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Abstract  
 

Randomness take place everywhere in Life. 
The many applications of randomness have 

led to the development of several different 

methods for generating random data. 

Functions in most software development tools 

output random numbers with uniform 

distribution. Simulations often need random 

numbers in normal distribution. Random 

number generators are very useful in 

developing Monte Carlo-Method simulations 

or a quantitative risk analysis technique, 

as debugging is facilitated by the ability to 

run the same sequence of random numbers 

again by starting from the same random seed. 

A novel method for generating Gaussian 

random numbers from uniform random 

number as a seed, simple LUTs and registers 

are presented here and  make best use of all 

available LUT inputs in a given FPGA 

architecture using VHDL programming 

language and the simulation was done and 

tested on the Model Sim 6.3f.  This method 

provides an easy, efficient and fastest method 

for simulating Monte Carlo-applications. 

 

1. Introduction  

Uniform-All values have an equal chance of 

occurring, and the user simply defines the 

minimum and maximum. 

Normal – Or “bell curve.”  The user simply 

defines the mean or expected value and a 

standard deviation to describe the variation 

about the mean.  Values in the middle near the 

mean are most likely to occur.  It is symmetric 

and describes many natural phenomena such 

as people’s heights 

                  Many scientific and industrial 

problems have no tractable closed-form 

solution, and can only be solved through 

Monte- Carlo simulations. However, such 

simulations require huge amounts of 

computational power, and the power and size 

limits of conventional compute-farms have 

led to significant interest in the use of FPGAs 

in such applications. A random number 

generator (RNG) is a computational or 

physical device designed to generate a 

sequence of numbers or symbols that lack any 

pattern, i.e. appear random. Many of the 

random number generators have existed since 

ancient times, including dice,coin flipping, 

the shuffling of playing cards, the use 

of yarrow stalks (by divination) in the I Ching, 

and many other techniques. Because of the 

mechanical nature of these techniques, 

generating large numbers of sufficiently 

random numbers (important in statistics) 

required a lot of work and/or time. Here a 

Uniform random number is generated, using 

only the most basic primitives of FPGAs: 

Flip-Flops (FF), Lookup Tables (LUT), Shift 

Registers (SR) . The construction method is 

designed to ensure maximum clock rates, 

while using the minimum of resources, and 

providing statistical quality at the level of 

software applications. 
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The overall system view is as shown in 

fig:1.In this Uniform random number 

generated is given as a seed to Gaussian 

random  number generator ,as uniformly 

distributed between 0 and 1 can be used to 

generate random numbers of any 

desired(Gaussian ) distribution by passing 

them through the inverse cumulative 

distribution function (CDF) of the desired 

(Gaussian) distribution. Inverse CDFs are also 

called functions. And the output of MVGRNs 

is given for simulating Monte carlo 

applications. MGRNS are also generated only 

using LUTs,and registers. 

 

                                          

                 

                                                                                          

 

Fig:1 overall system view 

 

 

 

 

 

 

Available Uniform PRNGs 

Linear Congruential Generator 

The classic generator is the linear 

congruential generator (LCG) (Knuth 1969), 

which uses a transition function of the form 

xn+1 = (axn+c) mod m. The maximum period 

of the generator is m (assuming the triple (a, 

c, m) has certain properties), but this means 

that in a 32-bit integer, the period can be at 

most 2
32

, which is far too low. LCGs also 

have known statistical flaws, making them 

unsuitable for modern simulations. 

Multiple Recursive Generator 

A derivative of the LCG is the multiple 

recursive generator (MRG), which additively 

combines two or more generators. If n 

generators with periods m1, m2, . . ., mn are 

combined, then the resulting period is 

LCM(m1, m2, . . ., mn), thus the period can be 

at most m1x, m2x, . . ., mnx. These generators 

provide both good statistical quality and long 

periods, but the relatively prime moduli 

require complex algorithms using 32-bit 

multiplications and divisions, so they are not 

suitable for current GPUs (NVIDIA 2007, 

Section 6.1.1.1). 

