

Abstract-- A distributed system can be viewed as a

collection of computing and communication resources

shared by active users. These resources are distributed

and possibly owned by different agents or organization.

When the demand for computing power increases the

load balancing problem becomes important. The purpose

of load balancing is to improve the performance of a

distributed system through an appropriate distribution of

the application load. Load balancing is a way to keep

processor utilization as even as possible. A general

formulation of this problem is as follows: Given a large

number of jobs, find the allocation of jobs to computers

optimizing a given objective function.

In distributed system load balancing is applied to the N-

queen problem as the data domain is composed of N units,

and we want to have it solved on a network of P

processors. Our main task is applying load balancing

using N-queen problem. The parallel program is set up to

search for a solution containing N queens on an N by N

chess-board by positioning a queen on successive rows,

starting with the top row of the board, and going down

one row at a time.

Keywords: Distributed, load balancing, performance,

parallel program

I. INTRODUCTION

A. Why N- Queens Problem for Load Balancing?

HE load balancing is the process by which elements of

the data domain are assigned to processors, with the same

two goals of maximizing the processors' utilization, and

minimizing the total execution time. . Load-balancing refers

most often, to the dynamic distribution of data among the

processors.

We have an application for which the data domain is

composed of N units, and we want to have it solved on a

network of P processors. The data domain offers great

flexibility in the way it can be decomposed. Assuming that P

divides N evenly, each processor can start with an equal

number of data units. Let's assume, furthermore, that the

processors are arranged in a chain, with P1 serving as a host

interface. Assuming that each processor is sending

intermediary results to the host as soon as it obtains them, we

have a situation where P1 must spend a large amount of time

shuffling data from the other processors in the chain to the

host. This involvement in data communication affects all the

processors, and lessens as we move closer to PN. Hence, P1

will spend less time processing its own data than P2 does,

which it turns, will spend less time than P3, and so on, until

we reach PN which can devote all of its time computing and

processing its own data. As a result PN will probably finish

first and run out of data before the others. We can then expect

PN-1 to be the next to finish, and so on.

Fig: I

For this problem of load balancing here we implement a

solution by N-queen problem.

B. What is N- Queens Problem?

The N queens problem is to place N queens on an N by N

chessboard, so that no queens can take each other. Because

queens can move horizontally, vertically, and diagonally, this

means that there can be only one queen per row and one per

column, and that no two queens can find themselves on the

same diagonal. Finding a solution for a dimension N requires

creating a search tree where each node represents a valid

position of a queen on the chess board. Nodes at the first

level correspond to one queen on the N by N board. Nodes at

the second level represent boards containing two queens in

valid locations, and so on. When a tree of depth N is found

then we have solution for positioning N queens on the board.

Load Balancing using N-Queens Problem

Punita Panwar
 [1]

,Varun P. Saxena
[2]

,Aditi Sharma
 [3]

,Vijay Kumar Sharma[4]

[1]
M.Tech (p), Rajasthan Institute of Engineering & Technology Jaipur.
 [2]

 Assistant Professor, Govt. Women Engineering College Ajmer.
[3]

R.N. Modi Engineering College Kota.
[4]

Rajasthan Institute of Engineering & Technology Jaipur.

T

International Journal of Engineering Research & Technology (IJERT)

Vol. 2 Issue 1, January- 2013
ISSN: 2278-0181

1www.ijert.org

IJ
E
R
T

IJ
E
R
T

Partitioning in this case can be done by assigning sub trees to

the individual processors, allowing the search to be done in

parallel on different sub trees. The program stops when a

processor reaches a terminal leaf (success), or when all the

sub trees have been visited without ever reaching a terminal

leaf (no solutions). For problems that exhibit such irregular

domains that grow and shrink during the computation,

partitioning must often be carried out dynamically by

techniques that ensure that each processor has some work to

do, and that progress is made towards a solution.

The pseudo-code of the sequential solution is as follows:

beginArray () //diagonals and columns marking them empty

call to addQueen proceeding

addQueen() //place a queen on the following row

row++

for each column do(i:1..N)

test if a queen can be placed on column i.

If true then

mark the column and diagonals as filled.

If is the last row then

New solution found

If not

Call addQueen proceeding

The solution presented above shows a non-linear growth in

the complexity as the size of the board increases.

Fig: II

II. N-QUEEN PROBLEM IMPLEMENTATION FOR

LOAD BALANCING

The distributed system consists of independent workstations

connected usually by a local area network. Users of the

system submit jobs to their computers at random times. In

such a system some computers are heavily loaded while

others have available processing capacity. The goal of the

load distributing schema is to transfer the load at heavily

loaded machines to idle computers, hence balance the load at

the computers and increase the overall system performance

The parallel program is set up to search for a solution

containing N queens on an N by N chess-board by positioning

a queen on successive rows, starting with the top row of the

board, and going down one row at a time. At startup, a

processor is given one of the many possible starting positions

of the first queen on the first row (N total positions exist).

