
Load Rebalancing with Improved Security for

Distributed File Systems in Cloud

Meera Suresh
M.Tech Scholar,

Dept. Computer Science

College of Engineering Munnar,

 Kerala, India

Shine N. Das

Associate Professor,

Dept. Computer Science

College of Engineering Munnar,

Kerala, India

Abstract— This paper describes a Hadoop based load

rebalancing algorithm along with a procedure for improving the

security by using the cryptographic algorithms such as RSA and

MD5. In a cloud computing environment, that contains large

number of nodes, each of which having storage and processing

capacities, failure is a norm and the nodes as well as the data

may be upgraded, replaced, or added to the system resulting in

load imbalance of the system. The load rebalancing algorithm

can solve this issue. The security offered in cloud is very limited.

So, for enhancing the security RSA and MD5 algorithms are

incorporated to the system. Among the huge data those which

need more security rather than just storing it are encrypted

using RSA and checked periodically using MD5. Before

encrypting using RSA the data is compressed, this improves

speed of RSA. Replicas are stored in addition to recover from

any distortion happening to data.

Keywords— Big Data; Cloud Computing; Hadoop; MD5; RSA

I. INTRODUCTION

Cloud Computing[1] offers easy access to high performance

computing devices and storage infrastructure through web

services. It provides massive scalability and reliability

without sacrificing high performance. The cost associated with

running an application in cloud depends on the amount of

resources utilized by the application such as storage space and

computational power. Cloud Computing refers to configuring,

manipulating and accessing the applications online. It offers

online infrastructure, data storage and application. Cloud

Computing has numerous advantages, But the major issues

associated with it such as security provided to the users cannot

be ignored.

 Cloud computing provides massive clusters for efficient

large computation and data analysis. MapReduce[2] is a

programming model which was first designed for improving

the performance of large batch jobs on cloud computing

systems. One of the most important performance bottlenecks

in this model is due to the load imbalance between the reduce

tasks. The input of the reduce tasks is known only after all the

map tasks complete execution and the roles of the reducers

are assigned beforehand, resulting in load imbalance between

the reduce tasks. The objective is to examine the load

rebalancing problem in cloud computing and to enhance

distributed load rebalancing algorithm to cope with the load

imbalance factor, movement cost, and algorithmic overhead

[3]. Further investigation is done on the security provided in

cloud and evaluates the Quality of Service-QOS i.e. the

response of the whole system.

 Section 2 describes the existing methods for load balancing

and security in cloud. In Section 3, the proposed system is

described. Further detailed study on the load imbalance

problem is done in Section 4. Methodology and Results are

given in later sections.

II. EXISTING SYSTEM

The load rebalancing algorithm proposed in [3] is an efficient

method for balancing load in the distributed dynamic

environment. The concepts mentioned in this paper are

adopted in our system. However no method to solve security

issues in cloud is included. In [4], describes a method for

enhancing security by incorporating RSA to the system.

Though using RSA is the secure way of keeping files, RSA is

slow process. Here the point to be noted is that it is not

practical to encrypt the entire big data. To solve this issue we

have classified the data as critical data and data that needs to

be stored alone. No method for checking the integrity of

stored data is done in this existing method. Another method

for encrypting data is prescribed in [5], where DES is used

.The major drawback is that DES is a symmetric key system

where the same key can be used for encryption and

decryption. Here also no method is specified for integrity

check.

III. PROPOSED SYSTEM

In cloud computing one server acts as the main server which

can upload or download files in the connected sub servers.

This method has single point failures in which the main

server becomes performance bottle neck. To overcome this

problem a fully distributed system on which the distributed

load balancing algorithm that execute on every sub servers is

proposed. The key building block for cloud computing

application is Distributed File System that work based Map-

Reduce programming model which is used for handling Big

Data[6]. Every node in such system has storage and

processing capacities. The load of a node is proportional to

the number of file chunks stored by it. Balancing the load

among the storage nodes is a critical function. In clouds the

basic operation is splitting the file into chunks and allotting

the chunks to the nodes where they will be processed. The

node identifies themselves as under loaded or over loaded

and pairing between the under loaded and over loaded nodes

occurs, such that every node/server contains load which is

within the specified limit called the average value.

International Journal of Engineering Research & Technology (IJERT)

ISSN: 2278-0181

www.ijert.orgIJERTV4IS050697

(This work is licensed under a Creative Commons Attribution 4.0 International License.)

