
 

  

 

 

 
 

Load Flow Solution U   sing  Simplified Newton-Raphson Method 
 

            S Hussain Mohisin                                                        Dr V. Ganesh 

 PG Scholar, JNTUAC Pulivendula                          Associate professor, JNTUAC Pulivendula 

                              

 

Abstract  
 

The power flow analysis is of great importance in 

planning and designing for the future expansion of 

power systems as well as in determining the best 

operation of existing systems.  There exist two 

widely-used numerical methods (the Gauss–Seidel: 

GS and the Newton–Raphson: NR) to solve this 

problem and therefore referred to as the GS and 

the NR power-flow solution methods, respectively. 

Although the standard Newton-Raphson (NR) 

method is the most powerful algorithm for the 

power flow analysis in electric power systems, the 

calculation of Jacobian matrix derivatives involves 

high computational time. The proposed method 

presents a simplified Newton-Raphson power flow 

solution method to simplify overall equation 

complexity and computation time.  The simplified 

Newton-Raphson method employs nonlinear 

current mismatch equations instead of the 

commonly used power mismatch equations. 

Numerical results are presented  with 5-bus test 

system and IEEE 30-bus test system and compared 

with standards NR method.  

 

1. Introduction  
 

The main function of electric power systems is to 

deliver electric energy to its loads sufficiently, 

efficiently and economically. The steady-state 

performances of an interconnected power system 

during normal operation can be analyzed based on 

nonlinear nodal analysis to form power flow 

equations and must be solved by some efficient 

iterative methods [1–9]. Power flow analysis is 

commonly used as a part of power system 

operation and planning. Since AC power-flow 

solution methods were first developed over half a 

century ago, there exist two widely-used numerical 

methods (the 

Gauss–Seidel (GS) and the Newton–Raphson 

(NR) to solve this problem and therefore referred to 

as the GS and the NR power-flow solution 

methods, respectively. As broadly known, the NR 

method has been successfully developed and 

accepted as the most powerful algorithm for the 

power flow analysis in electric power systems. In 

large-scale power systems containing several 

hundred or up to thousand buses, the standard NR 

method gives a slow execution time due to a large 

updated Jacobian matrix that needs to be 

recalculated and factorized at each iteration [10, 

11]. Consequently, the de-coupled and fast de-

coupled power flow versions [12, 13] were 

released. Hence, the power-flow solution can be 

obtained faster. This method is very useful in 

practical power system analyses, e.g. contingency 

analysis, on-line power flow control, etc. [4, 14]. 

Having a long history of development gives 

power flow algorithms a vast number and a various 

kind of applications. Enhancing the algorithm 

efficiency of power flow calculation has been 

carried out in many different approaches. Network 

partition technique can separate a whole power 

system into subsystems, therefore power flow 

solution of the complete system can be obtained by 

direct coupling of solutions from separate 

subsystems [15] based on the GS method. This 

concept is very useful to parallelize power flow 

algorithms in order to implement a parallel and 

sequential power flow performing on a computer 

cluster whether the GS method or some other 

numerical methods such as successive over-

relaxation (SOR) method is used as the main solver 

[16, 17]. In some point of view, an initial guest 

solution of power flow calculation is one of key 

factors that cause slow computation. 

 In [18, 19], an initial linear solution based on 

the decoupling principle of real and reactive power 

decomposition was utilized as the starting point to 

the power flow calculation. In addition, there are 

some modified versions of the NR power flow 

method to handle ill-conditioned power systems 

[20, 21]. The calculation algorithm has been 

continually developed by several researchers across 

the world. A complex form of the power flow 

calculation was introduced for a three phase 

unsymmetrical power-flow solution [22, 23]. 

Power-flow solutions based on a local search 

method were claimed [24] to be robust and be 

applicable to those cases in which conventional 

power flow method failed. Due to advancement of 

FACTS technology, the power flow equations were 

modified and rewritten into current-injected forms 

for the incorporation of FACTS devices and any 

kind of control strategy [25, 26]. Moreover, the 
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study of power-flow solution methods for particular 

applications, e.g. economic dispatch [27], optimal 

power flow [28], FACTS devices [29, 30], and 

AC/DC power systems [31], was reported.  