Each processor contains an array representing the chess-

board, and from the knowledge of that first position it

deduces all the allowed positions of the second queen on Row

2. Each one of these positions represents the leaf of a unary

tree of height 2, and the processor records all these trees in a

heap, keeping the last tree found as the current tree to which

it will try to add a new level.

As the processor progresses it may find that the next row of

the chess-board is completely covered by the queens already

on the board, and the current tree cannot be further extended.

The current tree my therefore been thrown out and a new tree

must be obtained from the heap. Because the program

maintains the heap as a stack, and because the program

always increases the height of its current tree, the tree on top

of the stack is always the taller one (other trees in the stack

may have the same height). This way, when a processor has

reached an impasse and gets a new tree from the heap, it gets

one that has the fewest leaves to add, hence a partial solution

with the highest number of queens already in place. The load

in each transputer is balanced by a manager-workers scheme,

where the root transputer hosts the manager. The manager

accesses its workers via a virtual star network (network of

virtual channels) that can be mapped over any physical

network.

The Manager-Workers paradigm is easy to implement.

Virtual channels allow the creation of a star-shaped network

on any physical network with very little effort. The Manager

sits at the center of the star and enjoys direct access to the

workers. For larger networks, however, this simplicity may

not be acceptable due to the delays that may dramatically

reduce the processors' utilization. In such cases, distributed

methods for load-balancing may be more attractive, and

because they require a synchronization that involves only

near neighbors, lower performance penalty can be expected

in general. In addition, the processor originally implementing

the Master can now be given a bigger share of the

computation.

Algorithm Load-Unbalance N-queens (Metrics C1, Metrices

C2, queen Ii)

1. Maximum work load Lmax and minimum work load

Lmin of the processors.

If Lmax=1000 and Lmin=500

2. Unbalance the load in between Lmax and Lmin,

Metrics is defined as-

C1 = Lmax / Lmin

C1 = 1000/500

 C1 = 2

3. Average work done is-

𝑊 = 𝑇𝑖 − 𝑇𝑝𝑟𝑜𝑚 𝑁
 𝑁

 𝑇𝑖=1

International Journal of Engineering Research & Technology (IJERT)

Vol. 2 Issue 1, January- 2013
ISSN: 2278-0181

2www.ijert.org

IJ
E
R
T

IJ
E
R
T

4. Unbalance related to the average work done, Metrics

C2 into account the deviation percentage of the work

done by the processors in relation to the average of

the work done-

C2 = (W * 100) / Tprom

If C2= 0 then the obtained balance is the optimal.

If C2 = 50 it means that each processor deviates a 50 % of the

work that it should carry out if it had an optimal balance.

The study of the load unbalance has been initiated for a type

of parallel systems, focusing on the adjustment of the

algorithm to the supporting architecture for load balancing.

III. Parallel Algorithm for load balancing N-

Queen Problem

The parallel algorithm for the same is intuitive. Assign first

configuration of the queens to each node and run the

sequential program on the same. If p < n/2 then each node

will attain a maximum of n/2p initial configurations.

Each node with an initial configuration will run a Depth First

Search. Any state cannot be further expanded if there are no

non-conflicting positions for the queen in the next column

and the program would need to back-track.

Manager-worker paradigm has been invoked for this

parallelization. Node with rank 0 is assumed to be the

manager while the rest are workers. The workflow is as

follows:

1. Manager waits for request for work. A worker sends

request for work if it’s idle.

2. Manager assigns tasks to the requesting worker.

3. Manager waits for another request until no more work.

4. On assignment of a task, the worker will process it and

send back all the results.

IV. RESULTS

For our purpose, tuning can be applied to finding the best

interval of time between load-balancing periods. Hence the

performance of the load-balanced application was dependent

on the heuristic used to balance the load, and on the update

interval. Because the Robin-Hood heuristic we choose here

always brings back the two nodes that support the extreme

loads, it must be run often to make sure the gap between

these nodes (possibly different every update) does not

increase. Tuning can take the form of a simple experiment

where the parameter of interest is defined at run time of the

N-queen problem for N=27 and various interval lengths.

For board size = 12 using 7 processors: Got 7 slots.

Node = 1: Results computed = 2139

Node = 5: Results computed = 2330

Node = 3: Results computed = 2139

Node = 6: Results computed = 2718

Node = 2: Results computed = 2437

Node = 4: Results computed = 2437

Total number of Results = 14200

Fig: III

Tuning the N-queen problem for N=27, and intervals ranging

from 500 sec. to 50 sec. Each execution time is the average of

two runs.

