
Lut Based Uniform And Gaussian Random Generators
Rachana.M.K Mrs.P.Hemalatha

Scholor of M.E VLSI Design Assistant Proffessor

Maharaja Engineering College,Avinasi,Coimbatoor MEC,Avinasi,Coimbatoor

Abstract

Randomness take place everywhere in Life.
The many applications of randomness have

led to the development of several different

methods for generating random data.

Functions in most software development tools

output random numbers with uniform

distribution. Simulations often need random

numbers in normal distribution. Random

number generators are very useful in

developing Monte Carlo-Method simulations

or a quantitative risk analysis technique,

as debugging is facilitated by the ability to

run the same sequence of random numbers

again by starting from the same random seed.

A novel method for generating Gaussian

random numbers from uniform random

number as a seed, simple LUTs and registers

are presented here and make best use of all

available LUT inputs in a given FPGA

architecture using VHDL programming

language and the simulation was done and

tested on the Model Sim 6.3f. This method

provides an easy, efficient and fastest method

for simulating Monte Carlo-applications.

1. Introduction

Uniform-All values have an equal chance of

occurring, and the user simply defines the

minimum and maximum.

Normal – Or “bell curve.” The user simply

defines the mean or expected value and a

standard deviation to describe the variation

about the mean. Values in the middle near the

mean are most likely to occur. It is symmetric

and describes many natural phenomena such

as people’s heights

 Many scientific and industrial

problems have no tractable closed-form

solution, and can only be solved through

Monte- Carlo simulations. However, such

simulations require huge amounts of

computational power, and the power and size

limits of conventional compute-farms have

led to significant interest in the use of FPGAs

in such applications. A random number

generator (RNG) is a computational or

physical device designed to generate a

sequence of numbers or symbols that lack any

pattern, i.e. appear random. Many of the

random number generators have existed since

ancient times, including dice,coin flipping,

the shuffling of playing cards, the use

of yarrow stalks (by divination) in the I Ching,

and many other techniques. Because of the

mechanical nature of these techniques,

generating large numbers of sufficiently

random numbers (important in statistics)

required a lot of work and/or time. Here a

Uniform random number is generated, using

only the most basic primitives of FPGAs:

Flip-Flops (FF), Lookup Tables (LUT), Shift

Registers (SR) . The construction method is

designed to ensure maximum clock rates,

while using the minimum of resources, and

providing statistical quality at the level of

software applications.

916

International Journal of Engineering Research & Technology (IJERT)

Vol. 2 Issue 11, November - 2013

IJ
E
R
T

IJ
E
R
T

ISSN: 2278-0181

www.ijert.orgIJERTV2IS110324

The overall system view is as shown in

fig:1.In this Uniform random number

generated is given as a seed to Gaussian

random number generator ,as uniformly

distributed between 0 and 1 can be used to

generate random numbers of any

desired(Gaussian) distribution by passing

them through the inverse cumulative

distribution function (CDF) of the desired

(Gaussian) distribution. Inverse CDFs are also

called functions. And the output of MVGRNs

is given for simulating Monte carlo

applications. MGRNS are also generated only

using LUTs,and registers.

Fig:1 overall system view

Available Uniform PRNGs

Linear Congruential Generator

The classic generator is the linear

congruential generator (LCG) (Knuth 1969),

which uses a transition function of the form

xn+1 = (axn+c) mod m. The maximum period

of the generator is m (assuming the triple (a,

c, m) has certain properties), but this means

that in a 32-bit integer, the period can be at

most 2
32

, which is far too low. LCGs also

have known statistical flaws, making them

unsuitable for modern simulations.

Multiple Recursive Generator

A derivative of the LCG is the multiple

recursive generator (MRG), which additively

combines two or more generators. If n

generators with periods m1, m2, . . ., mn are

combined, then the resulting period is

LCM(m1, m2, . . ., mn), thus the period can be

at most m1x, m2x, . . ., mnx. These generators

provide both good statistical quality and long

periods, but the relatively prime moduli

require complex algorithms using 32-bit

multiplications and divisions, so they are not

suitable for current GPUs (NVIDIA 2007,

Section 6.1.1.1).

Lagged Fibonacci Generator

A generator that is commonly used in

distributed Monte Carlo simulations is the

lagged Fibonacci generator (Knuth 1969).

