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Abstract - Major civil engineering structures like multi-storey 
buildings, bridges etc. require stable foundations to ensure safe 
working conditions with minimal maintenance. In majority of 
cases, the surface soils are not of adequate strength to provide 
stable foundations and instead the large loads imposed by these 
structures must be carried to stronger rock at depth. Large 
diameter bored piles socketed in rock are widely used as a 
common engineering solution to transfer heavy structural loads 
through weak overburden soil to underlying rock. It is 
commonly accepted that pile load testing is the best way to 
predict accurate pile capacity. In current design practice, 
empirical relations derived from load tests are often used to 
predict the ultimate side resistance and the end bearing 
resistance. However, there is large variation of the values 
obtained from empirical relations. Because of the limitations 
discussed above, there is need to search for alternative 
solutions for prediction of pile capacity/settlement/load-
deformation response of piles. Artificial Neural Networks 
(ANNs) is one of the alternative techniques, to predict pile 
capacity/settlement/load-settlement response of piles.  Artificial 
neural networks (ANNs) are computer models that mimic the 
knowledge acquisition and organizational skills of human 
brain. In the present study, feed-forward back propagation 
neural network models based on RQD based approach have 
been developed and implemented successfully to predict the 
load-settlement response for skin friction piles socketed in 
mudstone. The prediction of load-settlement response of piles 
using neural networks has been found to be close to the field 
pile load test results. The developed neural network model may 
be used by the pile designers for analysis and design of bored 
piles socketed in rock.

Keywords – Artificial Neural Networks, Friction Piles, 
Load-Settlement Response, Neural Networks and RQD. 

I. INTRODUCTION

Piles are used for various civil engineering structures 
like multistory buildings, bridges, elevated freeways, 
offshore oil and gas platforms, jetties, wharves etc. It is 
recognized worldwide that the techniques dealing with 
auger and bored piles can help to solve many foundation 
problems (Van Impe, 1988). Bored cast-in-situ piles 
socketed in rock are widely used to transfer the heavy 
structural loads through weak overburden soil to 
underlying rock. Bored piles when formed in rock, the 
portion of the pile into rock is referred to as a socket. The 
rock socket derives its load from two components: 
shearing resistance at the shaft-rock interface around the 
vertical cylindrical shaft surface of the socket, and end 
bearing resistance at the base of the pile. The 

development of empirical design rules for pile shafts in 
rock commenced in the 1970’s (Haberfield and Seidel, 
1996). The shaft resistance and end bearing resistance 
have been related to the unconfined compressive strength 
of the rock (McVay, 1992; Zhang, 1997). The roughness 
of the interface between concrete and the rock mass plays 
an important role in the behavior of rock socketed piles 
(Pells et al., 1980; Williams and Pells, 1981; Horvath, 
1983; Hassan and O’Neill, 1997).

It is believed and commonly accepted that pile load 
testing is the best way to determine the pile capacity and 
load-settlement behavior of piles. However, field load 
tests are very expensive and very often in case of bored 
piles in rock, tests have to be terminated well before the 
anticipated values. Therefore there is a need for research 
to develop alternative methods to determine the pile 
capacity/settlement and load-settlement behavior of piles 
socketed in weak/weathered or hard rock. Neural 
Networks (NNs) is one of the alternative techniques, to 
predict pile capacity/settlement/load-settlement response
of piles. An attempt has been made in the present study 
to predict the load-settlement behavior of skin-friction 
piles socketed in weathered rock (mudstone) using neural 
networks. The in-situ pile load test data of thirteen skin-
friction piles collected from the literature (Williams, 
1980) have been used for training and testing of the 
neural network. In the present study feed-forward-back 
propagation algorithm is used to develop the NN model.

II. NN MODEL DEVELOPMENT

In the development of NN model for skin-friction piles 
in mudstone, an approach based on Rock Quality 
Designation (RQD) has been adopted. The following 11
input parameters are considered, which affects the 
settlement of pile at given side resistance: average side 
resistance (fs), ratio (D/B) of embedment depth (D) to 
diameter of pile (B), ratio (L/B) of socket length (L) to 
diameter of pile (B), mean asperity height for socket 
portion (hav), standard deviation for asperity height (Sh), 
mean asperity angle for socket portion (iav), standard 
deviation for asperity angle (Si), normal stress acting at 
the bottom of socket (n), unconfined compressive 
strength of intact rock for socket portion(i(s)), rock 
quality designation for socket portion (RQDs) and the 
factor  reflecting the ratio of actual maximum unit skin 
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friction (fmax) and maximum unit skin friction (fa). During 
search for a better solution with neural network, it has 
been observed that results are improved when the 
maximum-minimum range of various parameters is 
increased for normalization procedure (Patil and 
Shankariah, 1999). Therefore, the parameters for 
increased range of values are considered for 
normalization procedure. 

A. Implementation of Neural Network Model

The neural network model for prediction of load-
settlement response of skin-friction piles socketed in 
weathered or weak rock was implemented in three phases 
as per the procedure reported by Goh (1996): 

    - Data collection
    - Data normalization and 
    - Execution and validation

Data Collection: For the development of NN models, 
the pile load test data is collected from Ph.D. Thesis of 
A. F. Williams (1980), Monash University, Melbourne, 
Australia. The database considered for the study includes 
13 case studies of in-situ pile load tests consisting of 13 
skin friction piles in mudstone. The collected data 
include bore log details, rock test data and load-
settlement relations for bored piles in rock. The 
measurement of pile displacement avoids elastic 
settlement interaction effects. Young's modulus of 
concrete (Ec) is 35 GPa and Poisson's ratio () is 0.2. For 
the rock mass, the Poisson's ratio is 0.25. In the present 
study the effect of these parameters is less because they 
are constant for all the piles.