Vol. 4 Issue 05, May-2015

610

 For dealing with the security issues RSA algorithm is used,

which is an asymmetric cryptographic system having different

keys for encryption and decryption. The sensitive data's will

be compressed beforehand and will be encrypted using RSA

i.e., for encryption the client's public key is used and the

private key for decrypting the same will be send to the user's

email id. So for further enhancing the security MD5 algorithm

is used. Even if the data is attacked after encrypting, it can be

found and will be reported to the user. The hash values of the

data when it is first uploaded is found and it is stored in the

data base .This will be compared with the hash values

generated for the same data in periodic time intervals. If any

change is detected it means that an attack have occurred and

it will be reported. By compressing and encrypting data, it

can be transmitted over unsecure and bandwidth constrained

channel. Compressing the data has other notable advantages

such as decreased movement cost and space consumption

which improves the total system efficiency and speed of RSA.

The distributed file systems like the Google GFS and

Hadoop HDFS in clouds rely on central nodes to handle the

metadata information of the file systems and also to balance

the loads of storage nodes based on that metadata. Although

this approach simplifies the design and implementation, recent

studies concludes that when the number of files, number of

storage nodes and the number of accesses to files increase

linearly, the central nodes (e.g., the master node in Google

GFS) become a performance bottleneck. In the proposed

system the dependence on central nodes are completely

avoided. The storage nodes are structured as a network based

on the distributed hash tables. DHT's enables nodes to repair

and self organize by constantly providing look up

functionality in the node dynamism and management. A

unique identifier is provided to each file chunk such that

finding a file chunk means a rapid key look up. The proposed

algorithm outperforms the existing load balancing

approaches in terms of imbalance factor, algorithmic

overhead and movement cost. Load-balancing algorithms

based on DHTs are extensively studied (e.g., [7-13]), but

most existing solutions are designed without taking into

account factors such as movement cost, node heterogeneity

and physical network locality in the reallocation of file

chunks [14-15].Our proposed system considers all three and

also considers the security issues in cloud thereby improving

the overall system performance. The architecture of the

proposed system is given in Fig 1.

I. THE LOAD REBALANCING PROBLEM

The chunk servers are organized as a DHT network in our

proposal; that is, each chunk server implements a DHT protocol

such as Chord [12] or Pastry [13]. A file in the system is

partitioned into a number of fixed-size chunks, and "each "chunk

Fig 1.System architecture

has a unique chunk identifier named with a globally known hash

function such as SHA1. Each chunk server is also given a unique

ID. The number of files can be hundred, thousand or even more.

The chunk servers are represented as V. For short, the n chunk

servers are denoted as n...3,2,1 . The successor of chunk server

i is the chunk server 1i and the successor of chunk server n

will be chunk server 1. In a typical DHT, a chunk server i host

the file chunks or data items whose ID is greater than or equal to

the ID of the node. DHTs is used in our proposed system as

it is having the following advantages:

1) The chunk servers will self-configure and self-heal in our

proposal because of their arrivals, failures and departure,

simplifying the system provisioning and management.

2) If a node leaves, then its locally hosted chunks are

reliably migrated to its successor. if a node joins, then it

allocates the chunks whose IDs immediately precede the

joining node from its successor to manage.

 A large-scale distributed file system having a set of chunk

servers V in a cloud, where the cardinality of V is n . n

can be 1000, 10,000 or even more. Number of files is stored

in the n servers. The set of files is taken as F .The subset of

F is f , each file is partitioned into fixed size disjoint chunks

fC .Aim is to avoid the load imbalance problem while

reducing the movement cost as much as possible.

 Movement cost is the number of file chunks that should

be moved to balance the loads in the file servers. The average

load that a node can have is found as:

n

C

A
Ff

f

 (1)

International Journal of Engineering Research & Technology (IJERT)

ISSN: 2278-0181

www.ijert.orgIJERTV4IS050697

(This work is licensed under a Creative Commons Attribution 4.0 International License.)

Vol. 4 Issue 05, May-2015

611

Then, our load rebalancing algorithm aims to minimize the

load imbalance factor in each chunk server i as follows:

 ALi (2)

Where, iL represents the present load of node i .The load

imbalance problem is an NP hard problem. It is considered as

a version of Knapsack problem. Every node is identified as

under loaded/light node or as over loaded/heavy node using

parameters L and U . A node is light loaded if the number

of chunks it hosts is smaller than the threshold of AL1

(where 10 L) and a node is heavy loaded if the number of

chunks it hosts is greater than the threshold of

 AU1 (where 10 U).

