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Abstract: - A Local Edge Preserving filter is proposed for Edge 

preserving decomposition of a video. It is different from other 

filters. The filtered video contains local means everywhere and 

preserves local salient edges. A multiscale decomposition with this 

filter is proposed for manipulating a high dynamic range video, 

which has three detail layers and one base layer. The multiscale 

decomposition with the filter addresses three assumptions: 1) The 

base layers preserves local means everywhere, 2) Every scale‟s 

salient edges are relatively large gradients in a local window; 3) all 

of the nonzero gradient information belongs to the detail layer. An 

effective function is also proposed for compressing the detail 

layers. The reproduced video gives a good visualization. 

Experimental results on real video demonstrate that our algorithm 

is especially effective at preserving local details. 

 

I.INTRODUCTION 

 

High Dynamic Range 

 

   The Natural scenes always contain high dynamic range 

areas in comparison with the limited dynamic range 

capabilities of cameras or displays. The dynamic range is 

defined by the ratio between the maximum and minimum 

light intensities of the scene. High dynamic range image is 

commonly obtained by fusing multi-exposure images. The 

fused HDR image always exceeds the dynamic range of 

displays. LEP is an image processing technique that smooth 

away textures while retaining sharp edges.    We need to 

preserve edge information and at the same time preserve the 

edges. . So some mapping is needed. Mapping is performed 

to map one set of colours into another. Here to compress the 

intensity distribution of the HDR image. The low-frequency 

components are compressed while the high-frequency 

components are retained. Through this reproduction process, 

it can hardly discern the difference between the artificial 

image and the real scene, and also not avoid artifacts (e.g., 

halo, the brighter or darker bands around edges). It 

simulates and decomposes an image into an illumination 

image and a reflectance image. 

Illumination 

 The illumination image is always assumed to be the low 

frequency component, and the reflectance image 

corresponds to the high-frequency component. This theory 

is usually used in enhancing images. And recently, it is also 

used to reproduce the HDR images due to its dynamic range 

compression feature. The decomposition process is usually 

based on a Gaussian filtering to estimate the surround or 

adaptive illumination in Centre/Surround Retinex. This 

causes significant halo artifacts in result images. Later, 

bilateral filtering is used to replace the Gaussian filtering, 

and produces much better results. However, it is hard to 

determine parameters in bilateral filtering, which still suffers 

halo artifacts. Edge-preserving becomes an important 

property in filtering design to avoid halo artifacts. This 

technique decomposes an image into a piecewise smooth 

base layer and a detail layer. The base layer no longer only 

contains low frequency band, but it also has salient edges 

(high frequency). 

Multiscale Decomposition 

  Multi-scale is used here to decompose progressively 

another detail layer from the last decomposed base layer. 

The salient edges are no longer thought of as large gradients 

of the whole image and they are locally adaptive. This is 

intuitive that one large gradient may not be a salient edge in 

a larger scale or the whole image. In other words, one small 

gradient may also be an important edge locally. So, our 

definition of salient edge is different from Farbman‟s. A 

salient edge is defined as a large gradient globally in while 

we define a salient edge as a relatively large gradient 

locally. Therefore, the decomposition process is different in 

that a locally salient but small gradient will be decomposed 

into the base layer. 

Local Edge Preserving Filter 

  The local edge-preserving (LEP) filter and it will 

efficiently and effectively produce visually pleasing images 

as will be shown in figures of this paper. A salient edge is 

defined as a large gradient globally in, while we define a 

salient edge as a relatively large gradient locally.  
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Fig.1.1 Local Edge Preserving Filter 

 

II. ALGORITHM 

A.Logarithmic Function 

   The camera as the product of the illumination L and the 

reflectance R. If a logarithm is applied, a summation will 

generate 

    Log (I) = log (L) + log(R)         (1) 

   The illumination varies slowly in the scene, but its high 

dynamic range, while the reflectance varies quickly but its 

dynamic range is low, our aim is to separate the illumination 

then compress the dynamic range and recompose the image. 