Data Normalization: The data used for training and 
testing set are normalized between 0 - 1 before presenting 
the patterns to the neural network. The following 
procedure is used for normalization (Masters, 1993 
reported by Goh, 1996):

A = (V - Vmin) / (Vmax - Vmin)   --------- ( 1 )
where,
A = Normalised value of parameter
Vmax = Maximum value of the parameter
V = Value of each parameter
Vmin = Minimum value of the parameter

Execution and Validation: In a present study feed-
forward backpropagation algorithm with supervised 
learning have been used. The execution and the 
validation of the neural network model have been carried 
out using 'MATLAB - Neural Network Toolbox' 
package. The training and the testing of the network is 
performed based on the overall results. Practical way is 
to check the absolute relative error (ARE) between the 
predicated output and actual output in the validation or 
testing set. The error in training and testing set should be 
monitored. When the error in the validation set increases, 
the training should be stopped because the point of best 
generalization has been reached. This crossed validation 
is one of the most powerful methods to stop training of 
net. The result of predicted output for all the patterns 
used for both training and testing should be higher or up 
to decided satisfaction based on the problem and the data. 
The absolute relative error (ARE) for individual pattern 
is calculated using the following expression:

ARE = Abs [(Vpred - Vactual)/ Vactual] x 100   ---- ( 2 )
where,
ARE = Absolute relative error in percentage
Vpred =  Predicted value of the output by neural 

     network
Vactual =  Actual or measured value of the output

Then mean absolute relative error (MARE) for all the 
patterns (training and testing patterns) is calculated. The 
correlation coefficient (CORR COEF) between actual 
(measured) load and predicted load is determined for all 
the patterns in the MATLAB. The weights and biases are 
then saved. The relative importance of each of the input 
parameters in each NN model is determined by the 
procedure of 'partitioning of weights' proposed by Garson 
(1991) which is also reported by Goh (1994). Then mean 
absolute relative error (MARE) for all the patterns 
(training and testing patterns) is calculated. The 
correlation coefficient (CORR COEF) between actual 
(measured) load and predicted load is determined for all 
the patterns in the MATLAB.

III. RESULTS AND DISCUSSIONS

The load-settlement behavior of skin friction piles 
socketed in rock using NN model has been predicted as 
described. The results obtained during training and 
testing phases of developed NN model (NN1B) are 
presented and discussed. 

Neural network model was developed with 9 training
patterns and 4 testing patterns. The summary of results of 
developed model with one set having 11 input parameters 
is given in Table 1. The comparison of predicted and 
measured load-deformation behavior for 5 cases from 
training set and 4 cases from testing set is shown in Fig.1. 
The results achieved by Seidel (ROCKET Program 1993) 
are also shown in the same figures itself to have 
comparison with developed NN model (NN1B).

Table I
Summary of Results: NN Model (NN1B) - RQD Based 
Approach-Prediction of Load-Settlement Behavior

Details
Successful 

Cases
Unsuccessful

Cases
Total 
Cases

Percentage 
of Success

Training 
Data

9 0 9 100

Testing 
Data

3 1 4 75

Total 12 1 13 92

Input Parameters: fs, D/B, L/B, hav, Sh, iav, Si, n, i(s), RQD(s),  (11 Nos.)
Network Structure: 11-5-1; Initff. = 5, 5; Cycles = 4*5000 = 20,000
SSE = 0.180862; Correlation Coeff. = 0.7510 (average)

It is observed that the overall results achieved are 92 
% with correlation coefficient of 0.7510 between 
measured and predicted load. When comparison is made 
between predicted load and measured load at given 
settlement, the absolute relative error is observed as
29.16 %. It is observed that the load-settlement response 
is highly influenced by , RQDs, fs and least influenced 
by iav, i(s), Si. Moreover, it is observed that the NN 
predictions are far better compared to Seidel predictions.
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Fig. 1 Comparison between Predicted (NN1B) and Observed Load-Settlement Response for Skin Friction Piles in 
Mudstone (Cases from Australia)

Network Structure: 11-5-1; Initff. = 5, 5; Cycles = 4*5000 = 20,000
Sum-squared Error (SSE) = 0.180862; Correlation coefficient = 0.7510 (average)
Mean absolute Relative Error = 29.16 %
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(g) Training set - Case No. 9
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(i) Training set - Case No. 14
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(f) Training set - Case No. 8
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(a)  Training set - Case No. 1
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(a)  Testing set - Case No. 3
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(c) Testing set - Case No. 10
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(d) Testing set - Case No. 15
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(b) Testing set - Case No. 6
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IV. CONCLUSIONS

In the study reported in this paper, feed-forward 
backpropagation neural network models have been 
developed and successfully implemented to predict the 
load-settlement response for skin friction piles socketed 
in mudstone. On the basis of the present investigations, 
the following conclusions are drawn:

- The correlation between the interpretation of the 
neural network output and observed load-settlement 
response of skin-friction piles in weak rock comes out to 
be very good.

- As quoted by Williams (1980), it is observed 
through the results of neural network models that the 
standard deviation of both asperity height and asperity 
angle has least effect on the skin friction resistance of the 
piles socketed into rock. 

- The results of prediction of the load-settlement 
response for skin friction piles socketed in mudstone 
using neural network showed that neural networks are 
used to obtain necessary mapping from other multivariate 
mappings with complex and non-linear behaviour.

The overall results indicated the feasibility and 
applicability of neural network model for prediction of 
load-settlement response for skin friction piles socketed 
in weathered rock.
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