
Log Storage System - Block Chain

Hitesh K Koushik N S
Student, Dept. of CSE, Student, Dept. of CSE,

Global Academy of Technology, Bengaluru Global Academy of Technology, Bengaluru

Shivaraja B R Puneeth K
Student, Dept. of CSE, Student, Dept. of CSE,

Global Academy of Technology, Bengaluru Global Academy of Technology, Bengaluru

Abstract—Logs are critical data, which can help us to

troubleshoot and identify the person in charge of an

unexpected accident. Log systems have been widely used for

log storage. However, the traditional log system can’t prevent

the log from being tampered. Centralized servers are more

vulnerable to be attacked. Those who have permission to

operate records can easily tamper with logs. Blockchain is a

disruptive technology in recent years, which has the

advantages of decentralization, tamper-proof and traceability.

Given its decentralization and tamper-proof properties, the

paper proposed a blockchain-based framework for secure log

storage. However, the cost of storing big files in the blockchain

is very high. Thus, the paper utilized the InterPlanetary File

System(IPFS) to store log files instead of a blockchain. Besides,

the paper adopted Ethereum blockchain to store the hash of

log files and a smart contract to create an index for log files.

The solution is not only applicable to log but also other

scenarios requiring secure data storage and efficient retrieval.

Keywords-Log Storage; Blockchain; IPFS; Ethereum; Smart

Contract

I. INTRODUCTION

Log data is digital evidence in disputes [1]. That is, we
can learn about the Quality of Service(QoS) trough log data
in the age of cloud computing. Nowadays, more and more
enterprises and users choose to purchase services provided
by cloud service providers. Since the server is hosted by a
cloud service provider, it is necessary to utilize logs for
problem investigation and accountability when some
problems arise. Records can be used to draw conclusions that
may affect the credibility of the service provider. There are
many forms of log tampering. However, different types of
cloud have different tampering motivations. We classify
people with tampering motivation into two categories
according to the cloud category: cloud service providers and
IT departments. They may hide the truth by adding,
modifying or deleting the log content. Next, we will explore
some tampering situations according to the type of cloud.

In a public cloud, customers deploy applications directly
to elastic cloud servers. To save resources and costs, they
often choose elastic scaling schemes [2]. Usually, a threshold
is set for CPU, memory and disk. When the usage rate
reaches the threshold, additional resources are automatically
allocated. For example, a rule is defined. When the CPU
usage rate exceeds 90%, the cloud service provider should

allocate 20% of the CPU to this application. Imagine that the
customer received a complaint about application
performance. Considering that the application has been able
to respond to user’s requests promptly, the customer may
suspect that the elastic expansion has some problems,
causing the application to fail to process the request in time
when the request volume is high. Therefore, customers may
ask the cloud service provider to provide a complete resource
allocation report. By checking the logs, the cloud service
provider found that it was indeed an automatic scaling
function that intermittently worked, failing to allocate CPU
in time. To escape liability and potential litigation, the cloud
service provider is likely to tamper with the logs before
sending the logs to the customer.

In a private cloud, all participants belong to the same
company, but there may be a particular type of tampering
motivation [2]. Now, we can imagine that an internet
company has established a private cloud. The technical
department was asked to back up data regularly. However,
the primary storage of this company had failed so that critical
data was not backed up. The technical department found that
the backup stopped working some days ago and sent several
alerts to them, but they had not checked these alerts. This
technical department may tamper with logs, delete alert
messages, and show reports generated based on tampered
records to avoid being punished by the leader.

The above is just a brief list of possible log tampering in
cloud solutions. However, we already can conclude that how
to avoid log tampering in cloud solutions is very important
through the above examples. Therefore, it is of high
significance to provide a traceable, verifiable and tamper-
resistant log system for cloud solutions. Although there are
many solutions for log tampering detection, the traditional
log system is not friendly to avoid log tampering. So, it is
significant to provide a tamper-proof log system for cloud
solutions.

The purpose of this paper is to solve the current log
system’s shortcomings by utilizing the tamper-proof,
decentralization and traceability of blockchain technology to
improve the trustworthiness, transparency of cloud solutions.
The main contributions of this paper are summarized as
follows:

1) We propose a blockchain-based framework to
achieve secure log storage.

2)We utilize IPFS to solve the shortage of blockchain in

storing big files.

257

International Journal of Engineering Research & Technology (IJERT)

ISSN: 2278-0181http://www.ijert.org

IJERTV12IS060119
(This work is licensed under a Creative Commons Attribution 4.0 International License.)

Published by :

Vol. 12 Issue 06, June-2023

www.ijert.org
www.ijert.org

1) We provide a complete code of smart contract and 3) IPFS

discuss critical implementation and test details to illustrate the
crucial functionality of our prototype system.