  Edge-preserving filtering slightly changes the 

decomposition problem. It views an image as a base layer B 

(a piecewise smooth image except salient edges) plus a 

detail layer D: 

                       I = B + D                  (2) 

  The input HDR radiance map has to be transformed into a 

gray image ranging in [0, 1]. We get the luminance simply 

by averaging the three channels and then the luminance is 

transformed into its logarithm domain. This is a typical 

operation of most methods. The logarithm of luminance 

approximates the perceived lightness. To sufficiently use the 

domain of the logarithm function, we arbitrarily magnify the 

luminance 10
6
 times.2. It is calculated as follows: 

               L = ln(Lin · 10
6  

+ 1          (3) 

Note the standard luminance for RGB color spaces 

is calculated as 0.2126R + 0.7152G + 0.0722B. For 

efficiency, the weights are set equal in this study, and the 

color restoration will also be done equally in every channel. 

B. Local Edge-Preserving Filter 

   The local energy function gets from the above analysis. It 

satisfies the first and second assumptions in the problem 

statement. We will find a way to get an optimal solution 

efficiently. The discrete form is given below: 

(4) 

  The above energy function can be iteratively minimized to 

get a numerical solution using the Normalized Steepest 

Descent (NSD) method. In order to facilitate the solution, 

we intuitively suppose that B has a linear dependence with I 

in a local window, since pixels are highly correlated locally. 

We thus propose this local approximation of B as: 

Bi = awIi + bw, i ∈ w             (5) 

where aw and bw are constant coefficients in the 

window w. 

      (6) 

The formula is much like the cost function in except the 

coefficient (α_|∇Ii |2−β) between the two constraints. 

Ours is adaptive to the gradient while theirs is a set 

parameter. To see later that our adaptive coefficient will 

preserve edges while theirs won‟t. Now the optimal problem 

becomes a parameter estimating problem. The minimum of 

can be found by setting the partial derivative of each 

parameter to zero. This linear least squares‟ solution is: 

(7) 

Where σ 2w is the variance of I in the window w and ¯Iwis 

the mean of I in w. 

      (8) 

     If α= β = 1, then 1/N· α represents the average of the 

gradients in w. It can be easily deduced that aw is always 

less than 1, and the contrasts of the output of equation will 

always be compressed. In other words, B is a smoothed 

version of I. 

Each window contains N pixels, and each pixel is 

involved in N windows. For every window, there is a set of 

aw, bw, and then, the filtered output Bi of has N different 

values. The values should be weighted averaged together to 

retain correct results and diminish distorted ones. However, 

the weights are hard to figure out, so we simply get the 

mean of all the N values of Bi. 

If a local window is identified by its central pixel, 

we change ak, bk for aw, bw and k denotes the central 

pixel‟s location. We get our LEP output as: 
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(9) 

Where Ω represents the area of the image, and aiIi 

the average of the akin the neighbourhood window and the 

same with bi 

C.Multiscale Decomposition 

The third assumption in the problem statement by a 

multi-scale decomposition (the base layer should only 

contain zero gradients). A single LEP operating on original 

image will give a base layer and a detail layer. The base 

layer preserves local means and local salient edges. The 

detail layer contains oscillating signal around zero. 

Iteratively applying LEP to the base layer will generate a 

multi-scale decomposition. While iterating, the local 

window is increasing, 

Let LEPl denote the filter function, and l is the 

scale level, which also represents different local window 

radii at each filtering level. Then a sequence of 

progressively coarser versions of image I will be: 

Bl−1 = LEPl (Bl ), for l = n, . . . , 2,    and   Bn= I.                                

(10) 

The detail layers will get as: 

      Dl = Bl− Bl−1, for l = n . . . 2.     (11) 

In order to make the base layer contain only zero gradients, 

we get the mean of the base layer B1 as the last base layer 

       B0: B0 = Mean (B1). And then,    

       D1 = B1 − B0.                              (12) 

In this study, we decompose every image into three 

detail layers and one base layer (n = 3).We think this 

decomposition style addresses a basic idea that one 

decomposition for the fine scale, one for the medium scale, 

and one for the whole image‟s scale. The process can be 

expressed by: 

      I = B0 + D1 + D2 + D3.              (13) 

The process is that the salient edges are 

progressively decomposed into the detail layers. 