Similarly for board size = 15 using 8 processors:

Node = 2: Results computed = 357770

Node = 7: Results computed = 304450

Node = 6: Results computed = 323927

Node = 4: Results computed = 323927

Node = 5: Results computed = 332330

Node = 3: Results computed = 304450

Node = 1: Results computed = 332330

Total number of Results = 2279184

V. CONCLUSION

In this paper a fast and practical approach of load balancing

for the N-queens problem is used. By using n processors, a5

ms interval length provides the best execution time, 250.94

seconds, compared to 295.89 seconds for the asymptotic

bounds for longer delays.

VI. REFERENCES

[1] INMO88b Inmost, IMST800 Transputer, Document No. 42 1082 00,

March 1988.

[2] BRAW89 Brawer S. Introduction to Parallel Programming. San
Diego, CA: Academic Press, Harcourt Brace Jovanich, Publishers,

1989.

[3] Parallel Programming in C for the Transputer © D. Thiébaut,

1995

[4] AMDA67 Amdahl, G. M. "Validity of the single-processor approach to

achieving large scale computing capabilities," AFIPS Conf. Proc. 30,

AFIPS Press: 483-485, 1967.
[5] DALL92 Dally W. J. "Virtual-channel flow control," IEEE Trans. on

Parallel and Dist. Syst., 3(2):194-205, March 1992.

[6] EAGE89 Eager D. L., J. Zahorjan, and E. D. Lazowska "Speedups
versus efficiency in parallel systems," IEEE Trans. Computers 38:406-

423, Mar 1989.

[7] ELM86 Elmagarnid A. K. "A survey of distributed deadlock detection
algorithms," SIGMOD Records, 15(3):37-45, Sept. 1986.

[8] FEIT91 Feitelson D. "Deadlock detection without wait-for graphs,"

Parallel Computing, 17:1377-1383, 1991.
[9] FLYN72 Flynn, M., "Some computer organizations and their

effectiveness," IEEE Trans. Comp. 21(9):948-960, 1972.

International Journal of Engineering Research & Technology (IJERT)

Vol. 2 Issue 1, January- 2013
ISSN: 2278-0181

3www.ijert.org

IJ
E
R
T

IJ
E
R
T

[10] GOSH91 Goshal D, G. Serazzi, and S. Triphath "The processor

working set and its use in scheduling multiprocessor systems," IEEE
Trans. Soft. Eng., 17(5):443-453, May 1991.

[11] GRØN91 Grønning P., T. Qvist Nielson, and H. H. Løvengreen

"Stepwise development of a distributed load balancing algorithm,"
Lecture Notes in Comp. Science, (486):151-168, 1991.

[12] GUNT81 Gunther K. D. "Prevention of deadlocks in packet-switched

data transport systems," IEEE Trans. Commun., COM-29:512-524,
Apr. 1981.

[13] INMO88b Inmos, IMST800 Transputer, Document No. 42 1082 00,

March 1988.
[14] INT86 Intel, Introduction to the 80386. 231746-001, April 1986.

[15] KNAP88 Knapp E. "Deadlock detection in distributed databases,"

Technical Report, Depat. Computer Science, University of Texas, Jan.
1988.

[16] KROG91 Kröger B., R. Lüling, B. Monien, and O. Vorngerger. "An

improved algorithm to detect communication deadlocks in distributed
systems," in Lecture Notes in Computer Science, 486:90-101.

[17] KUNG88 Kung H. T. VLSI Array Processors. Englewood Cliffs, NJ:

Prentice Hall, 1988.
[18] LEST93 Lester B. P. The art of Parallel Programming, Englewood

Cliffs, NJ: Prentice Hall, 1993.

[19] THIE92 Thiébaut D. J. Wolf, and H. Stone, "Improving disk-cache
performance with partitioning" IEEE Trans. Computers, 41(6), June

1992.

[20] VONN45 Von Neumann, J. "First draft of a report on the EDVAC"
Moore School, University of Pennsylvania, 1945.

[21] WILS, Wilson P. "Highly concurrent systems using the transputer,"
Tech. Report, Inmos Corporation.

[22] Adaptive Load Balancing for MPI Programs by Milind Bhandarker,

L.V. Kale, Eric De Sturler, Jay Hoeinger
[23] Dynamic Load Balancing of Unbalanced Computations Using Message

Passing by James Dinan, Stephen Olivier, Gerald Sabin, Jan Prins, P.

Sadayappan, and Chau-Wen Tseng

[24] Common Search Strategies and Heuristics With Respect to the n-

queens

[25] Problem by Sheldon Dealy

International Journal of Engineering Research & Technology (IJERT)

Vol. 2 Issue 1, January- 2013
ISSN: 2278-0181

4www.ijert.org

IJ
E
R
T

IJ
E
R
T

