
Load Rebalancing in Cloud Computing

Environment

Anagha Meher Bidisha Roy Rajkumar Shende

Department of Computer Engineering Department of Computer Engineering Department of Computer Engineering

St. Francis Institute of Technology St. Francis Institute of Technology St. Francis Institute of Technology

Mumbai, India Mumbai, India Mumbai, India

 Abstract—Cloud computing is distributed computing over a

network and it means the ability to run a program on many

connected computers at the same time.Large scale distributed

systems such as cloud computing applications are becoming very

common. These applications come with increasing challenges on

how to transfer and where to store and compute data. Load

balancing is the one of the challenging task. Load balancing is

the process of reassigning the total loads to the individual nodes

of the collective system to make the best response time and also

good utilization of the resources and to remove the situation

where some nodes are over loaded and some other are under

loaded. To decrease the total number of heavy nodes (servers) in

the system by moving load from heavy nodes (servers) to light

nodes (servers) is the main aim of balancing the load. Our

objective is to allocate the files as uniformly as possible among

the nodes such that no node manages an excessive number of

loads. In this paper we present K-means algorithm, Min-Min

and Max-Min algorithm for load balancing on cloud.

 Keywords— Load balance, clouds, K-means algorithms, Min-

Min algorithm, Max-Min algorithm

I. INTRODUCTION

The concept of Cloud computing has significantly

changed the field of parallel and distributed computing

systems today. Cloud Computing (or cloud for short) is a

compelling technology. In clouds, clients can dynamically

allocate their resources on-demand without sophisticated

deployment and management of resources [1]."Cloud"

simplifies the many network connections and computer

systems involved in online services. Cloud Computing is a

technology, which connects so many nodes together for

allocating resources dynamically [2].Cloud computing is a

internet based development and use of computer technology.

It is a style of computing in which dynamically scalable and

often virtualized resources are provided as a service over the

internet. Different types of technologies are used in clouds

such as Map Reduce programming paradigm, distributed file

systems, virtualization. These kinds of technologies are

scalable which can add or delete new nodes or systems

making it reliable [2].In large cloud we can connect hundreds

or thousands of node together. By shifting of workload

(processes) among the processor (servers), it is a process of

load balancing for improving the performance of the system.

Load balancing is a methodology to distribute workload

across multiple computers, or other resources over the

network links to achieve optimal resource utilization,

maximize throughput, minimum response time, and avoid

overload. This project is based on simulation technique.

When analyzing the existing system, clouds rely on

central nodes to balance the loads of storage nodes, there

comes the performance bottleneck because the failure of

central nodes leads to the failure of whole system and it will

leads to many technical and functional difficulties.

The term which is generally used in reference to internet is

called as cloud computing. The cloud is changing the

worldwide network of computer into largest single computer.

Resource sharing increases the load on single machine.

Therefore overall performance decreases and this problem are

called as load balancing. Load balancing is one of the major

issues now days. It is a process of reassigning the total load to

the individual nodes of the collective system to make

resource utilization effective and to improve the response

time of the job, simultaneously removing a condition in

which some of the nodes are over loaded while some others

are under loaded.

Load balancing is one of the central issue in cloud

computing.

It is a mechanism that distributes the dynamic local workload

evenly across all the nodes in the whole cloud to avoid a

situation where some nodes are heavily loaded while others

are idle or doing little work. It helps to achieve a high user

satisfaction and resource utilization ratio, hence improving

the overall performance and resource utility of the system.

Load balancing simultaneously removing a condition in

which some of the nodes are over loaded while some others

are under loaded.

II. RELATED WORK

In [1], The chunks can be distributed to the system evenly for

reducing movement cost as much as possible it is a design to

reallocate file chunks in load rebalancing algorithm. Number

of chunks migrated to balance the loads of the chunk servers

it is define as movement cost. To reduce demanded

movement cost and to balance the loads of nodes these are

the advantages of this paper. Physical network locality and

node heterogeneity these advantages are taken in this paper.

Existing centralized approaches are comparable with this

proposal. The load imbalance factor, movement cost, and

algorithmic overhead these terms are considerably

outperform in prior distributed algorithm.