 Fig 2. Gives an illustration of the load imbalance problem.

where (a) Four nodes having same capacity but different load

(b) Nodes in the balanced state.

Fig 2. (a) An example for load imbalance problem

(b) Nodes in the balanced state

II. METHODOLOGY

The proposed system is implemented by using the

Secure_Load_Rebalance algorithm to which the concepts

of physical network locality, Node heterogeneity and

managing replicas are added. Along with this for security

the method of compression and encryption is done.RSA

algorithm is executed on the compressed data for this. For

further enhancing the security of data integrity checking is

done by using MD5 algorithm.

A. Secure_Load_Rebalance algorithm:

1. Initialize server and its sub servers.

2. Establish connection between sub-server and

servers using the IP or Port number.

3. Upload File to server that should be shared.

4. If the File is specified to be encrypted, make replica of

it.

5. Split the file into multiple chunks.

6. Find the hash value of each chunk by using MD5.

7. Calculate the each sub server memory.

8. Divide the total chunks value by total number of sub

servers.

9. Upload each chunk into sub servers after encrypting it

using RSA based on its memory capacity.

10. If Capacity is less then transfer the excess chunks into

next Sub-servers.

11. Each chunk will be appended with an index value.

12. When the client ask for a file, which will be

conventional from dissimilar sub-servers based on the

index value.

13. Client collects all the chunks then the file will be

decrypted, after that so will be view by user.

14. Perform integrity checking in regular intervals of time

to find whether any attack has occurred by comparing

the hash values generated in each check with the

initial hash value of the chunk.

15. If an attack occurred report it and replace the damaged

chunk with the replica of original. Further the concepts

such as physical network, Heterogeneity of nodes,

managing replicas and cryptographic techniques for

security enhancement is also considered.

B. Exploiting Physical Network Locality

A Distributed Hash Table network is an overlay on the

application level. The logical closeness of the nodes

derived from the DHT does not necessarily match the

physical closeness information in reality. That means a

message or data travelling between two nodes in a DHT

overlay may travel a long physical distance through several

physical network links, when it should take the shortest

path. If it takes the longest path it causes high movement

cost and consumption of network resources will also be

very large. In order to avoid these issues the Migrate

locality aware algorithm is added to the Secure Load

Rebalancing Algorithm in the proposed system so that

data migration occurs between the nearest nodes.

International Journal of Engineering Research & Technology (IJERT)

ISSN: 2278-0181

www.ijert.orgIJERTV4IS050697

(This work is licensed under a Creative Commons Attribution 4.0 International License.)

Vol. 4 Issue 05, May-2015

612

Migrate_Locality_Aware Vi, :

A light node i join a heavy node j which is physically

closest to i .

Input: a light node i and set of chunk servers nvVVV, 21

1. C

2. For nvtoK 1

;Re__.3 balanceLoadSecureCC

4. j The node in C physically closest to i

5. MIGRATE ji,

C. Taking Advantage of Node Heterogeneity

When such a migration is done, heterogeneity of the

system should be considered. Different nodes in the

system can have different capacities in the distributed

environment. The idea that load of a node should be

proportional to its capacity is implemented in the

proposed system. Consider capacity of nodes

 nCCC ..., 21 each node consists of estimated number

of file section. Load balancing considering the

capacity of each node is done as follows.

ii CA (3)

Where is the weight per unit capacity of node and it is

calculated as follows:

n

k
kC

m

1

 (4)

 Where m is the total file chunks stored in a system.

D. Managing Replicas

A replica of the sensitive data is stored in other nodes. Even

if node failure occurs the data will never be lost. The

replica chunks also hold a unique ID with which the

original data can be recovered. After the integrity check by

MD5 if an attack is reported ,the original data will be

recovered from the replica.

III. RSA

RSA is an asymmetric algorithm introduced by Ronald Rivest,

Adi Shamir and Leonard Adlemanin in 1977.RSA is based on a

one-way function called integer factorization in number theory.

It is a block cipher in which every message is mapped to an

integer[16]. The main benefit in using RSA is that it uses

different keys for encryption and decryption. But the speed of

RSA is very low so for overcoming this, the data will be

compressed before it undergo cryptographic operations. The

public key of the user is used for encryption and for decryption

private key is used. When the data is uploaded it will be

encrypted at the server side and decryption is done by the

Cloud user. Once the data is encrypted with the Public-Key, it

can be decrypted with the corresponding Private-Key only. In

our system this key is mailed to user specified e-mail id.