Lagged Fibonacci Generator 

A generator that is commonly used in 

distributed Monte Carlo simulations is the 

lagged Fibonacci generator (Knuth 1969). 

This generator is similar to an LCG but 

introduces a delayed feedback, using the 

transition function xn+1 = (xn xn-k) modm, 

where is typically addition or 

multiplication. However, to achieve good 

quality, the constant k must be large. 

Consequentially k words of memory must be 

used to hold the state. Typically k must be 
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greater than 1000, and each thread will require 

its own state, so this must be stored in global 

memory. We thus reject the lagged Fibonacci 

method but note that it may be useful in some 

GPU-based applications, because of the 

simplicity and small number of registers 

required. 

Mersenne Twister 

One of the most widely respected methods for 

random number generation in software is the 

Mersenne twister (Matsumoto and Nishimura 

1998), which has a period of 2
19,937

 and 

extremely good statistical quality. However, it 

presents problems similar to those of the 

lagged Fibonacci, because it has a large state 

that must be updated serially. Thus each 

thread must have an individual state in global 

RAM and make multiple accesses per 

generator. In combination with the relatively 

large amount of computation per generated 

number, this requirement makes the generator 

too slow, except in cases where the ultimate in 

quality is needed. 

Combined Tausworthe Generator 

Internally, the Mersenne twister utilizes a 

binary matrix to transform one vector of bits 

into a new vector of bits, using an extremely 

large sparse matrix and large vectors. 

However, there are a number of related 

generators that use much smaller vectors, of 

the order of two to four words, and a 

correspondingly denser matrix. An example of 

this kind of generator is the combined 

Tausworthe generator, which uses exclusive-

or to combine the results of two or more 

independent binary matrix derived streams, 

providing a stream of longer period and much 

better quality. Each independent stream is 

generated using TausStep, shown in Listing 

37-2, in six bitwise instructions. For example, 

the four-component LFSR113 generator from 

L'Ecuyer 1999 requires 6 x 4 + 3 = 27 

instructions, producing a stream with a period 

of approximately 2
113

. 

PROPOSED ALGORITHM 

Uniform Random Number Generator 

This paper describes a new method to create 

Random Number Generators (RNG) using 

only the most basic primitives of FPGAs: 

Flip-Flops (FF), Lookup Tables (LUT), Shift 

Registers (SR) . The proposed architecture  
has the significance of Less area utilisation, less 

power cosumption,Low clock frequency : 

about 550 Mhz,High speed generation : 

48Gb/s,Extremely long periods: ~2
11213

 -1,and 

is implemented with  VHDL description is 

platform independent.LUT-SR generator 

family uses a short and precise  algorithm for 

expanding the full RNG structure. Circuit 

diagram is shownin fig:2 

 

 
                             

                               U1               U2 

 
Figure No:2  Circuit Diagram of Uniform Random 

Number Generator 
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Fig NO:3 Uniform random number generator 

 