In [5], Distributed hash tables are shown to become a useful

building block for a variety of distributed applications. To

International Journal of Engineering Research & Technology (IJERT)

ISSN: 2278-0181

www.ijert.orgIJERTV4IS080672

(This work is licensed under a Creative Commons Attribution 4.0 International License.)

Vol. 4 Issue 08, August-2015

734

achieve desired load balancing goals, implementation

complexity and substantial storage overhead these two are

required for current schemes based upon consistent hashing.

Author argues in this paper that these goals can be achieved

more simply. First, author suggests the direct application of

the power of two choices paradigm, whereby an item is

stored at the less loaded of two (or more) random

alternatives. Then consider how associating a small constant

number of hash values with a key can naturally be extended

to support other load balancing methods, including load-

stealing or load-shedding schemes, as well as providing

natural fault tolerance mechanisms.

In [6][7], Authors use the concept of virtual servers for load

balancing. A virtual server looks like a single peer to the

underlying DHT(Distributed Hash Table), but for more than

one virtual server, each physical node can be responsible. For

example, in Chord [8], for a neighboring region of the

identifier space, each virtual server is responsible but by

having multiple virtual servers, a node can own no

neighboring portions of the ring. We can move a virtual

server from any node to any other node in the system it is a

key advantage of splitting load into virtual machine. This

paper presents three simple load-balancing schemes that

differ primarily in the amount of information used to decide

how to rearrange load. All these schemes try to balance the

load by transferring virtual servers from heavily loaded nodes

to lightly loaded nodes. The amount of information required

to make transfer decision this is the key difference between

these three schemes. First is one-to-one, second is one-to-

many and third are many-to-many. The first scheme is based

on a one-to-one assignation mechanism, where randomly

picked the two nodes. If one of the nodes is heavily loaded

and the other is light then virtual server transfer is initiated.

Unlike the first scheme, second scheme allows more than one

light node to a heavy node is to be considered. Third scheme

is a logical expansion of the first two schemes. While in the

first scheme we consider one heavy node to a light node and

in the second scheme we consider one heavy node to many

light nodes, in this scheme we consider many heavy nodes to

many light nodes.

In [9], basic concepts of Load balancing and cloud computing

are discussed. Some existing load balancing algorithms which

can be applied to clouds are studied in this paper. Different

load balancing strategies with reporting time for single level

tree networks and the closed-form solutions for minimum

measurement these additional points were studied in this

paper. The performance of these strategies with respect to the

timing and the effect of link and measurement speed were

studied.

In [10], Authors discuss the Min-Min and Max-Min

algorithm for load balancing. The main drawback of Min-

Min algorithm is it delays the execution of the smaller jobs

and because of the dynamic nature of the cloud, execution of

the smaller jobs may be postponed indefinitely. Min-Min

algorithm’s disadvantages are overcome in Max Min

algorithm which is static in nature.

One of the feature of the Max-min algorithm is it selects the

largest job and is executed on the fastest available resource.

In Max-Min algorithm, maximum execution time’s job is

selected and it is send it to the machine which has min

completion time. In other word complicated jobs runs on idle

machine. When the number of small tasks is more than

number of the large tasks in a meta-task, the Max-min

algorithm schedules tasks, in which the make span of the

system relatively depends on how many, executing small

tasks concurrently with large one[11]. The enhancement to

this Max-min Algorithm is instead of selecting maximum

execution time task, selects an Average or nearest greater

than average task then overall makespan is reduced and also

balance load across resources [12].

In [13], Jobs are equally distributed to all slave processors in

Round Robin algorithm. According to the round robin

algorithm, all jobs are given to the slave processors. It mean

that it perform the processor selection in series and if the last

processor has been reached then it will be back to the first

processor. Selections of the processors are performed locally,

independent of allocations of other processors. Inter process

communication is not require in Round Robin algorithm this

is the main advantage of this algorithm. In general Round

Robin is not expected to achieve good performance in general

case. However when the jobs are of unequal processing time

this algorithm suffers as the some nodes can become severely

loaded while others remain idle. Round Robin is generally

used in web servers where generally HTTP requests are of

similar nature and thereby be distributed equally.