Over several decades, electrical power systems 

have been characterized using the nodal analysis to 

solve for a set of voltage solutions. In general, 

electrical demands are defined in constant power. 

This leads to non-linearity of nodal voltage 

equations. To date, the standard NR power flow 

method is one of the most powerful algorithms, 

which has long history of development, and is 

widely used to develop commercial power-flow 

solution software. Although the standard NR power 

flow method is very efficient and commonly used 

for the power flow calculation in several power 

system textbooks [1–9], to formulate iterative 

Jacobian updating matrix equations requires 

complicated formulae and long expressions. In this 

paper, the iterative NR method is still employed as 

the main solution framework. The essential 

difference is that the proposed algorithm is to find 

roots of the current mismatch equations instead of 

those of the power mismatch equations. This 

approach can simplify a very long and complicated 

mathematical formula to a very simplistic and short 

mathematical expression. With this simplification, 

reduction of the overall execution time is expected. 

To achieve this goal, expressions to obtain 

elements of Jacobian updating matrix formulae 

must be derived. 

In this paper presents the formulation of the 

proposed NR power flow problem. Derivation of 

the Jacobian updating matrix elements is included 

and the floating-point operation counting to 

evaluate its computational effort. Numerical 

examples are selected to observe the effectiveness 

of the proposed method. 

 

 

2. Formulation of proposed simplified 

power flow solution  
 

The power flow problem is a zero-finding problem 

to determine voltage solutions of nonlinear power 

mismatch equations [1]. If alternative nonlinear 

current mismatch equations are selected and used 

as functions of estimating roots. Given that an n-

bus power system, which bus number 1 is assigned 

to be a slack bus of constant voltage magnitude and 

zero phase angle. Considering the i
th

 bus, current 

balance equations characterizing this bus can be 

expressed as follows. In this method, the set of 

nonlinear equations are formulated based on 

current mismatch equations. The mathematical 

equations for simplified Newton-Raphson method 

are as follows [34].  

The current balance equation at bus I is 

k
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In practice, loads in electrical power systems are in 

form of powers, therefore it is convenient to rewrite 

eqn. (1) into a function of powers as follows.  
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Define Fi = Gi + jHi be the current mismatch at bus 
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Separating the real and imaginary parts,  
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Eqns. (4) and (5) constitute a set of nonlinear 

algebraic equations in terms of the independent 

variables, voltage magnitude in per unit and phase 

angle in radians. Expanding eqns. (4) and (5) in 

Taylor’s series about the initial estimates and 

neglecting all higher order terms results a set of 

linear equations. In short form, it can be written as 
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The elements of sub matrices A1, A2, A3, and A4 can 

be derived in the similar manner as jacobian matrix 

of the standard NR method, which are the partial 

derivates of eqns. (4) and (5) with respect to   and 

V .  

 

The equations are summarized as, the diagonal and 

the off-diagonal elements of A1 are 
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The diagonal and the off-diagonal elements of A2 

are 
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The diagonal and the off-diagonal elements of A3 

are 
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The diagonal and the off-diagonal elements of A4 

are 
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The new estimates for bus voltages are 
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The process is continued until the current mismatch 
)t(

i
M  and )t(

i
N  are less than the specified accuracy, 

i.e., 
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To compare the effectiveness of the proposed NR 

method against the standard NR method, 

expressions of the Jacobian matrix elements of A1, 

A2, A3 and A4, the calculated real and imaginary 

current matrix elements of G and H, and the 

calculated real and reactive power matrix elements 

of Pcal and Qcal need to be evaluated using the 

floating point operation. 

 

 

3. FLOPs Evolution  
 

The execution time of the power flow calculation 

depends on the amount of floating-point operations 

(FLOPs) [34, 35]. Assume that other steps of the 

two NR methods are exactly the same, therefore the 

Jacobian updating step dominates the overall 

execution time. In general, the time consumed to 

perform multiplication and division is about the 

same, but is larger than addition and subtraction. 