            Most Modern FPGAs allow LUTs to 

be configured in a number of different ways, 

such as basic ROMs, RAMs, and shift 

registers. . while the FIFO in a LUT-FIFO 

RNG is usually an expensive block RAM, 

LUT-based shift registers are very cheap—

almost as cheap as the LUTs used to build the 

XOR gates. So it now becomes economical to 

use r shift registers,one per output bit, 

increasing the potential state to n = r (1+k). If 

we assume k = 32 (as found in modern 

FPGAs), and a modest RNG output width of r 

= 32, the state size increases to n = 1056. This 

provides a potential period of 21056 −1 for a 

cost of 64 LUTs, as compared to a period of 

264 − 1 for a LUT-optimized generator with 

the same resource usage. Configuring LUTs 

as shift registers provides an attractive means 

of adding more storage bits to a binary linear 

generator: for example, adding one Xilinx 

SRL32 to a LUT-optimized r bit generator 

allows the state size to be increased to This 

represents a degenerate form of an LUT-FIFO 

generator n = r+32. with k = 32 and w = 

1.Initially the loading step is done by giving a 

seed. For r bit generator the seed size is r.The 

seed could not be an all zero number ,as it 

cancels the Random number  generation  and 

makes  the generator  idle. As soon as the 

seed is given the bits are routed to inputs of 

array of XOR gates. Universal shift register 

performs shifting operation in  addition to the 

parallel-in-parallel-out function.as FIFO 

Extension 1-bit shift registers are used. 

Bitwise shift registers improve the rate of 

mixing. For 8-bit RNG the length of shift 

register is given by the number of flip-flops.ll 
 

The Basics of Normal Distribution 

 

 

y t Fig No: 3 Normal Distribution curve 

This graphic illustrates the two main 

characteristics of normal distribution. The 

first key figure is called the mean. You may 

also know it as the "average". It represents 

the most common value and is abbreviated 

with the Greek letter μ (mu). All of the 

curves in the example have a mean of 0 

except the magenta one that has a mean of 2. 

Why is the normal distribution useful? 

 
• Many things actually are normally 

distributed, or very close to it. For example, 

height and intelligence are approximately 

normally distributed; measurement errors also 

often have a normal distribution  

919

International Journal of Engineering Research & Technology (IJERT)

Vol. 2 Issue 11, November - 2013

IJ
E
R
T

IJ
E
R
T

ISSN: 2278-0181

www.ijert.orgIJERTV2IS110324



• The normal distribution is easy to work with 

mathematically. In many practical cases, the 

methods developed using normal theory work 

quite well even when the distribution is not 

normal.  

• There is a very strong connection between 

the size of a sample N and the extent to which 

a sampling distribution approaches the normal 

form. Many sampling distributions based on 

large N can be approximated by the normal 

distribution even though the population 

distribution itself is definitely not normal.  

Generating Standard Normal 

Distribution Programmatically 

Most of the information out there about 

normal distribution involves calculating 

standard deviation and mean from a 

collection of data points. What we want to 

do is exactly the opposite.The simplest way 

of doing this is to invert the standard normal 

cumulative distribution function.   

Random sampling from input distributions 

  

Consider the distribution of an uncertain input 

variable x. The cumulative distribution 

function F(x) gives the probability P that the 

variable X will be less than or equal to x, i.e. 

  

F(x) = P(X<=x) 

  

F(x) obviously ranges from zero to one. Now, 

we can look at this equation in the reverse 

direction: what is the value of x for a given 

value of F(x)? This inverse function G(F(x)) 

is written as: 

  

G(F(x)) = x 

  

It is this concept of the inverse function 

G(F(x)) that is used in the generation of 

random samples from each distribution in a 

risk analysis model. 

The figure below provides a graphical 

representation of the relationship between 

F(x) and G(F(x)): 

  

 

 

 

Fig No:4 Cumulative Distribution function for 

Normal Distribution 
 

 

BACKGROUND: GENERATING 

MULTIVARIATE 

GAUSSIAN RANDOM NUMBERS 
 

A multivariate Gaussian distribution is 

characterized by its mean vector m and 

correlation matrix A. Several methods to 

sample from multivariate Gaussian 

distribution exist in the literature. As far as the 

hardware implementation of the MVGRNG 

on an FPGA is concerned, some of the most 

widely used techniques are Cholesky 

factorization and Eigen value decomposition. 