In Randomized algorithms [13], random numbers are used to

select slave processors. The slave processors are selecting

randomly following random numbers generated based on a

statistic distribution. Out of the load balancing algorithms for

particular special purpose applications, randomized algorithm

can obtain the best performance.

In Central Manager Algorithm [14], in each step, slave

processor is selected from the central processor to be

assigned a job. The processor having minimum load is as the

slave processor which is selected. In this algorithm, selection

is based on central manager algorithm and it is possible to

perform because load information about slave processor is

able to gather by central processor. Depending on the system

load information, load balancing decision is made by load

manager. When process created it will allow the best

decision. Obstruction could occur because of high degree of

inter-process communication. On the different hosts dynamic

activities are created then performance of this algorithm is

expected to be better than parallel applications.

III. PROPOSED WORK

 To decrease the total number of heavy nodes (servers) in

the system by moving load from heavy nodes (servers) to

light nodes (servers) is the main aim of balancing the load.

Transferring the load from heavily loaded server to the lightly

loaded server this equal distribution of the may improve

utilization of resource. Proposed system is showing the

simulation of load balancing on cloud. This system is

proposed for balancing the load on private cloud.

In our proposed system, each module server first estimate

whether it is lightly loaded or moderately loaded or heavily

loaded based on the server’s colour. All the over loaded

servers in the system becomes under loaded server this

process repeats. If there is a situation where all the servers are

heavily loaded no other server is remaining for balancing the

International Journal of Engineering Research & Technology (IJERT)

ISSN: 2278-0181

www.ijert.orgIJERTV4IS080672

(This work is licensed under a Creative Commons Attribution 4.0 International License.)

Vol. 4 Issue 08, August-2015

735

load. In this situation some servers are keeping for this

emergency situation. Server replica is created and it will

balance load of the server. Server replicas are those servers

which are kept in the side for emergency situation this is the

concept behind rebalancing.

Detailed steps are given below.

Fig 1. Block diagram of Proposed System

In proposed system, Load of the server is decided on the size

of RAM and CPU cycle where how may processes are

performed and type of that processes. The proposed system

consists of the modules as shown in the Fig.1. The important

phases as part of the proposed solution are described in brief

as follows:

Step 1: Neighbour Identification

 First we need to find neighbour of that sever which is

heavily loaded where we can transfer the load. Load of the

neighbour server is very important, while assigning processes

(tasks) in distributed computing. This helps in reassigning

tasks to the neighbour easily. Neighbour server should be

lightly loaded. Neighbour identification is done with help of k

nearest neighbour algorithm.

File is partitions into number chunks and different chunks are

migrated to different chunk server for balancing the load. For

balancing the load by using nearest neighbour algorithm

migrate one whole process into any one server therefore no

need to keep the track of the process which is transfer for

load balancing.

Step 2: Task Selection

Once Nearest server is decided then task selection process is

performed. Depending on the nearest server’s capacity

algorithm decides either transfer complicated processes,

medium complicated processes or simple processes. If

Nearest server has more capacity that time complicated

processes will transfer and if server doesn’t have that much

capacity then simple and medium processes will transfer.

Task selection is done with the help of Min-Min and Max-

Min algorithm.

Step 3: Datanode Selection

Once the tasks (processes) are decided for transfer, the

datanode selection for assigning the task forms the next

important phase of the whole process. Here we have to select

the datanode (server) which is lightly loaded. Because if we

select the nearest server which is moderately loaded and we

transfer the processes to that server, there is possibility it will

become overloaded. Datanode selection is done with the help

of Min-Min and Max-Min algorithm.

Step 4: Server Replication

Replication of the server is required for decreasing the load

on the system (server). If the situation occurs, where all the

servers are heavily loaded there is no lightly loaded server

where we transfer the load. In this emergency situation

replica of the server is automatically created where we

transfer the load for balancing the server.

IV. IMPLEMENTATION

The proposed framework is implemented using java with help

of Net Beans IDE 8.0.2. Design Swing GUIs by dragging and

positioning GUI components from a palette onto a canvas.