Hence, the operation counting of addition FLOPs is 

negligible. Throughout this paper, FLOPs always 

means the multiplication FLOPs for short and it is 

employed to evaluate the computational effort of 

the proposed algorithm. The amount of FLOPs 

required by each method to formulate Jacobian 

matrices is summarized in Table 1 and where O(n) 

means “terms of order n”. 

 

Table 1 Number of FLOPs 

Sub-matrix 
Number of FLOPs 

Standard NR Proposed NR 

J1 

Diagonal 3(n-1) 4(n-2) 

Off-diagonal 3n2+O(n) 2(n-2) 

Total 3n2+O(n) 6(n-2) 

J2 

Diagonal 2(n-1)+3 4(n-2) 

Off-diagonal 2n2+O(n) (n-2) 

Total 2n2+O(n) 5(n-2) 

J3 

Diagonal 3(n-1) 4(n-2) 

Off-diagonal 3n2+O(n) 2(n-2) 

Total 3n2+O(n) 6(n-2) 

J4 

Diagonal 2 (n-1)+3 4(n-2) 

Off-diagonal 2n2+O(n) (n-2) 

Total 2n2+O(n) 5(n-2) 

Overall 10n2+O(n) 22(n-2) 

 
As a total number of buses n gets larger, the 

number of FLOPs grows quadratically in the 

standard NR method. Interestingly, the FLOP 

number required by the proposed NR method is 

linearly proportional to the total number of buses n. 

Fig. 1 shows the amount of FLOPs required by the 

two methods. 
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4. Results and Analysis  
 

The effectiveness of the simplified Newton–

Raphson power flow method was tested against 5-

bus [2] and 30-bus [1] IEEE test systems. Each 

individual test was performed by using Intel i5 

Processer in which the power flow programs were 

coded in MATLAB [35]. From the computer 

simulation, the voltage solution of each test case 

was calculated. Both NR power flow methods used 

here took 110
-6 

per-unit as the termination criteria 

for the maximum allowable voltage tolerance.  

The 5-bus power systems voltages and line 

losses are calculated using proposed simplified NR 

method. The obtained results are compared with the 

solution of existing standard NR method, has 

shown in the Table 2 and Table 3 respectively and 

observed that the results are nearly matched. The 

30-bus systems voltages of standard NR method 

and simplified NR method are given in Table 4. 

 

Table 2 Voltages for the 5-Bus System 

Bus 

No 

Standard NR Proposed NR 

Voltage Voltage 

|V| 

p.u. 

Angle 

Deg. 

|V| 

p.u. 

Angle 

Deg. 

1 1.0600 0.0000 1.0600 0.0000 

2 1.0000 -2.0612 1.0000 -2.0502 

3 0.9872 -4.6367 0.9872 -4.6286 

4 0.9841 -4.9570 0.9841 -4.9483 

5 0.9717 -5.7649 0.9717 -5.7547 

 

Table 3 Line flows and line losses details for the 5-

Bus System 

From 

Bus 

To 

Bus 

Standard NR Proposed NR 

Line Losses Line Losses 

MW MVAr MW MVAr 

1 2 2.486 1.087 2.479 1.065 

1 3 1.518 -0.692 1.515 -0.701 

2 3 0.360 -2.871 0.360 -2.869 

2 4 0.461 -2.554 0.462 -2.552 

2 5 1.215 0.729 1.215 0.730 

3 4 0.040 -1.823 0.040 -1.823 

4 5 0.043 -4.652 0.043 -4.653 

Total 6.122 -10.777 6.114 -10.803 

 

For 5-bus system the power mismatch is 

9.82099e-010 and number of iterations is 4 in 

standard NR method where as in current mismatch 

is 4.17729e-007 and number of iterations is 5 in 

proposed NR method.  For 30-bus system the 

power mismatch is 4.6806e-008 and number of 

iterations is 4 in standard NR method whereas in 

current mismatch is 1.16066e-007 and number of 

iterations is 8 in proposed NR method. The fig. 2 

and fig. 3 shows the power and current mismatches 

with respect to standard NR method and proposed 

simplified NR method 

 

Table 4 Voltages for the 30-Bus System 

Bus 

No 

Standard NR Proposed NR 

Voltage Voltage 

|V| 

p.u. 