The rest of this paper is organized as follows. Section II
introduces the background and related work. Section III
presents the overall system architecture of our proposed
solution. Section IV describes the essential aspects of the
implementation and illustrates the testing and validation of
the smart contract code. Finally, we conclude the article
and outline the future work in Section V.

II. BACKGROUND AND RELATED WORK

A. Background

1) Blockchain
Blockchain is a distributed immutable ledger which consists of

a continuous growing list of blocks [3], the structure of
blockchain as shown in Figure 1. The blockchain records all
transactions between participants in a blockchain network
using blocks. Blockchain is able to prevent data tampering
by nature. The information recorded in the block cannot be
modified as it will cause the chain of blocks to be broken.
Bitcoin introduced the concept of blockchain for the first
time in 2008 [4][5]. Bitcoin is a first cryptocurrency that
does not depend on a trusted third-party. Blockchain is the
foundation of Bitcoin, but the blockchain is not only
Bitcoin. It can also be used in many scenarios [6][7].

Figure 1 Structure of blockchain

2) Smart Contract

A smart contract is a computer program deployed onto a

blockchain network [3]. The smart contract will

automatically execute business logic of a service that all

participants agreed when specific conditions are met [8].

As an open mutual agreement, the items of smart contract

can be accessed by all participants [9]. Smart contract is a

form of decentralized automation that validates and

enforces agreements through transactions and records all

state changes into blockchain [3].

IPFS is a novel P2P distributed file system. It aims to build a
file system that consists of same files using all computing
devices [10]. IPFS is different from HTTP because it is
based on content addressing. It generates a unique hash for
every file uploaded to IPFS so that user can get file content
according to its hash. Additionally, the hash will change
when the file content is modified.

B. Related Work

The tampering of log file has existed for a long time. In order

to reduce this phenomenon, researchers have proposed

many schemes to detect document tampering. At present,

there are various file verification technologies to detect

whether the files have been tampered with. Peterson [11]

introduced that verifys the authenticity of a given array of

bits using cyclic codes. Similarly, checksum [12][13] is a

common method to validate the integrity of files. Secure

Hash Algorithm(SHA) is a popular hash algorithm [14]

which can verify digital artifact. For example, git is

designed as a distributed version control system that

generates SHA-1 signature for source code [14]. But we

also can edit the commit and then generate a new SHA-1

signature. Additionally, arXiv is a platform for storing

digital documents and ensure the integrity of these digital

documents. Although some services such as arXiv can help

us prevent files from being tampered with, we must rely on

the third-party service provider.

Many of traditional methods are also applicable for cloud

solutions. However, the cloud environment is very complex

and generates much logs, which brings more challenges in

terms of the storage, retrieval and validation of logs.

Sharma

[15] pointed out that a large-scale cloud environment is

complex and suggested utilizing a variety of digital

signatures and encryption algorithms to make sure the high

level integrity of the key information stored in the cloud.

Bharath and Rajashree [16] recommend using a third-party

verification service to verify data integrity and send the

integrity report to user. However, this solution also requires

trusting third parties or central agencies.

As we know, blockchain is an append-only data structure that

data cannot be forged. Smart contract is also a

programmable contract that runs on a blockchain. It will be

executed automatically when the predefined conditions are

met. IPFS is a content-addressed distributed file system.

We proposed a novel solution that combines blockchain

and IPFS to achieve secure log storage.

III. PROPOSED FRAMEWORK

258

International Journal of Engineering Research & Technology (IJERT)

ISSN: 2278-0181http://www.ijert.org

IJERTV12IS060119
(This work is licensed under a Creative Commons Attribution 4.0 International License.)

Published by :

Vol. 12 Issue 06, June-2023

www.ijert.org
www.ijert.org

Figure 2 presents the overall system architecture we proposed.

The system mainly consists of six parts: Database,

Backend, IPFS, Smart Contract, Blockchain and Client.

The function of each part is illustrated as follows:

1) Database

The database is responsible for storing logs that have not

been uploaded to IPFS. If we already have a traditional

log system, we can seamlessly migrate the traditional log

system’s database to the blockchain-based log system

instead of using a new database.

2) Backend

The backend has two modules: Anchor and Query. Anchor is

responsible for uploading logs from a database to IPFS,

and then storing the hashes of log files to the blockchain.

Query is responsible for receiving the user’s query

request and obtaining log indexes through the smart

contract. Query is also responsible for obtaining the hash

of log file from blockchain according to concrete log

indexes and then getting the content of log file in IPFS

using concrete file hash. Finally, Query responds log file

content to client.

3) IPFS

IPFS is used to store concrete log files and then generates

one hash for every log file. Finally, we can get content of

a log file according to a specific hash.