Drag components from the palette and drop them onto the

canvas. Server’s properties are entered in edit properties

window which is in right side of the canvas. Severs are

created on canvas. It shows simulation of load balancing in

private cloud.

Steps for Create New Server

Click on Start Adding Server button

 When we click on Start adding server button this button will

get disabled and Stop adding server button is enabled.

1. Click Anywhere on Canvas

Once we clicked on the canvas, on right hand side we can see

edit properties window in that we have to enter following

details (Each of the details by default values are given):

Server name, RAM size(1TB),CPU capacity(MHz),Process

count(it

Should be greater than 1)

a. Then Click on Setup process. When we clicked

on that button, number of process has been

displayed. Then Enter Process name (which are

performed on that server) and select process

Type. On server three processes have been

performed (1) Simple process (2) Medium

Complex process (3) Complex process.

2. Once information is entered, then finally Click on

calculate server load and Create Server. For adding each

server, we have to follow above steps.

3. We can recognized server’s load, depending on server

colour. If Server colour is Green, server is lightly loaded.

If it is Yellow then it has medium load. But server colour

is Red, it is heavily loaded.

4. Select server which has heavy load on the canvas, we

need to balance load of that server .Once we select

heavily loaded server, firstly we need to find the nearest

neighbour of that server.

5. To find nearest neighbour server, we have to perform

neighbour identification with the help of k-means

algorithm.

6. Once server is selected click on K-mean neighbour

button, so that it shows the nearest neighbour server

which has less load.

7. If load is more than neighbour server’s capacity, then

click on next neighbor button to find a next neighbour

which is lightly loaded.

8. Once nearest Neighbour found, Click Load Balance for

transfer load to that neighbour. It will remove some

Processes from selected server and add the same to

Balancing Server.

9. Display button shows the details of server and process.

Here we can see how much load transferred to the

nearest server.

10. Reset button is used for reset all the information from the

canvas.

11. AutoRequest button is used for showing the user’s

request (processes) which are come in the server. How

International Journal of Engineering Research & Technology (IJERT)

ISSN: 2278-0181

www.ijert.orgIJERTV4IS080672

(This work is licensed under a Creative Commons Attribution 4.0 International License.)

Vol. 4 Issue 08, August-2015

736

many users are active is shown. All this is done

automatically.

12. If we click AutoLoadBalance button, it will

automatically balance the load between the servers.

13. When automatically requests are come and balancing the

load, if there is situation where all the servers are heavily

loaded there is no other server for balancing the load

then we click on the Auto new server button. Once we

click this button automatically new server gets created

(these are the servers which are kept for emergency

situation).

14. Click Export from menu to export Server Grid to XML

And Exported XML would be saved as ServerFile.xml in

same.

15. Click Import from menu It will import ServerFile.XML

from root folder and All Server from XML would be

loaded in canvas.

V. RESULTS

Fig 2. Scenario of servers on cloud

Fig 2. Shows that Overall scenario of severs on cloud in

which some servers are heavily loaded, some are moderately

loaded and some are lightly loaded.

Load balancing for three different situations is explained

below

Situation 1:

1. Server 1,Server 2 and Server 6 are lightly loaded

2. Server 3 and Server 5 are heavily loaded

3. Server 4 has medium load

This can be explain by figure 3(a) below

Fig 3(a). Situation 1

Solution:

1. Select Server 3 which is heavily loaded.

2. Click K means neighbour button to find nearest

neighbour of server 3 by using k-means neighbour

algorithm.

3. After that Server 2 is highlighted because it is neighbour

of Server 3 which is lightly loaded.

4. Then click load balance button for transferring some

server 3’s processes.

5. Process p1 and p7 with the help of max-min algorithm

which is shown with arrow T1 (transfer 1).

6. Then find next nearest neighbour which is Server

1.Server 3 transfer (which is shown with the direction T

2) process p6 to the Server 1.

7. Like this Server 5 transfer (T 3) process p6 to Server

6(nearest neighbour) and then find next nearest

neighbour which is lightly loaded.

8. Server 1 is next possible neighbour which is lightly

loaded .Server 5 transfer (T 4) process p7 to the Server 1.