This generator is similar to an LCG but

introduces a delayed feedback, using the

transition function xn+1 = (xn xn-k) modm,

where is typically addition or

multiplication. However, to achieve good

quality, the constant k must be large.

Consequentially k words of memory must be

used to hold the state. Typically k must be

917

International Journal of Engineering Research & Technology (IJERT)

Vol. 2 Issue 11, November - 2013

IJ
E
R
T

IJ
E
R
T

ISSN: 2278-0181

www.ijert.orgIJERTV2IS110324

greater than 1000, and each thread will require

its own state, so this must be stored in global

memory. We thus reject the lagged Fibonacci

method but note that it may be useful in some

GPU-based applications, because of the

simplicity and small number of registers

required.

Mersenne Twister

One of the most widely respected methods for

random number generation in software is the

Mersenne twister (Matsumoto and Nishimura

1998), which has a period of 2
19,937

 and

extremely good statistical quality. However, it

presents problems similar to those of the

lagged Fibonacci, because it has a large state

that must be updated serially. Thus each

thread must have an individual state in global

RAM and make multiple accesses per

generator. In combination with the relatively

large amount of computation per generated

number, this requirement makes the generator

too slow, except in cases where the ultimate in

quality is needed.

Combined Tausworthe Generator

Internally, the Mersenne twister utilizes a

binary matrix to transform one vector of bits

into a new vector of bits, using an extremely

large sparse matrix and large vectors.

However, there are a number of related

generators that use much smaller vectors, of

the order of two to four words, and a

correspondingly denser matrix. An example of

this kind of generator is the combined

Tausworthe generator, which uses exclusive-

or to combine the results of two or more

independent binary matrix derived streams,

providing a stream of longer period and much

better quality. Each independent stream is

generated using TausStep, shown in Listing

37-2, in six bitwise instructions. For example,

the four-component LFSR113 generator from

L'Ecuyer 1999 requires 6 x 4 + 3 = 27

instructions, producing a stream with a period

of approximately 2
113

.

PROPOSED ALGORITHM

Uniform Random Number Generator

This paper describes a new method to create

Random Number Generators (RNG) using

only the most basic primitives of FPGAs:

Flip-Flops (FF), Lookup Tables (LUT), Shift

Registers (SR) . The proposed architecture
has the significance of Less area utilisation, less

power cosumption,Low clock frequency :

about 550 Mhz,High speed generation :

48Gb/s,Extremely long periods: ~2
11213

 -1,and

is implemented with VHDL description is

platform independent.LUT-SR generator

family uses a short and precise algorithm for

expanding the full RNG structure. Circuit

diagram is shownin fig:2

 U1 U2

Figure No:2 Circuit Diagram of Uniform Random

Number Generator

918

International Journal of Engineering Research & Technology (IJERT)

Vol. 2 Issue 11, November - 2013

IJ
E
R
T

IJ
E
R
T

ISSN: 2278-0181

www.ijert.orgIJERTV2IS110324

Fig NO:3 Uniform random number generator

 Most Modern FPGAs allow LUTs to

be configured in a number of different ways,

such as basic ROMs, RAMs, and shift

registers. . while the FIFO in a LUT-FIFO

RNG is usually an expensive block RAM,

LUT-based shift registers are very cheap—

almost as cheap as the LUTs used to build the

XOR gates. So it now becomes economical to

use r shift registers,one per output bit,

increasing the potential state to n = r (1+k). If

we assume k = 32 (as found in modern

FPGAs), and a modest RNG output width of r

= 32, the state size increases to n = 1056. This

provides a potential period of 21056 −1 for a

cost of 64 LUTs, as compared to a period of

264 − 1 for a LUT-optimized generator with

the same resource usage. Configuring LUTs

as shift registers provides an attractive means

of adding more storage bits to a binary linear

generator: for example, adding one Xilinx

SRL32 to a LUT-optimized r bit generator

allows the state size to be increased to This

represents a degenerate form of an LUT-FIFO

generator n = r+32. with k = 32 and w =

1.Initially the loading step is done by giving a

seed. For r bit generator the seed size is r.The

seed could not be an all zero number ,as it

cancels the Random number generation and

makes the generator idle. As soon as the

seed is given the bits are routed to inputs of

array of XOR gates. Universal shift register

performs shifting operation in addition to the

parallel-in-parallel-out function.as FIFO

Extension 1-bit shift registers are used.