RSA algorithm involves three steps.

(i) First, in Key generation before the data is encrypted, Key

Generation should be done. This process is done between

the Cloud service provider and the user.

(ii) Second, in Encryption is the process of converting

original plain text (data) into cipher text (data).

(iii)Third, Decryption is the process of converting the cipher

text (data) to the original plain text (data).

Key Generation Algorithm:

1) Randomly and secretly choose two large primes suppose

p, q and

 Compute n = p. q

2) Compute ϕ (n) = (p - 1) (q - 1).

3) A Random Integer e is selected such that 1< e< n and

 gcd (e, ϕ) = 1 .

4) Compute d such as e. d 1 mod ϕ (n) and 1 < d < ϕ (n).

5) Public Key: (e, n)

6) Private Key: (d, n).

7) This key sends to user's email id.

Encryption Process:

1) When the data is uploaded by user an specifies that it should

be encrypted then the data encryption is done as follows

2) Cipher text c = message e mod n

Decryption Process:

1) Plain text p = cipher text d mod n.

2) User can get the original data by decrypting it using the

private key.

IV. MD5

MD5 is used for checking data integrity. It generates a

fingerprint of the data [17]. If the fingerprint of the data in the

initial state and the fingerprint generated for the same data in

the future are same it means that the data is not hacked, else

it means that the data is been attacked. The fingerprint or

hash value is 128 bit and it is usually expressed as 32 bit

hexadecimal number. In our system the sensitive data will be

integrity checked using MD5 at regular intervals .If it is found

to be attacked, then the damaged block will be replaced using

its replica. We choose MD5 as it is faster, which is most

important feature required when handling huge amount of data.

V. QOS EVALUATION

Quality of Service (QoS) represents the overall experience

a user or application will receive over a network. The QoS

provided to the user is improved by uniformly distributing

data avoiding data loss and also by reducing the response

time or by reducing time consistency of the system.

Although the speed at which RSA works is very low, after

compressing the data this can be improved. Although it is

not practical to compress the entire data or Big Data since

we are compressing the sensitive data the storage space

utilization and computation power utilized by RSA can be

considerably reduced.

International Journal of Engineering Research & Technology (IJERT)

ISSN: 2278-0181

www.ijert.orgIJERTV4IS050697

(This work is licensed under a Creative Commons Attribution 4.0 International License.)

Vol. 4 Issue 05, May-2015

613

The users can upload data, specify whether it needs to be

encrypted, download it by using the secret key send to the

user specified email id’s and also can check whether any sort

of attack has happened to the data. If the data is reported as

distorted it can be replaced from the replicas.These are shown

in Fig 3. (a). Shows the System features.(b).Specifying the

data as critical so that it can be encrypted. (c).Verifying the

data using MD5.(d).Replacing the data from replicas if data is

distorted.

Fig 3. (a) System features

Fig 3.(b) Specifying a data as critical or confidential

Fig 3.(c)Verifying using MD5

Fig 3.(d) Replacing the distorted data by using replicas

VI. RESULT AND DISCUSSION

Fig4.(a) and (b) shows the simulation results of load

distribution before and after executing the proposed load

rebalancing algorithms with the compression and security

feature. The proposed system is compared against a

centralized approach in a production system which

uniformly distributes across sub servers. It outperforms the

previous distributed algorithmic rule in terms of load

imbalance issue, movement value, and recursive overhead.

Our proposal is implemented in the Hadoop Distributed

File System.

Fig 4. (a) Test result

International Journal of Engineering Research & Technology (IJERT)

ISSN: 2278-0181

www.ijert.orgIJERTV4IS050697

(This work is licensed under a Creative Commons Attribution 4.0 International License.)

Vol. 4 Issue 05, May-2015

614

Fig 4. (b)Test result-graphical representation.

VII. CONCLUSION

A cloud computing application works based on the Map-

Reduce programming paradigm. The major issue that occurs in

distributed environment is the load imbalance between the

nodes or servers. If all the nodes in the system can be

balanced then the system performance can be improved by

the maximum utilization of bandwidth available. For

balancing the factors such as movement cost, algorithmic

overhead, power consumption and network resource

utilization should be considered. Minimizing all these factors

can improve the overall system performance. Another major

issue in the cloud environment is the security. The proposed

system offers a combined measure for overcoming both these

major issues in the distributed cloud environment. The major

application of this technique is with Big Data handling .