Using Cholesky factorization method, A is 

decomposed using Cholesky decomposition 

into a product of a lower triangular matrix and 

its transpose, AA
T
. The required samples are 

generated through a linear combination of 

univariate Gaussian samples that follow a 

standard Gaussian distribution N(0; 1). This 

method reduces the number of computations 

by half due to the lower triangular property of 

the matrix in comparison to full matrix-vector 

multiplication. A disadvantage is that the 
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Cholesky decomposition only works with 

positive definite covariance matrices∑ _many 

matrices constructed from estimates may be 

singular or very close to singular. An 

alternative method is to decompose A by 

Eigen value decomposition. As a result of the 

decomposition, A can be expressed as a linear 

combination of three separable matrices USU
T
 

where U is an orthogonal matrix (UU
T
 = I) . 

The disadvantage of the SVD-based 

construction is that in general all the elements 

of the matrix are nonzero, resulting in an n2 

cost in both the number of stored elements, 

and in the number of multiply-accumulates 

per transformed vector. However, the SVD 

algorithm is able to handle a wider range of 

covariance matrices, such as ill-conditioned 

matrices that are very close to singular and 

reduced rank matrices, where the output 

vector depends on fewer than n random 

factors. Such difficult covariance matrices 

frequently occur in practice.    Generation of 

the univariate Gaussian distribution with a 

specific mean µ and variance, σ
2
 generating a 

standard Gaussian variate r with mean zero 

and variance one, then applying a linear 

transformation, 

 

                                x = σr + μ                     

 

For a multivariate Gaussian distribution the 

mean is a length n vector m ,variance 

becomes an n × n covariance matrix . The 

covariance matrix is a symmetric matrix. 

x = Ar + m. 
The matrix A is conceptually similar to the 

SD .With the  existing method that is to 

perform Cholesky decomposition of the 

correlation matrix, producing a lower-

triangular matrix or an alternative method is 

to use the Singular Value Decomposition 

(SVD) algorithm. This decomposes the matrix 

into an orthogonal matrix U and a diagonal 

matrix S Such that   

∑ = USU
T .

 The disadvantage of the SVD-

based construction is that in general all the 

elements of the matrix are nonzero.
 
 

Example 

For bivariate  Gaussian random output =x1,x2 

Let mean m=     g 

                          h   

  

      

Then  X=    a      b           e          +      g    

                         c      d           f                   h     

 

 

where             a            b       

                      c            d 

 

     is decomposed values by any above 

method.               

 

and               e          

                     f 

 

  is a vector of n independent 

identically distributed(IID)standard                                                              

Gaussian numbers. 

 

 

 Then      x1  =  ae+bf+g          in 1
st
 

cycle 

 

               x2 =  ce+df+h          in 2
nd

 

cycle 

 

Thus for the generation of n Gaussian 

samples,  it requires  n cycles. Hence it 

is very long procedure to be followed. 

 

GENERATION USING LUTS AND 

ADDERS 

 

Does not required to generate vector r 

.Multiplication not required. Here uniform 

samples will be converted to correlated 

Gaussian samples using table-lookups. Each 

table contains a pre-calculated discretized 
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Gaussian distribution with the correct SD, so 

the only operations required are table-lookups 

and additions. The following text frequently 

refers to tables, which in this context means 

an array of read-only elements (a ROM) 

which will be implemented in the FPGA using 

LUTs. Unless otherwise specified, each table 

contains k elements, and is indexed using the 

syntax L[i ] to access table elements L[1], . . . , 

L[k]. Where arrays of tables are used, sub-

scripts identify a table within the array, which 

can then be indexed as for a standalone table, 

e.g., L2,3 . Tables can also be interchangeably 

treated as discrete random number generators, 

where the discrete PDF of each table is given 

by assigning each element of the table an 

equal probability of 1/k.  The central idea of 

this method is to construct an 

 n × n array of tables G, such that the discrete 

distribution of each table Gi, j approximates a 

Gaussian distribution with SD Ai, j 

 

                Gi, j ~ N(0,Ai, j ). 

Now instead of starting from a Gaussian 

vector r, the input is an IID uniform vector u. 