Note: Number of T’s is used to show which process is

transfer first from Server.

This can be explain by figure 3(b) below

Fig 3(b). Load are balance in all the severs

Situation 2:

1. Here, all servers are heavily loaded so we can’t

transfer the load to the nearest neighbor.

This can be explain by figure 4(a) below

Fig 4(a). All servers are heavily loaded

Solution:

1. Some servers are preserved for emergency situation like

this

2. If we click auto request and auto load balance,

automatically tasks are transfer for balancing the server.

3. In this situation all the available servers get heavily

loaded then there is option as auto new server when we

clicked on that button automatically new servers are

generated , with this server we can perform load

balancing process And balance the load from heavily

loaded server to lightly loaded server.

International Journal of Engineering Research & Technology (IJERT)

ISSN: 2278-0181

www.ijert.orgIJERTV4IS080672

(This work is licensed under a Creative Commons Attribution 4.0 International License.)

Vol. 4 Issue 08, August-2015

737

4. Select Server 4 which is heavily loaded and click k-

means neighbour button to find nearest neighbour which

is Server 5.

5. Server 4’s process p7, p8, p9 are transfer (T1) to the

Server 7.Then select Server 3 which is heavily loaded.

Then click K-means neighbour button for finding nearest

neighbour of this server

6. Server 3’s nearest neighbour is server 5 but if we transfer

tasks to server 5, server 5’s load get increase so for

balancing the load we find next neighbour by clicking

next neighbour button.

7. Next neighbour is sever 6.server 3’ process p1, p2, p6

transfer (T2) to the server 6 on the bases of max-min

algorithm.

8. Then select server 2(heavily loaded) and click k-means

neighbour and then click next neighbour button to avoid

imbalance situation.

9. Next neighbour is server 7.server2’s process p5, p6, p7 is

transfer (T3) to server 7.

10. Then select server 1 which is heavily loaded. Server 1’s

process p6 is transfer (T4) to the server 5 on the bases of

max-min algorithm.

11. Again select server 1 for balancing the server. Server 1’s

nearest neighbour is server 6 with the help of k-means

and next neighbour.

12. Server 1’s process p4, p5 are transfer (T5) the server 6.

This can be explain by figure 4(b,c) below

Fig 4(b) Replication servers are created automatically

Fig 4(c) Load are balance between all the servers

 Situation 3:

1. Server no 2 and 3 are heavily loaded

2. First we select server 2 for load balancing, for that

we have to find nearest neighbour but its nearest

neighbour is server 3 which is also heavily

loaded(red colour).

 This can be explain by figure 5(a) below

Fig 5(a). Some servers are heavily loaded and others are lightly loaded

Solution:

1. Select server 2 which is heavily loaded. click k-

means neighbour button.

2. Server 2’s nearest neighbour is server 3. In this

situation one message box is displayed that server 3

is loaded please select possible server and then

automatically next nearest neighbour which is

lightly loaded gets highlighted.

3. Server 4 gets highlighted. Server 2’s Processes p5,

p6, p7 transfer (T1) to the server 4 with the help of

max-min algorithm.

4. Then Select Server 3 which is heavily loaded. Click

k-means neighbour button and again click next

neighbour for finding lightly loaded neighbour.

5. Server 3’s nearest neighbour is sever 5. Server 3’s

processes p6, p7 are transfer (T2) to the server 5.

This can be explain by figure 5(b,c) below

Fig 5(b)Nearest neighbour is also heavily loaded so can’t transfer to it

Fig 5(c). Balancing the load between all the servers

International Journal of Engineering Research & Technology (IJERT)

ISSN: 2278-0181

www.ijert.orgIJERTV4IS080672

(This work is licensed under a Creative Commons Attribution 4.0 International License.)

Vol. 4 Issue 08, August-2015

738

VI. PERFORMANCE ANALYSIS

Table I. Comparative study on load balancing algorithms

The performance analysis is as shown in Table I. The Round

Robin, Randomized, Central manager algorithms are

compared with Min-Min, Max-Min and K-means algorithms

which are present in this paper.

