data rate

fluctuates over time. Systems that seek to give rapid or

real-time query responses in such an environment must

be prepared to deal gracefully with bursts in data arrival

without compromising system performance. Strategies

for processing burst streams adaptive, load-aware

scheduling of query operators to minimize resource

consumption during times of peak load. Chain

scheduling, an operator scheduling strategy for data

stream systems that is near-optimal in minimizing run-

time memory usage for any collection of single stream

queries involving selections, projections, and foreign-

key joins with stored relations. Chain scheduling also

performs well for queries with sliding-window joins

over multiple streams, and multiple queries of the

above types [4].

6. Modules

6.1 New Share Entry

The user will upload the new share details into the

database. They enter the information like id number of

company, company name, date of submission of share,

product code, product name, quantity, sold share, last

and current year profit, and term period etc.

6.2 Seller Product Details

The company registers their product. They will enter

the product code, brand name and description about the

product. This is called the registration about the

particular product. After feeding these data, the seller

will submit on the database. When the details once are

stored means, the buyer can view those details and buy

the particular share.

6.3 View Share Details

The buyer can see the details regarding each share that

are given by the seller. The buyer sees the product

name, product code, and brand name of product etc.

The data are collected from the relevant database.

6.4 List out Data in Streaming

This is the main operation between seller and buyer.

Every time, the seller details about share which will be

automatically streamed or updated in the top of the

form before the buyer buy the particular share. The

share details like company name, shares sold available

quantity etc., would be updating from the database. The

users don’t need to refresh the page every time. These

modules have to show all details about particular share

in various companies. These share details show in

streaming format. The users don’t need to refresh the

page every time

6.5 Buyer View Stock Details

This is used to view a particular product details for a

buyer or a customer. Before buying the product, they

can view all the information about the product. But also

the data will be going streaming wise in the form more

information buyer goes to view stock details page.

6.6 Buyer Buying Process

This module, the buyer gives the data to seller. The

buyer gives the information like total cost of share,

buyer id, buyer name, date of buying etc... And finally

will submit it into the database. When completing the

buying process, it will goes to streaming data in FIFO

(First in First Out) method. Here if any share price and

quantity will be updating means that updating share

also added in streaming instead of old data’s. Display

the streaming data based on ranking and priorities. Here

1553

International Journal of Engineering Research & Technology (IJERT)

Vol. 2 Issue 8, August - 2013

IJ
E
R
T

IJ
E
R
T

ISSN: 2278-0181

www.ijert.orgIJERTV2IS80460

Buyer Analyze the share details history, if he satisfied

with that share details means he purchase the share.

7. Conclusion

The formalized and solved the problem of no pre-

emptively scheduling updates in a real-time streaming

warehouse. The proposed the notion of average

staleness as scheduling metric and presented scheduling

algorithms designed to handle the complex

environment of a streaming data warehouse. Then

proposed a scheduling framework that assigns jobs to

processing tracks and uses basic algorithms to schedule

jobs within a track. The main feature of framework is

the ability to reserve resources for short jobs that often

correspond to important frequently refreshed Tables,

while avoiding the inefficiencies associated with

partitioned scheduling techniques.

8. Acknowledgement

The Successful Completion of any task would be

incomplete without expression of simple gratitude to

the people who encouraged our work. The words are

not enough to express the sense of gratitude towards

everyone who directly or indirectly helped in this task.I

thankful to this Organization CMR Technical Campus,

which provided good facilities to accomplish my work

and would like to sincerely thank to our chairman
Gopal Reddy Sir, Director Dr. A. Raji Reddy Sir, Dean
Dr. Purna Chandra Rao Sir, and my HOD K

SrujanRaju, sir and faculty members for giving great

support, valuable suggestions and guidance in every

aspect of my work.

9. References

[1] B. Adel berg, H. Garcia-Molina, and B. Kao, “Applying

Update Streams in a Soft Real-Time

Database System,” Proc.ACM SIGMOD Int’l Conf.

Management of Data, pp. 245-256, 1995.

[2] Y. Huge, J. Wiener, and H. Garcia-Molina, “Multiple

View Consistency for Data Warehousing,” Proc. IEEE 13th

Int’l Conf. Data Eng. (ICDE), pp. 289-300, 1986.

[3] J. Cho and H. Garcia-Molina, “Synchronizing a Database

to Improve Freshness,” Proc. ACM

SIGMOD Int’l Conf. Management of Data, pp.117- 128,

2000.

[4] L. Golab, T. Johnson, and V. Shkapenyuk, “Scheduling

Updates in a Real-Time Stream

Warehouse,” Proc. IEEE 25th Int’l Conf. Data Eng. (ICDE),

pp. 1207-1210, 2009.

[5] B.Babcock, S.Babu, M.Datar, and R.Motwani, “Chain:

Operator Scheduling for Memory

Minimization in Data Stream Systems,” Proc.ACM SIGMOD

Int’l Conf. Management of Data, pp. 253- 264, 2003.

[6] JAMES A.LARSON “Federated Database system for

Managing Distributed, Hetrogeneous and Autonomous

databases” ACM computing Surveys, Vol.22, No.3,

September 1990.

 [7] A. Burns, “Scheduling Hard Real-Time Systems: A

Review,” Software Eng. J., vol. 6, no. pp. 116- 128, 1991.

1554

International Journal of Engineering Research & Technology (IJERT)

Vol. 2 Issue 8, August - 2013

IJ
E
R
T

IJ
E
R
T

ISSN: 2278-0181

www.ijert.orgIJERTV2IS80460