D. DYNAMIC RANGE CONVERSION 

      Detail layers are oscillating around zero, we seek a 

function to compress large deviations away from zero and 

enhance low ones. The compression function should be able 

to make the deviations at every point as equal as possible. 

    This function to avoid gradient reversal, and it should be 

symmetric about zero. Thus it is sigmoid function, 

               y = 2 · arc tan(x · 20)/π.    (14) 

      The arc tangent function varies between −π/2 and π/2, so 

we divide it by π/2 to compress the range to (0, 1), in which 

the image pixel values are operated in this study. The 

multiplier 20 for input shrinks the shape of the arc tangent 

function, making it changing to flat as quickly as possible. 

We note that almost all sigmoid functions work well here, 

but those, whose slopes are too large near zero, may cause 

artifact enhancement (e.g., some power functions). 

This function takes in detail layers and puts out the 

compressed detail layers. The base layer is simply dropped 

as mentioned before. After the compression process, all the 

detail layers are summed up to give the result. A linear 

scaling to the normal range [0, 1] is also needed 

III. RESULT 

            One assessment measures image sharpness. An 

image is sharp means the details are clearly presented. The 

sharper an image is, the larger the measure. It is defined as 

the normalized sum of total gradients: 

   S=1/N |∇I|                    (15) 

Where N is the number of pixels in image. Another 

assessment method is the recently proposed objective 

assessment especially designed for tone mapped images. It 

combines a multi-scale structural fidelity measure and a 

measure of image naturalness. The structural fidelity 

measure is a full-reference assessment based on the 

structural similarity (SSIM) index, and the naturalness 

measure is a no-reference assessment based on statistics of 

good quality natural images. This method provides a single 

quality score of an entire image. The combined single 

quality is represented by „Quality‟ in this study. The 

evaluated results are presented in Table I. It can be deduced 

that our result is sharper and better than others. 

 

Fig.3.1 (a) Input Video image 
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Fig.3.1 (b) LEP Filter image 

 

Fig.3.1 The reproduced HDR images obtained (a) input 

video. (b) LEP filters video 

COMPARISON TABLE: 

Image Sharpne

ss 

Natur

alness 

Structur

al 

fidelity 

Quali

ty 

WLS 11.0498 0.746

4 

0.9400 0.939

2 

LEP 16.0674 0.733

9 

0.9489 0.940

0 

 

Our algorithm bears asymptotic time complexity of O(n) as 

mentioned Matlab codes take about 1.2 seconds on a PC 

with Intel Core i73.4 GHz CPU and RAM 8GB for 

processing a mega pixel image. 

 

 

IV. CONCLUSION 

              Multiscale edge-preserving image decomposition 

has present three assumptions. A local edge preserving filter 

has been derived from the assumptions. And we have also 

explored the connection with previous algorithms. Only two 

parameters (except the window radius) are needed for our 

filter, and they can be always set default values for good 

results. Our filter is capable of multi-scale coarsening an 

image while keeping local shape of the signal. We have also 

presented a process with our filter to reproduce HDR 

images. The results are compared with the results by some 

recent. Video enhancement is one of the most important and 

difficult components in video research. The aim of video 

enhancement is to improve the visual appearance of the 

video, or to provide a “better” transform representation for 

future automated video processing, such as analysis, 

detection, segmentation, recognition, surveillance, traffic, 

criminal justice systems. This assumption can be valid in 

many scenarios where moving subjects more details and 

integrated information from the enhanced image. The 

increasing use of night operations requires more details and 

integrated information from the enhanced image. 

However, low quality video of most surveillance 

cameras is not satisfied and difficult to understand because 

they lack surrounding scene context due to poor 

illumination. In this paper, present a practical system for 

enhancing the quality of Low Dynamic Range (LDR) videos 

using High Dynamic Range (HDR) background images. 
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