4) Smart Contract

The smart contract is primarily used to receive transactions

and then create an index for log file. What is more, the

smart contract is also responsible for receiving query

requests of getting log file indexes. The smart contract

will return all block numbers containing log file hash

within the time range, then the backend’s Query module

will get file hashes in the blockchain utilizing specific

block number. Finally, the backend’s Query module

obtains log file content from IPFS based on log file hash.

5) Blockchain

Blockchain is used to store the hash of log file and to store

smart contract code. Additionally, blockchain also

provides a running environment for smart contract.

6) Client

The client is mainly responsible for sending a query request

to the backend and obtaining the query result from the

backend.

IV. IMPLEMENTATION AND TESTING

The solution we proposed is for secure log storage and
efficient retrieval. To achieve our target, we deployed
private IPFS cluster and private Ethereum blockchain
firstly. We also tested our deployed IPFS and Ethereum
blockchain to make sure they were working well.
Additionally, considering the speed at which consensus
algorithms reach consensus, we had neither adopted the
PoW nor PoS algorithm but took the PoA algorithm as
our consensus algorithm. There are a lot of tools for
developing Ethereum smart contracts, but we chose the
official recommended Remix IDE to develop and test our
smart contract when everything is ready. Because Remix
IDE provides rich features that make it easy to develop
and debug smart contract code before deploying them.
Considering the limited number of pages, we will mainly
introduce our implementation details and focus on testing
the functionality of the smart contract.

A. Implementation Details

Figure 3 shows the index structure we designed for the log
file. Figure 4 shows that the log file hash is recorded into a
concrete block of the blockchain by a transaction.
Algorithm 1 shows how to create an index for log file
according to timestamp. Algorithm 2 shows how to get
an index utilizing timestamp and then get a specific block
based on the index. We only show the essential
algorithms of our smart contract code in this paper. But
we provide the complete smart contract code at github.

Figure 2 System architecture of the blockchain-based solution for secure log storage.

259

International Journal of Engineering Research & Technology (IJERT)

ISSN: 2278-0181http://www.ijert.org

IJERTV12IS060119
(This work is licensed under a Creative Commons Attribution 4.0 International License.)

Published by :

Vol. 12 Issue 06, June-2023

www.ijert.org
www.ijert.org

Figure 3 Structure of index

We used a 256-bit unsigned integer array to store log
indexes. Every index is a 256-bit unsigned integer which
represents the range of block numbers for a particular
day. The highest n bits represent the smallest block
number of the day. The lowest m bits represent the largest
block number of the day. The structure of the index is as
shown in Figure 3.

Figure 4 The process of file hash to blockchain.

Algorithm 1 is the core of storing hashes. The cost of
changing the world state of the blockchain is very high.
Besides, changes in the value of smart contract attributes

can lead to changes in the world state of the blockchain,
so it is appropriate to store hashes directly with the
smart contract. Thus, we use the hash value as a
parameter when sending a transaction, so that the hash
value will be packaged into the block together with the
transaction. The smart contract mainly provides the
function of index and the ability to accept the parameter
of hash value.

The backend’s Anchor module regularly gets the latest logs
that haven’t been uploaded to IPFS from the database,
and then packs these logs into a big log file. If there are
some newly generated log files, Anchor will upload these
log files to IPFS. Anchor obtains log file hashes
generated by IPFS. Then, Anchor call the smart
contract’s algorithm 1 to create an index for log file and
store file hash into blockchain by sending a transaction.
The process of log file hash to blockchain as shown in
Figure 4.

The backend’s Query is responsible for receiving the client’s
query request and returning the result to client. Query
call Algorithm 2 to get log index. When getting log
index, it uses the index to get concrete file hash and then
get content of file according to hash.

B. Testing and Validation

We utilized Remix IDE to deploy and test our developed

smart contract code. We could easily verify the

correctness of the smart contract we developed through

testing. The hash of the log file was stored in blockchain

by sending a transaction. Thus, getting the numbers of

block which contains those transactions is very

important. In this section, we mainly introduce the test

results of creating indexes and getting block numbers.

Figure 5 The result of adding new log file.

260

International Journal of Engineering Research & Technology (IJERT)

ISSN: 2278-0181http://www.ijert.org

IJERTV12IS060119
(This work is licensed under a Creative Commons Attribution 4.0 International License.)

Published by :

Vol. 12 Issue 06, June-2023

www.ijert.org
www.ijert.org

A

We called algorithm 1 by sending a transaction. We can see

the timestamp and hash of log file as input to the

transaction, which will be packaged into the blockchain

with this transaction, and the transaction will trigger the

smart contract to create an index for log file. The result

of adding a new log file is as shown in Figure 5.

Figure 6 The result of getting index.

Algorithm 2 are called by sending a transaction. And then

we can get the minimum block number and the

maximum block number according to the timestamp. If

we get block numbers, we can quickly get log file hashes

stored in blocks through reading specified blocks.