Bitwise shift registers improve the rate of

mixing. For 8-bit RNG the length of shift

register is given by the number of flip-flops.ll

The Basics of Normal Distribution

y t Fig No: 3 Normal Distribution curve

This graphic illustrates the two main

characteristics of normal distribution. The

first key figure is called the mean. You may

also know it as the "average". It represents

the most common value and is abbreviated

with the Greek letter μ (mu). All of the

curves in the example have a mean of 0

except the magenta one that has a mean of 2.

Why is the normal distribution useful?

• Many things actually are normally

distributed, or very close to it. For example,

height and intelligence are approximately

normally distributed; measurement errors also

often have a normal distribution

919

International Journal of Engineering Research & Technology (IJERT)

Vol. 2 Issue 11, November - 2013

IJ
E
R
T

IJ
E
R
T

ISSN: 2278-0181

www.ijert.orgIJERTV2IS110324

• The normal distribution is easy to work with

mathematically. In many practical cases, the

methods developed using normal theory work

quite well even when the distribution is not

normal.

• There is a very strong connection between

the size of a sample N and the extent to which

a sampling distribution approaches the normal

form. Many sampling distributions based on

large N can be approximated by the normal

distribution even though the population

distribution itself is definitely not normal.

Generating Standard Normal

Distribution Programmatically

Most of the information out there about

normal distribution involves calculating

standard deviation and mean from a

collection of data points. What we want to

do is exactly the opposite.The simplest way

of doing this is to invert the standard normal

cumulative distribution function.

Random sampling from input distributions

Consider the distribution of an uncertain input

variable x. The cumulative distribution

function F(x) gives the probability P that the

variable X will be less than or equal to x, i.e.

F(x) = P(X<=x)

F(x) obviously ranges from zero to one. Now,

we can look at this equation in the reverse

direction: what is the value of x for a given

value of F(x)? This inverse function G(F(x))

is written as:

G(F(x)) = x

It is this concept of the inverse function

G(F(x)) that is used in the generation of

random samples from each distribution in a

risk analysis model.

The figure below provides a graphical

representation of the relationship between

F(x) and G(F(x)):

Fig No:4 Cumulative Distribution function for

Normal Distribution

BACKGROUND: GENERATING

MULTIVARIATE

GAUSSIAN RANDOM NUMBERS

A multivariate Gaussian distribution is

characterized by its mean vector m and

correlation matrix A. Several methods to

sample from multivariate Gaussian

distribution exist in the literature. As far as the

hardware implementation of the MVGRNG

on an FPGA is concerned, some of the most

widely used techniques are Cholesky

factorization and Eigen value decomposition.

Using Cholesky factorization method, A is

decomposed using Cholesky decomposition

into a product of a lower triangular matrix and

its transpose, AA
T
. The required samples are

generated through a linear combination of

univariate Gaussian samples that follow a

standard Gaussian distribution N(0; 1). This

method reduces the number of computations

by half due to the lower triangular property of

the matrix in comparison to full matrix-vector

multiplication. A disadvantage is that the

920

International Journal of Engineering Research & Technology (IJERT)

Vol. 2 Issue 11, November - 2013

IJ
E
R
T

IJ
E
R
T

ISSN: 2278-0181

www.ijert.orgIJERTV2IS110324

Cholesky decomposition only works with

positive definite covariance matrices∑ _many

matrices constructed from estimates may be

singular or very close to singular. An

alternative method is to decompose A by

Eigen value decomposition. As a result of the

decomposition, A can be expressed as a linear

combination of three separable matrices USU
T

where U is an orthogonal matrix (UU
T
 = I) .

The disadvantage of the SVD-based

construction is that in general all the elements

of the matrix are nonzero, resulting in an n2

cost in both the number of stored elements,

and in the number of multiply-accumulates

per transformed vector. However, the SVD

algorithm is able to handle a wider range of

covariance matrices, such as ill-conditioned

matrices that are very close to singular and

reduced rank matrices, where the output

vector depends on fewer than n random

factors. Such difficult covariance matrices

frequently occur in practice. Generation of

the univariate Gaussian distribution with a

specific mean µ and variance, σ
2
 generating a

standard Gaussian variate r with mean zero

and variance one, then applying a linear

transformation,

 x = σr + μ

For a multivariate Gaussian distribution the

mean is a length n vector m ,variance

becomes an n × n covariance matrix . The

covariance matrix is a symmetric matrix.

x = Ar + m.
The matrix A is conceptually similar to the

SD .With the existing method that is to

perform Cholesky decomposition of the

correlation matrix, producing a lower-

triangular matrix or an alternative method is

to use the Singular Value Decomposition

(SVD) algorithm. This decomposes the matrix

into an orthogonal matrix U and a diagonal

matrix S Such that

∑ = USU
T .