Generation of each output element uses each 

element of u as a random index into the table, 

then sums the elements selected from each 

table . In practice k will be selected to be a 

power of 2, so each element of u is actually a 

uniform integer constructed from the 

concatenation of log2(k) random bits. The 

simplest method of generating a table-based 

approximation to the Gaussian distribution is 

direct cumulative distribution function (CDF) 

inversion. To generate a table L with SD σ, 

table elements are chosen according to                               

L[i] = σΦ
-1

(i /(k + 1)), i ∈ 1, . . . , k 

Where Φ
-1

  is the Gaussian inverse CDF. The 

central idea in this paper, of replacing 

Gaussian 

samples and multipliers with uniform samples 

and tables, allows for many types of possible 

implementations. 

 
 
Figure No:5 Circuit Diagram of Gaussian Random 

Number Generator 

 

At the top is a random bit source,which 

generates a new vector u for every cycle. 

The elements of u are broadcast vertically 

down through the cells, and used to select 

one element from each table. The selected 

elements are then accumulated 

horizontally from left to right by 

implementing the function                           

si, j = si, j−1 + Li, j [u j ],  

Table elements are chosen  according to  

       L[i] = σ Φ
-1  

 (i/(k+1))           i=1,………,k 

Pdf of gaussian distribution is  

 Φ(x)=1/√2∏  e-
(x -μ)2/2σ2

 

 CDF is given by 

 Φ(X)=1/2[1+erf(x/√2)] 
Example 

If k=8 

Then 

L1=Φ
-1

(1/9) 

ie    

0.111= 1/2[1+erf(x/√2)] 

-0.7778=erf(x/ √2) 

x=-1.72632 

Then L1=σ11*-1.72632  

 

Here we are going to implement a bi-variate 

Gaussian random number generator. So we 
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have to generate two uniform random 

numbers simultaneously. For this we are using 

a modified random number generator with 

variable length FIFO and Shift Registers. 

Adder unit 

Here we used Carry Select Adders in between 

two consecutive stages of LUTs. Here we 

used the carry save adders advantage of fast 

operation over other kind of adders. 

CONCLUSION 

      This paper presents a low cost architecture 

for the implementation of Uniform as well as 

Gaussian Random Number Generator. Both 

make use of simple LUTs, Shift registers, and 

adders. This promises a great advantage over 

other existing system in terms of    high speed, 

and performance efficiency. It provides Long 

period independent Random numbers which 

can be directly used as input  for Monte carlo 

applications. 
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he loading step is done by giving a seed. For 
r bit generator the seed size is 
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7. Main text  
Type your main text in 10-point Times, single-

spaced. Do not use double-spacing. All paragraphs 

should be indented 1/4 inch (approximately 0.5 

cm). Be sure your text is fully justified—that is, 

flush left and flush right. Please do not place any 

additional blank lines between paragraphs.  

 

Figure and table captions should be 10-point 

boldface Helvetica (or a similar sans-serif font). 

Callouts should be 9-point non-boldface Helvetica. 

Initially capitalize only the first word of each figure 

caption and table title. Figures and tables must be 

numbered separately. For example: ―Figure 1. 

Database contexts‖, ―Table 1. Input data‖. Figure 

captions are to be centered below the figures. Table 

titles are to be centered above the tables.  

 

8. First-order headings  
For example, ―1. Introduction‖, should be Times 

12-point boldface, initially capitalized, flush left, 

with one blank line before, and one blank line after. 

Use a period (―.‖) after the heading number, not a 

colon.  

 

8.1. Second-order headings  
As in this heading, they should be Times 11-

point boldface, initially capitalized, flush left, with 

one blank line before, and one after.  

 

8.1.1. Third-order headings. Third-order 

headings, as in this paragraph, are discouraged. 

However, if you must use them, use 10-point 

Times, boldface, initially capitalized, flush left, 

preceded by one blank line, followed by a period 

and your text on the same line.  
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peripheral observations in the text (within 
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