Finally, we can get the content of log files using concrete

hashes. The result of getting an index is as shown in

Figure 6.

TABLE I. COMPARISON BETWEEN TRADITIONAL LOG SYSTEM

AND THE PROPOSED SOLUTION

Due to the page length limit, we only presented partial
experimental results. Finally, we also compared our
solution to the traditional log system. Table I showed the
comparison between conventional log system and our
proposed blockchain-based solution. Since we used IPFS
to store log files and the blockchain to store file hashes,
we could take advantage of the tamper-proof nature of
IPFS and blockchain to ensure data security and integrity.
Moreover, we used smart contracts to create indexes for
log files to improve query efficiency, so our query speed
is also fast.

V. CONCLUSION

In this paper, we proposed a blockchain-based framework for
secure log storage. As we know, the cost of storing data
in a blockchain is very high, so the paper adopted IPFS to
store log files, the hash of log file generated by IPFS was
stored in the blockchain. After comparing

various consensus algorithms, the paper adopted the PoA
algorithm as our consensus algorithm. Then, the paper
utilized the IPFS and Ethereum smart contract to
implement prototype. What is more, the paper gave a
detailed introduction in terms of system architecture,
algorithm, smart contract and testing. Finally, the paper
also provided complete smart contract code. As future
work, we plan to encrypt log files using Elliptic Curve
Digital Signature Algorithm(ECDSA) before uploading
to IPFS. Thus, even if the log file on IPFS is leaked, the
log content can’t be obtained. Our proposed solution can
securely store large amounts of log files and provide
efficient retrieval, so we think that our proposed solution
can be used in more scenarios such as product
traceability.

REFERENCES

[1] Accorsi R. Log data as digital evidence: What secure logging protocols
have to offer?[C]//2009 33rd Annual IEEE International Computer
Software and Applications Conference. IEEE, 2009, 2: 398-403.

[2] Pourmajidi W, Miranskyy A. Logchain: Blockchain-assisted Log
Storage[C]//2018 IEEE 11th International Conference on Cloud
Computing (CLOUD). IEEE, 2018: 978-982.

[3] Truong N B, Sun K, Lee G M, et al. GDPR-Compliant Personal Data
Management: A Blockchain-based Solution[J]. arXiv preprint
arXiv:1904.03038, 2019.

[4] Nakamoto S. Bitcoin: A peer-to-peer electronic cash system[J]. 2008.

[5] Rabah K. Convergence of AI, IoT, big data and blockchain: a
review[J]. The Lake Institute Journal, 2018, 1(1): 1-18.

[6] Crosby M, Pattanayak P, Verma S, et al. Blockchain technology:
Beyond bitcoin[J]. Applied Innovation, 2016, 2(6-10): 71.

[7] Truong N B, Um T W, Zhou B, et al. Strengthening the blockchain-

based internet of value with trust[C]//2018 IEEE International
Conference on Communications (ICC). IEEE, 2018: 1-7.

[8] Buterin V. A next-generation smart contract and decentralized
application platform[J]. white paper, 2014, 3: 37.

[9] Kosba A, Miller A, Shi E, et al. Hawk: The blockchain model of
cryptography and privacy-preserving smart contracts[C]//2016 IEEE
symposium on security and privacy (SP). IEEE, 2016: 839-858.

[10] Benet J. Ipfs-content addressed, versioned, p2p file system[J]. arXiv
preprint arXiv:1407.3561, 2014.

[11] Peterson W W, Brown D T. Cyclic codes for error detection[J].
Proceedings of the IRE, 1961, 49(1): 228-235.

[12] Cohen F. A cryptographic checksum for integrity protection[J].
Computers & Security, 1987, 6(6): 505-510.

[13] Sivathanu G, Wright C P, Zadok E. Enhancing file system integrity
through checksums[R]. Technical Report FSL-04-04, Computer
Science Department, Stony Brook University, 2004.

[14] Eastlake D, Jones P. US secure hash algorithm 1 (SHA1)[J]. 2001.

[15] Sharma S. A strongly trusted integrity preservance based security
framework for critical information storage over cloud platform[J].
databases, 2016, 11(6).

[16] Bharathi P, Rajashree S. Secure file access solution for public cloud
storage[C]//International Conference on Information Communication
and Embedded Systems (ICICES2014). IEEE, 2014: 1-5.

Items Traditional System Our Blockchain-

based System
Data Security Low High

Data Authenticity Low High

Query Speed High High

261

International Journal of Engineering Research & Technology (IJERT)

ISSN: 2278-0181http://www.ijert.org

IJERTV12IS060119
(This work is licensed under a Creative Commons Attribution 4.0 International License.)

Published by :

Vol. 12 Issue 06, June-2023

www.ijert.org
www.ijert.org