Angle 

Deg. 

|V| 

p.u. 

Angle 

Deg. 

1 1.0600 0.0000 1.0600 0.0000 

2 1.0430 -5.3504 1.0430 -5.0522 

3 1.0205 -7.5309 1.0210 -7.1807 

4 1.0115 -9.2830 1.0120 -8.8467 

5 1.0100 -14.1684 1.0100 -13.4622 

6 1.0100 -11.0625 1.0103 -10.5093 

7 1.0022 -12.8651 1.0024 -12.2493 

8 1.0100 -11.8154 1.0100 -11.1283 

9 1.0499 -14.1031 1.0501 -13.5661 

10 1.0432 -15.6944 1.0434 -15.1660 

11 1.0820 -14.1031 1.0820 -13.5661 

12 1.0565 -14.9577 1.0566 -14.4731 

13 1.0710 -14.9577 1.0710 -14.4731 

14 1.0415 -15.8500 1.0416 -15.3593 

15 1.0367 -15.9373 1.0369 -15.4407 

16 1.0432 -15.5301 1.0434 -15.0270 

17 1.0382 -15.8606 1.0384 -15.3399 

18 1.0268 -16.5480 1.0270 -16.0400 

19 1.0241 -16.7193 1.0243 -16.2044 

20 1.0281 -16.5205 1.0283 -16.0022 

21 1.0308 -16.1386 1.0310 -15.6101 

22 1.0313 -16.1243 1.0316 -15.5959 

23 1.0259 -16.3233 1.0261 -15.8134 

25 1.0199 -16.4931 1.0201 -15.9651 

26 1.0162 -16.0730 1.0164 -15.5237 

27 0.9985 -16.4936 0.9987 -15.9441 

28 1.0066 -11.6871 1.0067 -11.1059 

29 1.0025 -16.7844 1.0029 -16.2214 

30 0.9911 -17.6688 0.9914 -17.1052 

 

 

 
Fig. 2 Power and Current Mismatches for 5-Bus 

Power System 

 

Table 4.7 is the summary of the effectiveness of 

the proposed method by giving the required 

iteration and calculation time in comparison with 

those of the standard NR method. It notes that, in 

Table 5, SNR and PNR denote the standard NR 

method and the proposed NR method, respectively. 
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Fig. 3 Power and Current Mismatches for 30-Bus 

Power System 

 

Table 5 Simulation result for required iteration and 

time of computation 
Test 

system 
Method 

Required 

Iterations 

Execution 

time (s) 

Calculating 

time ratio 

5-Bus 
SNR 4 0.0231 1.5197 

PNR 5 0.0152 - 

30-Bus 
SNR 4 0.1686 1.3255 

PNR 8 0.1272 - 

 

From the Table 5, the PNR method spends 

shorter calculation times for all test cases even the 

though the test cases iteration high in PNR method 

compared with SNR. Undoubtedly, the PNR 

method is faster for these two test cases. Since the 

PNR method takes less requirement of re-

calculation in its Jacobian matrix per iteration, the 

calculation time ratios for these three test cases are 

remarkably larger with a factor of 1.5197 and 

1.3255 respectively. 

 

5. Conclusions  

 
Power flow calculation is one of the most essential 

parts in electric power system operation in order to 

analyze, simulate, design and control the steady-

state system performances properly. Although there 

exist several powerful power flow solvers based on 

the standard NR method, their problem formulation 

gives complication due to the need to calculate 

derivatives in the Jacobian matrix. The proposed 

method uses nonlinear current mismatch equations 

instead of the commonly-used power mismatches 

to simplify overall equation complexity. With 

performance evaluation found in session 3, a total 

number of operations required by the proposed NR 

method is linearly proportional to the size of the 

Jacobian matrix, while that of the standard NR 

method is quadratic. This means that the 

calculation time of the standard NR method 

increases more rapidly as a total bus number 

increases than that of the proposed NR method 

does. From this advantage, the calculation time 

consumed by the proposed NR method is expected 

to be less than that of the standard one. This can 

leads to improvement of power-flow software 

development in fast computational speed and less 

memory usage. 
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