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Abstract  

This paper presents a novel Neural Classifier 

using FGMOS (Floating Gate MOSFET) . Basic reason 

for using FGMOS in Neural Classifier instead of classical 

MOSFET based Neural Classifier is to get significant 

reduction in area and power.  Additional advantage of 

FGMOS based Neural Classifier is the simple circuitry as 

compared to classical MOSFET based Neural Classifier. 

51.037% reduction in area is achieved in FGMOS based 

Neural Classifier (in .12µm technology). Along with this 

Neural classifier, 100 synapse and 10 Neurons 

reconfigurable network also implemented.  

Keywords- FGMOS, Synapse, Neuron, Reconfigurable Network, 

Floating Gate.     

1. Introduction 

The use of neural classifier in the BIST 

architecture is illustrated in Fig. 1. The neural classifier 

compares the result of test stimulus and applied stimulas  

and is classified as a valid or invalid code-word pointing 

to a functional or fau lty operation respectively. The focus 

of this paper is the neural classifier, which is a generic 

BIST component independent of the circuit under test.  

 

Fig. 1. BIST architecture 
 

 
Fig. 2 Neuron and synapse models[1]  

 

 Synapse can be considered as a multiplier of an 

input signal value by the stored weight value. A Neuron 

sums the output values of the connected synapses and 

passes the resulting sum through a nonlinear act ivation 

function, as shown in fig. 2. 

 

2. MOSFET Based Synapses Network design 
The basic function of a synapse is mult iplication. Linear 

multip licat ion, as dictated by the mathematical model, is 

area expensive in analog ICs.  
 

 
 

Fig. 3.(a) Current sources control circuit.(b)Synapse circuit schematic 
 

The synapse circuit chosen for this design is a 

simple multip lying DAC, which represents a differential 

pair with programmable tail current (Fig. 3(b)) and current 

ratio shown in fig 3(a). A differential input voltage 

produces a differential output current which is collected on 

the summing nodes common to all synapses connected to 

one neuron.  
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3. Floating Gate Based Synapse And 

Weight Storage Circuits 

3.1 FGMOS Weights Update Method 

Fig.4 shows dynamic memory which  is work idea 

taken from [2], [3] and Table.I g ives behavior of weight 

update circuit. There are two modes of operation in  

FGMOS update method 

1. Hold Mode 

2. Updating Mode 

(i). Charg ing Mode(fig 5(b)) 

(ii). Discharging Mode(fig 5(a)) 

 

Fig.4.Weight Updating Circuit 

Table I. Mode of operation  

 

Fig.5.(a) equvalent discharging circuit  (b)charging circuit 

Bit2 and Bit1 are both logic  signals that are 

either at VDD or ground. Vh is either at VDD or about one 

|VTP | below VDD . Vhbar is  either at ground or about one 

VTN above ground. Only one of Vh and Vh_bar is active at a 

time. 

 

 In Hold mode Bit1Bit2 are at VDD so both transistors are 

off state. In Updating Mode, Charging Mode ,Bit2 to 

VDD, Bit1 to ground and Vh   to active and equivalent mode 

is shown in fig.5(b). Discharging Mode , Bit2 to VDD, Bit1 

to ground and Vh_bar  to active and equivalent mode is 

shown in fig.5(a). If the current is small, and the logic 

signals are pulsed for a short time, very small charge 

packets can be added to or removed from Chold . Further, if 

the current is proportional to the change in the network 

error, and the logic pulse time is proportional to the 

learning rate, this circu it allows a very natural 

implementation 

 

3.2. Synapse Based On FGMOS  

Basically, this work idea is taken from reference 

[4], Low Power and Low Voltage FGMOS characteristics 

are described in reference [5]. A FGMOS based schematic 

of the synapse circuit with nonvolatile weight storage, 

which is taken from [1] as a future expansion, is shown in 

Fig. 6. It is a nonlinear four-quadrant multip lier with 

floating gate device current sources as in the electrically  

trainable artificial neural network (ETANN) chip [6]. 

Qualitatively, the circu it computes the product of the 

differential input voltage and the weight, which is 

proportional to the difference of the two floating gate 

device currents. 
In a network, the I+ and I- nodes of many 

synapse circuits are tied together to perform the summing 

function.  

 
Fig.6 . FGMOS based schematic of the synapse circuit and 

nonvolatile weight storage 

 

FGMOS based synapse takes inputs  from the 

neurons in the previous layer. Weight currents always 

changes with FG2 and the constant current from FG1. 

Using a balanced weight would make the circuit behave 

more like an ideal multiplier, but would complicate the 

S.No B1 B2 Mode 

1 1 1 Hold 

2 0 1 Charging 

3 1 0 Discharging 

W 
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weight increment circu it and increase the area of the 

synapse. The current in a floating gate device can be 

altered either by varying the control-gate voltage or by 

varying the charge on the floating gate. Changing the 

charge on the floating gate requires high-voltage pulses 

and may take hundreds of µs. The dynamic memory is 

used to store the control-gate voltage during learning. 