We can balance the load of the server by transferring the load

from heavily loaded server to the lightly loaded server. This

maximizes the resource utilization, minimizing the response

time, minimizing the waiting time. K means neighbour

algorithm is dynamic in nature and resource utilization of this

algorithm is more than existing algorithms. Waiting time and

response time is less therefore k nearest neighbour algorithm

is used for neighbour identification.

IV. CONCLUSION

 Load balancing is a major issue in cloud computing. In this

proposed work balance the load of the servers from heavily

loaded server to the lightly loaded server. K-means neighbour

algorithm is used to migrate one whole process into any one

server so that keep the track of information about processes

are avoided. Proposed system increases resource utilization

and minimizes the waiting and response time.

REFERENCES

[1] H. Hsiao,Member, H. Chung, H. Shen, and Y. Chao “Load

Rebalancing for Distributed File Systems in Clouds” IEEE Trans. on
Parallel and Distributed Systems, vol. 24, no. 5, May 2013.

[2] R. Revathy and A. Illayarajaa, “Efficient Load Re Balancing
Algorithm for Distributed File Systems” International Journal of

Innovative Technology and Exploring Engineering Vol-2, Issue-6,pp.

2278-3075, May 2013.

[3] Load Balancing,www.f5.com/glossary/load-balancing/,Nov-2013.

[4] Ali M.Alkeel,”a Guide to Dynamic Load Balancing in distriduted
computer systems”,IJCSNS International Journal of Computer Science

& Network /security,vol.10 no.6,June 2010.

[5] .W. Byers, J. Considine, and M. Mitzenmacher, “Simple Load
Balancing for Distributed Hash Tables,”Proc. First Int’l Workshop
Peer-to-Peer Systems),pp. 80-87, Feb. 2003

[6] A. Rao, K. Lakshminarayanan, S. Surana, R. Karp, and I. Stoica,“Load
Balancing in Structured P2P Systems,”Proc. Second Int’lWorkshop
Peer-to-Peer Systems ,pp. 68-79, Feb. 2003.

[7] Dabek and M. F . Kaashoek and D. Karger and R. Morris and I. Stoica.
“Wide-area Cooperative Storage with CFS”, Proc. ACM SOSP 2001.

[8] I. Stoica, R. Morris, D. Liben-Nowell, D.R. Karger, M.F. Kaashoek, F.
Dabek, and H. Balakrishnan, “Chord: A Scalable Peer-to-Peer Lookup
Protocol for Internet Applications,”IEEE/ACM Trans. Networking,vol.
11, no. 1, pp. 17-21, Feb. 2003

[9] R. P. Padhey, P. Goutam Prasad Rao, “ Load Balancing in Cloud
Computing Systems”, Department of Computer Science and
Engineering, National Institute of Technology, May 2011.

[10] Santhosh, Dr. D.H.Manjaiah, ”An Improved Task Scheduling
Algorithm based on Max-min for Cloud Computing”, International
Journal of Innovative Research in Computer and Communication
Engineering, Vol.2, Special Issue 2, May 2014

[11] U. Bhoi, P. N. Ramanuj, “Enhanced Max-min Task Scheduling
Algorithm in Cloud Computing”, International Journal of Application
or Innovation in Engineering & Management (IJAIEM), Volume 2,
Issue 4, April 2013.

[12] O. M. Elzeki, M. Z. Reshad and M. A. Elsoud, “Improved Max-Min
Algorithm in Cloud Computing” , International Journal of Computer
Applications (0975 – 8887) Vol-50 – No.12, July 2012.

[13] H. Rahmawan, Y. S. Gondokaryono, “The Simulation of Static Load
Balancing Algorithms”, 2009 International Conference on Electrical
Engineering and Informatics, Malaysia.

[14] S.Sharma, S. Singh, and Meenakshi Sharma, “Performance Analysis of
Load Balancing Algorithms”, academy of science, engineering and
technology, issue 38, February 2008, pp. 269-272.

International Journal of Engineering Research & Technology (IJERT)

ISSN: 2278-0181

www.ijert.orgIJERTV4IS080672

(This work is licensed under a Creative Commons Attribution 4.0 International License.)

Vol. 4 Issue 08, August-2015

739