 The disadvantage of the SVD-

based construction is that in general all the

elements of the matrix are nonzero.

Example

For bivariate Gaussian random output =x1,x2

Let mean m= g

 h

Then X= a b e + g

 c d f h

where a b

 c d

 is decomposed values by any above

method.

and e

 f

 is a vector of n independent

identically distributed(IID)standard

Gaussian numbers.

 Then x1 = ae+bf+g in 1
st

cycle

 x2 = ce+df+h in 2
nd

cycle

Thus for the generation of n Gaussian

samples, it requires n cycles. Hence it

is very long procedure to be followed.

GENERATION USING LUTS AND

ADDERS

Does not required to generate vector r

.Multiplication not required. Here uniform

samples will be converted to correlated

Gaussian samples using table-lookups. Each

table contains a pre-calculated discretized

921

International Journal of Engineering Research & Technology (IJERT)

Vol. 2 Issue 11, November - 2013

IJ
E
R
T

IJ
E
R
T

ISSN: 2278-0181

www.ijert.orgIJERTV2IS110324

Gaussian distribution with the correct SD, so

the only operations required are table-lookups

and additions. The following text frequently

refers to tables, which in this context means

an array of read-only elements (a ROM)

which will be implemented in the FPGA using

LUTs. Unless otherwise specified, each table

contains k elements, and is indexed using the

syntax L[i] to access table elements L[1], . . . ,

L[k]. Where arrays of tables are used, sub-

scripts identify a table within the array, which

can then be indexed as for a standalone table,

e.g., L2,3 . Tables can also be interchangeably

treated as discrete random number generators,

where the discrete PDF of each table is given

by assigning each element of the table an

equal probability of 1/k. The central idea of

this method is to construct an

 n × n array of tables G, such that the discrete

distribution of each table Gi, j approximates a

Gaussian distribution with SD Ai, j

 Gi, j ~ N(0,Ai, j).

Now instead of starting from a Gaussian

vector r, the input is an IID uniform vector u.

Generation of each output element uses each

element of u as a random index into the table,

then sums the elements selected from each

table . In practice k will be selected to be a

power of 2, so each element of u is actually a

uniform integer constructed from the

concatenation of log2(k) random bits. The

simplest method of generating a table-based

approximation to the Gaussian distribution is

direct cumulative distribution function (CDF)

inversion. To generate a table L with SD σ,

table elements are chosen according to

L[i] = σΦ
-1

(i /(k + 1)), i ∈ 1, . . . , k

Where Φ
-1

 is the Gaussian inverse CDF. The

central idea in this paper, of replacing

Gaussian

samples and multipliers with uniform samples

and tables, allows for many types of possible

implementations.

Figure No:5 Circuit Diagram of Gaussian Random

Number Generator

At the top is a random bit source,which

generates a new vector u for every cycle.

The elements of u are broadcast vertically

down through the cells, and used to select

one element from each table. The selected

elements are then accumulated

horizontally from left to right by

implementing the function

si, j = si, j−1 + Li, j [u j],

Table elements are chosen according to

 L[i] = σ Φ
-1

 (i/(k+1)) i=1,………,k

Pdf of gaussian distribution is

 Φ(x)=1/√2∏ e-
(x -μ)2/2σ2

 CDF is given by

 Φ(X)=1/2[1+erf(x/√2)]
Example

If k=8

Then

L1=Φ
-1

(1/9)

ie

0.111= 1/2[1+erf(x/√2)]

-0.7778=erf(x/ √2)

x=-1.72632

Then L1=σ11*-1.72632

Here we are going to implement a bi-variate

Gaussian random number generator. So we

922

International Journal of Engineering Research & Technology (IJERT)

Vol. 2 Issue 11, November - 2013

IJ
E
R
T

IJ
E
R
T

ISSN: 2278-0181

www.ijert.orgIJERTV2IS110324

have to generate two uniform random

numbers simultaneously. For this we are using

a modified random number generator with

variable length FIFO and Shift Registers.

Adder unit

Here we used Carry Select Adders in between

two consecutive stages of LUTs. Here we

used the carry save adders advantage of fast

operation over other kind of adders.