Dynamic memory allows fast alterability but requires 

periodic refresh cycles. After learn ing has converged, 

long-term storage is provided by storing the weight as 

charge on the floating gate. A more quantitative analysis 

of the synapse circuit follows. It can be shown that the 

differential output current of the synapse circuit is  

 

 
 

where Vin is V+-V- ,K=µoCoxW/L and IFi is the 

current of floating-gate device . For larger input voltages, 

the output current saturates to the difference of the two 

floating gate device currents times the sign of the input 

voltage. The 

drain current of a floating-gate device is 

 
where Vfg,s is the floating-gate to source 

potential of the floating-gate device and VT is the 

threshold voltage. By charge conservation, the floating-

gate potential is given by 

 

        

                  

where Cfg,cgis the floating gate to control gate 

capacitance Cfg,dis the floating gate to drain capacitance, 

Qfis the charge on the floating gate, Cfg,b is the floating 

gate to substrate capacitance, Cfg,s is the floating gate to 

source capacitance,αg is the gate coupling ratio, αdis the 

drain coupling ratio, and CT is the total capacitance seen 

by the floating gate.  

Once learning is complete, the current of FG2 is 

stored  temporarily in a sample-and-hold circuit in the 

periphery. High-voltage pulses are applied to FG2 until its 

current is equal to the target current stored in the sample-

and-hold. In practice, it is difficu lt to achieve very high 

precision when programming floating-gate devices 

although, in theory, one electron resolution is possible. 

High-precision programming requires very short high-

voltage pulses and a very precise sample and hold to store 

the target current.  

The complete synapse circuit is shown in Fig.7. 

During recall and learn modes, the Vs node is held at 

ground. Weights are perturbed by pulsing Vpert. The 

change in the weight is  

 
where gmF is the transconductance of the floating-gate 

transistor. Cpertis a very small capacitor about 15 fF so that 

very small perturbations can be applied. As long as Vpert 

returns to its original level after the perturbation, the 

stored weight is unaffected.  

 
Fig. 7. Complete synapse circuit. 

 

4. Reconfigrable  Architecture  
 

It is based on a single cascadable basic module 

chip which contains synapses, neuron and MUX shown in 

fig.8. As for the MLP (multi layer perceptron), we will 

map the synapse inputs and outputs, respectively, on 

voltages and currents. Consequently, the neuron inputs 

and outputs are mapped, respectively, on currents and 

voltages.  

 

 
Fig. 8 

 Block diagram of single S and N of reconfigurable n/w 

 

In the above figure select(S) pin of MUX must be 

high to select the input voltages. The o/p current of S is  

fed to N and its o/p voltages is fed back to MUX. Total 

100 synapse and 10 neuron are reconfigurable as shown 

in fig.10.  

 

5. Results 
Fig. 9 shows that FGMOS gain area factor when 

compared with MOSFET based synapse circuit. W ith 

(1) 

(2) 

(3) 

(5) 
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FGMOS fewer current branches are required, and 

therefore the power consumption also decreases. Complete 

improvement is shown in Table.II. Finally, as shown 

reference[1] 100 synapse and 10 neurons circuit is shown 

in fig.10 which is a generic BIST component independent 

of the circuit under test (CUT). 
 

 
(a) 

 
                

(b) 

Fig .9.(a)MOSFET based Synapse Layout (b)FGMOS based Synapse 

Table.II Comparation table of MOSFET and FGMOS 

 

 

Fig.10..100 Synapse,10 Neuron based Reconfigurable network  

6. Conclusions 

In this paper circuit complexity of NEURAL 

CLASSIFIER have been significantly reduced by using 

FGMOS. With FGMOS   fewer current branches are 

required, and therefore the power consumption also 

decreases. FGMOS is also provides reduction in area. This 

NEURAL Classifier has also additional benefits related to 

the frequency response, since the number of internal nodes 

is smaller. The devices can be biased in the most 

appropriate operating region for a wider range of input 

signals, by shifting the effective threshold voltages 

accordingly in the FGMOS t ransistors , hence also 

facilitating larger operating bandwidth,. All this benefits 

can be achieved without the need for extra level shifters . 

Finally, we can conclude FGMOS required less area when 

compared to the MOSFET based Neural Classifier.  
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S.No Parameter MOSFET FGMOS %Saving 

using 

FGMOS  

1. Area 819µm2 401µm2 51.037  

% 

2. No of 

elements 

Used 

23-Nmos 

4-Pmos 

5-Nmos 

1-Pmos 

2-FGMOS 

 

3 

 

Power 

Consumption 

2.036mW 0.5102mW 74.941 % 

10µm 

15µm 

40.1µm 

54.6µm 
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