REFERENCES

[1]. http://www.ibm.com/cloud-computing/us/en/what-is-cloud computing.

html, "what is cloud computing,"

[2]. G. Yang, "The application of map reduce in the cloud computing," in

Intelligence Information Processing and Trusted Computing (IPTC),

2011 2nd International Symposium on, pp. 154-156, IEEE, 2011.

[3]. H.-C. Hsiao, H.-Y. Chung, H. Shen, and Y.-C. Chao, "Load

rebalancing for distributed file systems in clouds," Parallel and

Distributed Systems, IEEE Transactions on, vol. 24, no. 5, pp. 951-962,

2013.

[4]. Kokilavani .K, Department Of Pervasive Computing

Technology, Kings College Of Engineering, Punalkulam,

Tamil nadu "Enhance load balancing algorithm for distributed file system

in cloud" International Journal of Engineering and Innovative

Technology (IJEIT) Volume 3, Issue 6, December 2013.

[5]. A. Sumanth, B.R.Singh, M.Sangeetha “Secure and Privacy-Preserving

Distributed File Systems on Load Rebalancing in Cloud Computing”

International Journal of Computer Trends and Technology (IJCTT) –

Volume 18 Number 4 – Dec 2014

[6]. A. S. Sabia and G. N. D. U. Arora Department of Computer Science

Engineering, "Technologies to handle big data," .

[7]. M. Jelasity, A. Montresor, and O. Babaoglu, "Gossip- based

aggregation in large dynamic networks," ACM Transactions on

Computer Systems (TOCS), vol. 23, no. 3, pp. 219-252, 2005.

[8]. M. Randles, D. Lamb, and A. Taleb-Bendiab, "A comparative study

into distributed load balancing algorithms for cloud computing," in

Advanced Information Networking and Applications Workshops

(WAINA), 2010 IEEE 24th International Conference on, pp. 551-556,

IEEE, 2010.

[9]. S. Penmatsa and A. T. Chronopoulos, "Game-theoretic static load

balancing for distributed systems," Journal of Parallel and Distributed

Computing,vol. 71, no. 4, pp. 537- 555, 2011.

[10]. A. Rao, K. Lakshminarayanan, S. Surana, R. Karp, and I.Stoica, "Load

balancing in structured p2p systems," in Peer to-Peer Systems II, pp. 68-

79, Springer, 2003.

[11]. B. Godfrey, K. Lakshminarayanan, S. Surana, R. Karp,and I. Stoica,

"Load balancing in dynamic structured p2p systems," in INFOCOM

2004. Twentythird AnnualJoint Conference of the IEEE Computer and

Communications Societies, vol. 4, pp. 2253-2262, IEEE, 2004.

[12]. I. Stoica, R. Morris, D. Karger, M. F. Kaashoek, and H. Balakrishnan,

"Chord: A scalable peer-to-peer lookup service for internet

applications," ACM SIGCOMM Computer Communication Review,

vol. 31, no. 4, pp. 149-160, 2001.

[13]. A. Rowstron and P. Druschel, "Pastry: Scalable, decentralized object

location, and routing for large-scale peer- to-peer systems," in

Middleware 2001, pp. 329-350, Springer, 2001.

[14]. H. Shen and C.-Z. Xu, "Locality-aware and churn- resilient load-

balancing algorithms in structured peer-to-peer networks," Parallel

and Distributed Systems, IEEE Transactions on, vol. 18, no. 6, pp. 849-

862, 2007.

[15]. Y. Zhu and Y. Hu, "Efficient, proximity-aware load balancing for dht-

based p2p systems," Parallel and Distributed Systems, IEEE

Transactions on, vol. 16, no. 4, pp. 349-361, 2005.

[16]. R. L. Rivest, A. Shamir, and L. Adleman, "A method for obtaining

digital signatures and public-key cryptosystems," Communications of

the ACM,vol. 21, no. 2, pp. 120-126, 1978.

[17]. R. Rivest, The MD5 Message-Digest Algorithm, RFC 1321, MIT LCS

& RSA Data Security, Inc., April 1992.

International Journal of Engineering Research & Technology (IJERT)

ISSN: 2278-0181

www.ijert.orgIJERTV4IS050697

(This work is licensed under a Creative Commons Attribution 4.0 International License.)

Vol. 4 Issue 05, May-2015

615