CONCLUSION

 This paper presents a low cost architecture

for the implementation of Uniform as well as

Gaussian Random Number Generator. Both

make use of simple LUTs, Shift registers, and

adders. This promises a great advantage over

other existing system in terms of high speed,

and performance efficiency. It provides Long

period independent Random numbers which

can be directly used as input for Monte carlo

applications.

REFERENCES

[1] D. B. Thomas and W. Luk,

―Multivariate Gaussian random number

generation targeting reconfigurable

hardware,‖ ACM Transactions on

Reconfigurable Technology and Systems,

vol. 1, no. 12, 2008.

[2]SHELDON ROSS. Introduction to

Probability Models. Harcourt India Pvt.

Ltd., 2001,

7th edition

[3]D. B. Thomas and W. Luk, ―Credit risk

modelling using hardware accelerated

monte-carlo simulation,‖ in Proc. ACM

Symp. FPGAs Custom Comput. Mach.,

2008, pp. 229–238.

[4] N. Woods and T. VanCourt, ―FPGA

acceleration of Quasi-Monte Carlo in

finance,‖ in Proc. Int. Conf. Field

Programm. Logic Appl., 2008, pp. 335–

340.

[5]C. Saiprasert, C.-S. Bouganis, and G.

Constantinides, ―Mapping multiple

multivariate gaussian random number

generators on an FPGA,‖ in Proc. Int.

Conf. Field Programm. Logic Appl.,

2010, pp. 89–94.

he loading step is done by giving a seed. For
r bit generator the seed size is

923

International Journal of Engineering Research & Technology (IJERT)

Vol. 2 Issue 11, November - 2013

IJ
E
R
T

IJ
E
R
T

ISSN: 2278-0181

www.ijert.orgIJERTV2IS110324

7. Main text
Type your main text in 10-point Times, single-

spaced. Do not use double-spacing. All paragraphs

should be indented 1/4 inch (approximately 0.5

cm). Be sure your text is fully justified—that is,

flush left and flush right. Please do not place any

additional blank lines between paragraphs.

Figure and table captions should be 10-point

boldface Helvetica (or a similar sans-serif font).

Callouts should be 9-point non-boldface Helvetica.

Initially capitalize only the first word of each figure

caption and table title. Figures and tables must be

numbered separately. For example: ―Figure 1.

Database contexts‖, ―Table 1. Input data‖. Figure

captions are to be centered below the figures. Table

titles are to be centered above the tables.

8. First-order headings
For example, ―1. Introduction‖, should be Times

12-point boldface, initially capitalized, flush left,

with one blank line before, and one blank line after.

Use a period (―.‖) after the heading number, not a

colon.

8.1. Second-order headings
As in this heading, they should be Times 11-

point boldface, initially capitalized, flush left, with

one blank line before, and one after.

8.1.1. Third-order headings. Third-order

headings, as in this paragraph, are discouraged.

However, if you must use them, use 10-point

Times, boldface, initially capitalized, flush left,

preceded by one blank line, followed by a period

and your text on the same line.

9. Footnotes
Use footnotes sparingly (or not at all) and place

them at the bottom of the column on the page on

which they are referenced. Use Times 8-point type,

single-spaced. To help your readers, avoid using

footnotes altogether and include necessary

peripheral observations in the text (within

parentheses, if you prefer, as in this sentence).

10. References
List and number all bibliographical references in 9-

point Times, single-spaced, at the end of your

paper. When referenced in the text, enclose the

citation number in square brackets, for example [1].

Where appropriate, include the name(s) of editors

of referenced books.

[1] A.B. Smith, C.D. Jones, and E.F. Roberts, ―Article

Title‖, Journal, Publisher, Location, Date, pp. 1-10.

[2] Jones, C.D., A.B. Smith, and E.F. Roberts, Book

Title, Publisher, Location, Date.

11. Copyright forms and reprint orders
You must include your fully-completed, signed

IJERT copyright release form when you submit

your paper. We must have this form before your

paper can be published in the proceedings. The

copyright form is available as a Word file in author

download section, <IJERT-Copyright-Agreement-

Form.doc>.

924

International Journal of Engineering Research & Technology (IJERT)

Vol. 2 Issue 11, November - 2013

IJ
E
R
T

IJ
E
R
T

ISSN: 2278-0181

www.ijert.orgIJERTV2IS110324

